负压下层流预混平面火焰结构数值仿真与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决冲压发动机在高空负压环境中工作时燃烧不稳定和燃烧效率低的问题,开展负压下燃烧机理的基础研究尤为重要。层流预混火焰作为复杂燃烧现象的自然基础,研究层流预混火焰结构具有较高的理论意义和应用价值。本文通过数值仿真与试验研究相结合的手段,较为系统深入地研究了负压下层流预混平面火焰结构的特征和机理。
     自行设计搭建的试验系统包括模块化平焰燃烧器、供应系统、测控系统和三套分别基于自发辐射成像、PLIF和TDLAS技术的光学测量系统。以该试验系统为研究对象,重点研究了负压下四种不同组合可燃气(CH4/Air、C2H4/Air、H2/Air、CH4/O2)为工质时的火焰结构特性及其变化规律。PREMIX子程序库采用GRI Mech 3.0化学反应机理详细模拟了负压下的一维层流预混火焰结构,主要分析了负压、当量比等参数对火焰结构的影响,还研究了不同组合燃气火焰传播速度在压力和当量比变化时的变化趋势。
     在数值仿真结果基础上,提出将火焰结构划分为预热区、火焰锋面、产物区的方法进行研究,采用TDLAS技术测量了火焰锋面附近的温度,ICCD采集了火焰发光形态以及自由基化学荧光的图像,并使用基于自适应滤波算法的MATLAB程序对原始图像进行后处理,提取了重要自由基OH和CH的分布曲线。试验数据表明,燃料组分变化时,负压下的火焰锋面移动趋势会呈现不同的变化;氧气含量对负压下的燃烧稳定性和火焰结构随负压变化的趋势有重要影响;还发现了负压下热与质量扩散效应对火焰不稳定性的影响特征。
     为了更细致地研究火焰结构,采用OH-PLIF和CH、C2增强自发辐射成像相结合的手段,拍摄到了各类预混气平面火焰的精细结构图像。提出将火焰结构划分为未燃区、预热区、反应区、产物区的方法进行研究,利用OH半峰宽度定义反应区边界及厚度。研究了贫燃、恰当比、富燃状态时不同燃料类型平焰结构的变化规律,并详细讨论了负压和当量比因素对平焰精细结构的影响规律,发现反应区厚度随压力降低而增加。通过试验证明了燃烧负压下限和拐点的存在,且发现这两个参数随燃气组合和当量比的变化而改变。通过研究4.5kpa下的CH4/O2平面火焰,发现采用贫燃预混方式可提高负压下的燃烧效率。最后通过改变流体内外速度差和当量比,对层流部分预混火焰结构的变化过程进行了研究。
In purpose of solving combustion instability and low efficiency in Ramjet which work in low pressure at high altitude, it’s important to work on basic research of combustion in low pressure. Laminar premixed flame is the natural basis of complicated combustion; it has high academic meaning and applied value to study the laminar premixed flame structure. By means of numerical simulation and experimental studies, this dissertation studies the characteristic and mechanism of laminar premixed flat flame structure systematically and thoroughly.
     An experimental system has been established which includes a modularized burner, an accommodation system, a measurement and control system, three different optical diagnostic system based on spontaneous emission, PLIF and TDLAS technology.Choosing experimental system as the object, characteristic and variation of flat flame structure with four different gas combinations (CH4/Air, C2H4/Air, H2/Air, CH4/O2) are studied experimentally. One dimensional laminar premixed flame structure is simulated by using PREMIX with GRI Mech 3.0 detailedly. The parameter influence of low pressure and equivalence ratio on flame structure is analyzed, flame speed diversification of different gas combinations is investigated when pressure and equivalence ratio change.
     Basing on the numerical simulation results, the method which describe flame structure as three parts: preheat zone, flame surface, product zone is proposed. The temperature near flame surface is mearsured by TDLAS, the flame shape and radical chemiluminescence images are screened by ICCD. Original chemiluminescence images are decorated by MATLAB code based on adaptive-filtering method, distribution information of OH and CH radicals is extracted from these images. The rule of flame surface movement becomes different when fuel component changes in low pressure by experimental data. Combustion stability and the variation of flame structure infected by pressure are influenced by oxygen content. Also, the diffusion effect of thermal and mass influenced on flame instability is discovered.
     In order to study flame structure more accurately, by technology of OH-PLIF and CH, C2 intensified spontaneous emission, the chemiluminescence images of elaborate flat flame structure with different premixed gas are collected. The method which describe flame structure as four parts: unburnt zone, preheat zone, reaction zone, product zone is proposed, and use OH half width to define the boundary and thickness of the reaction zone. The variation of flat flame structure with different premixed gas is studied in fuel-lean, stoichiometric and fuel-rich flames. Stoichiometry and pressure dependence of elaborate flat flame structure is discussed detailedly; reaction zone thickness rises when pressure descends. The existence of pressure lower limit and turning point is testified and also found these two parameters depend on stoichiometry by experiment. We also found the combustion efficiency will be improved by organising combustion with fuel-lean premixed gas in 4.5kpa CH4/O2 experiment. The variation of laminar non-premixed flame structure is studied in ways of changing equivalence ratio and inner-outer liquid velocity difference at last.
引文
[1] K H Yu, A Trouve, J W Daily. Low-Frequency Pressure Oscillations in a Model Ramjet Combustor. Journal of Fluid Mechanics, 232(1991):47-72
    [2] S R Turns. An Introduction to Combustion. McGraw Hill, Boston, 2nd edition, 2000
    [3] C A Fannin. Therrnoacoustic Stability Analysis for Multi-Port Fuel Injection in a Lean Premixed Combustor. AIAA 2000-0711
    [4] C O Paschereit, E Gutmark, W Weisenstein. Control of Thermoacoustic Instability in a Premixed Combustor by Fuel Modulation. AIAA 99-0711
    [5] V V Bychkov, M A Liberman. Dynamics and Stability of Premixed Flames. Physics Reports, 2000, 325:115-237
    [6] A Hendricks, U Vandsburger,W R Saunders, W T Baumann. The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics. Measurement Science and Technology, 2006, 17: 139-144
    [7] W Pun, S L Palm, F E C Culick. Combustion Dynamics of an Acoustically Forced Flame. Combustion Science and Technology, 2003, 175: 499-521
    [8] A. G. Gaydon, H. G. Wolfhard. Flames, their structure, radiation and temperature (fourth edition).1979
    [9] C K Law, C J Sung. Structure, Aerodynamics, and Geometry of Premixed Flamelets. Progress in Energy and Combustion Science, 2000, 26: 459-505
    [10] K Claramunt, R Consul, D Carbonell, C D Segarra. Analysis of the Laminar Flamelet Concept for Nonpremixed Laminar Flames. Combustion and Flame, 2006, 145: 845–862
    [11] F A Williams. Progress in Knowledge of Flamelet Structure and Extinction. Progress in Energy and Combustion Science, 2000, 26: 657-682
    [12] Gregory P. Smith, Jorge Luque, Chung Park, Jay B. Jeffries, and David R. Crosley. Low Pressure Flame Determinations of Rate Constants for OH(A) and CH(A) Chemiluminescence. Combustion and Flame, 2002, 131: 59-69
    [13] R. Evertsena, J. A. Van Oijenb, R. T. E. Hermannsb, L. P. H. De Goeyb, J. J. TerMeulena. Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy. Combustion and Flame, 2003, 132: 34-42
    [14] J. Luque, P.A. Berg, J.B. Jeffries, G.P. Smith, D.R. Crosley, J.J. Scherer. Cavity ring-down absorption and laser-induced fluorescence for quantitative measurements of CH radicals in low-pressure flames. Appl. Phys. B, 2004, 78: 93–102
    [15] S. Cheskis, A. Goldman. Laser diagnostics of trace species in low-pressure flat flame. Progress in Energy and Combustion Science, 2009, 35: 365-382
    [16] G Hartung, J Hult and C F Kaminski. A flat flame burner for the calibration of laser thermometry techniques. Meas. Sci. Technol, 2006, 17: 2485-93
    [17] Mark Aurel Gregor and Andreas Dreizler. A quasi-adiabatic laminar flat flame burner for high temperature calibration. Meas. Sci. Technol, 2009, 20: 065402
    [18] R D Hancock, K E Bertagnalli, and R P Lucht. Nitrogen and Hydrogen CARS Temperature Measurements in a Hydrogen Air Flame Using a Near-Adiabatic Flat-Flame Burner. Combustion and Flame, 1997, 109: 323-331
    [19] Eckbreth A. Laser diagnostics for combustion temperature and species, no. 7.Tunbridge Wells, Kent & Cambridge, Massachusetts: Abacus Press; 1987
    [20] Kohse-Ho¨inghaus K. Laser techniques for the quantitative detection ofreactive intermediates in combustion systems. Prog Energy Combust Sci, 1994, 20: 203-79
    [21] Laurendeau NM. Temperature measurements by light-scattering methods. Prog Energy Combust Sci, 1988, 14(2): 147-70
    [22] Smyth K, Crosley D. Detection of minor species with laser techniques. In:Kohse-Ho¨inghaus K, Jeffries J, editors. Applied combustion diagnostics. NewYork: Taylor & Francis, 2002, 9–68
    [23] Berg P, Hill D, Noble A, Smith G, Jeffries J, Crosley D. Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results. Combust Flame, 2000, 121(1-2): 223-35
    [24] Luque J, Crosley D. Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence. Appl Phys B, 1996, 63: 91-8
    [25] Van Essen V, Sepman A, Mokhov A, Levinsky H. The effects of burner stabilization on Fenimore NO formation in low-pressure, fuel-rich premixed CH4/O2/N2 flames. Proc Combust Inst, 2007, 31: 329-37
    [26] Luque J, Berg P, Jeffries J, Smith G, Crosley D, Scherer J. Cavity ring-down absorption and laser-induced fluorescence for quantitative measurements of CH radicals in low-pressure flames. Appl Phys B, 2004, 78(1): 93-102
    [27] Mercier X, Therssen E, Pauwels JF, Desgroux P. Measurements of absolute concentration profiles of C2 in non-sooting and sooting diffusion flames by coupling cavity ring-down spectroscopy and laser-induced fluorescence. Proc Combust Inst, 2005, 30: 1655-63
    [28] Smith GP. Evidence of NCN as a flame intermediate for prompt NO. Chem Phys Lett, 2003, 367(5-6): 541-8
    [29] Sutton JA, Williams BA, Fleming JW. Laser-induced fluorescence measurements of NCN in low-pressure CH4/O2/N2 flames and its role in prompt NO formation. Combust Flame, 2008, 153(3): 465-78
    [30] Van Essen V, Sepman A, Mokhov A, Levinsky H. Pressure dependence of NO formation in laminar fuel-rich premixed CH4/air flames. Combust Flame, 2008, 434-41
    [31] Berg P, Hill D, Noble A, Smith G, Jeffries J, Crosley D. Absolute CH concentration measurements in low-pressure methane flames: comparisons with model results. Combust Flame, 2000, 121(1-2): 223-35
    [32] O’Keefe A, Deacon D. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev Sci Instrument, 1988, 59(12): 2544-51
    [33] Luque J, Jeffries J, Smith G, Crosley D. Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser-induced fluorescence in a methane/air low-pressure flame. Appl Phys B, 2001, 73(7): 731-8
    [34] Luque J, Jeffries J, Smith G, Crosley D, Scherer J. Combined cavity ring-down absorption and LIF imaging measurements of CN(B-X) and CH(B-X) in low-pressure CH4/O2/N2 and CH4/NO/O2/N2 flames. Combust Flame, 2001, 126(3): 1725-35
    [35] Moreau C, Therssen E, Mercier X, Pauwels J, Desgroux P. Two-color laser induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames. Appl Phys B, 2004, 78(3-4): 485-92
    [36] Naik S, Laurendeau N. Measurements of absolute CH concentrations by cavity ring-down spectroscopy and linear laser-induced fluorescence in laminar, counterflow partially premixed and nonpremixed flames at atmospheric pressure. Appl Opt, 2004, 43(26): 5116-25
    [37] Schocker A, Brockhinke A, Bultitude K, Ewart P. Cavity ring-down measurements in flames using a single-mode tunable laser system. Appl Phys B, 2003, 77(1): 101-8
    [38] Mercier M, Therssen E, Pauwels J, Desgroux P. Quantitative features and sensitivity of cavity ring-down measurements of species concentrations in flames. Combust Flame, 2001, 124(4): 656-67
    [39] Spuler S, Linne M. Numerical analysis of beam propagation in pulsed cavity ring-down spectroscopy. Appl Opt, 2002, 41(15): 2858-68
    [40] Staicu A, Stolk R, ter Meulen J. Absolute concentrations of the C2 radical in the A1Pu state measured by cavity ring-down spectroscopy in an atmospheric oxyacetylene flame. J Appl Phys, 2002, 91(3): 969-74
    [41] Lee DH, Yoon Y, Kim B, Lee JY, Yoo YS, Hahn JW. Optimization of the mode matching in pulsed cavity ring-down spectroscopy by monitoring nondegenerate transverse mode beating. Appl Phys B, 2002, 74(4-5): 435-40
    [42] Naus H, van Stokkum IHM, Hogervorst W, Ubachs W. Quantitative analysis of decay transients applied to a multimode pulsed cavity ring-down experiment.Appl Opt 2001, 40(24): 4416-26
    [43] Evertsen R, van Oijen J, Hermanns R, de Goey L, ter Meulen J. Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy. Combust Flame, 2003, 132(1-2): 34-42
    [44] Harris S. Intracavity laser spectroscopy: an old field with new prospects forcombustion diagnostics. Appl Opt, 1984, 23(9):1311-7
    [45] Rahinov I, Ditzian N, Goldman A, Cheskis S. Intracavity laser absorption spectroscopy of NH2 in methane/air flames doped with N2O, NO and NH3. Proc Combust Inst, 2005, 30: 1575-1582
    [46] Rahinov I, Goldman A, Cheskis S. Absorption spectroscopy diagnostics of amidogen in ammonia-doped methane/air flames. Combust Flame, 2006, 145(1-2): 105-116
    [47] Rahinov I, Goldman A, Cheskis S. Intracavity laser absorption spectroscopy and cavity ring-down spectroscopy in low-pressure flames. Appl Phys B, 2005, 81(1):143-149
    [48] Rahinov I, Goldman A, Cheskis S. Intracavity laser absorption spectroscopy for flame diagnostics. Isr J Chem, 2007, 47:131-140
    [49] Rahinov I, Ditzian N, Lozovsky V, Cheskis S. Intracavity laser absorption spectroscopy measurements of CN using red system A-X. Simultaneous observation of CN, NH2, HNO and 1CH2 in low-pressure hydrocarbon flames doped with nitrogen oxides. Chem Phys Lett, 2002, 352(3-4):169-175
    [50] Li Z, Hu C, Zetterberg J, Linvin M, Alden M. Midinfrared polarization spectroscopy of OH and hot water in low-pressure lean premixed flames. J Chem Phys, 2007, 127(8):084310
    [51] Li Z, Linvin M, Zetterberg J, Kiefer J, Alde’n M. Mid-infrared polarization spectroscopy of C2H2: non-intrusive spatial-resolved measurements of polyatomic hydrocarbon molecules for combustion diagnostics. Proc Combust Inst, 2007, 31:817-824
    [52] Rahinov I, Goldman A, Cheskis S. Absorption spectroscopy diagnostics of amidogen in ammonia-doped methane/air flames. Combustion and Flame, 2006, 145(1-2):105-116
    [53] Goldman A, Cheskis S. Intracavity laser absorption spectroscopy of sooting acetylene/air flames. Appl Phys B, 2008, 92:281-6.
    [54] Wieman C, Ha’’nsch T W. Doppler-free laser polarization spectroscopy. Phys Rev Lett, 1976;36(20):1170-3
    [55] T. Kasper, U. Struckmeier, P. Oald, K. Kohse-Ho’’inghaus. Structure of a stoichiometric propanal flame at low pressure. Proceedings of the Combustion Institute, 2009, 32: 1285-1292
    [56] D. P. Mishra. Effects of initial temperature on the structure of laminar CH4–air premixed flames. Fuel, 2003, 82: 1471-1475
    [57] Ju Hyeong Cho, Tim Lieuwen. Laminar premixed flame response to equivalence ratio oscillations. Combustion and Flame, 2005, 140: 116-129
    [58] M. I. Hassan, K. T. Aung, G. M. Faeth. Measured and predicted properties of laminar premixed methane/air flames at various pressures. Combustion and Flame, 1998,115: 539-550
    [59] Jhon Pareja, Hugo J. Burbano, Yasuhiro Ogami. Measurements of the laminar burning velocity of hydrogen/air premixed flames. International journal of hydrogen energy, 2010, 35: 1812-1818
    [60] John R. Reisel. Modeling of Nitric Oxide Formation in High-Pressure Premixed Laminar Ethane Flames. Combustion and Flame, 2000, 120: 233–241
    [61] Erjiang Hu, Zuohua Huang, Jianjun Zheng, Qianqian Li, Jiajia He. Numerical study on laminar burning velocity and NO formation of premixed methane/hydrogen/air flames. International journal of hydrogen energy, 2009, 34: 6545-6557
    [62] B. Z. Dlugogorski, R. K. Hichens, E. M. Kennedy and J. W. Bozzelli. Propagation of laminar flames in wet premixed natural gas-air mixtures. Institution of Chemical Engineers Trans IChemE, Vol 76, Part B, May 1998
    [63] T. Schuller, D. Durox, S. Candel. Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combustion and Flame, 2003, 135: 525–537
    [64] C. Duynslaegher, H. Jeanmart, J. Vandooren. Flame structure studies of premixed ammonia/hydrogen/oxygen/argon flames:Experimental and numerical investigation. Proceedings of the Combustion Institute, 2009, 32: 1277-1284
    [65] Jun Kojima, Yuji Ikeda, Tsuyoshi Nakajima. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane–air premixed flames. Combustion and Flame, 2005, 140: 34–45
    [66] Mika Orain, Yannis Hardalupas. Effect of fuel type on equivalence ratio measurements using chemiluminescence in premixed flames. C. R. Mecanique, 2010, 338: 241-254
    [67] Gregory P. Smith, Jorge Luque, Chung Park, Jay B. Jeffries, and David R. Crosley. Low Pressure Flame Determinations of Rate Constants for OH(A) and CH(A) Chemiluminescence. Combustion and Flame, 2002, 131: 59-69
    [68] B. Higgins, M.Q. McQuay, F. Lacas, J.C. Rolon, N. Darabiha, S. Candel. Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar–ames. Fuel, 2001, 80: 67-74
    [69] Carla S.T. Marques , Luiz G. Barreta, Maria E. Sbampato, Alberto M. dos Santos. Laser-saturated fluorescence of nitric oxide and chemiluminescence measurements in premixed ethanol flames. Experimental Thermal and Fluid Science, 2010, 34: 1142-1150
    [70] C. S. Panoutsos, Y. Hardalupas, A. M. K. P. Taylor. Numerical evaluation of equivalence ratio measurement using OH? and CH? chemiluminescence in premixed and non-premixed methane/air flames. Combustion and Flame, 2009, 156:273-291
    [71] Jun Kojima, Yuji Ikeda and Tsuyoshi Nakajima. Spatially resolved measurmentof OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames. Proceedings of the Combustion Institute, Volume 28, 2000, 1757-1764
    [72] Stephen R Turns.燃烧学导论:概念与应用(第二版).姚强等译.北京:清华大学出版社. 2009. 206-244
    [73] Westbrook C K, Dryer F L. Chemical kinetic modeling of hydrocarbon combustion. Pro. [J]. Energy Combus Science, 1984, 10: 1-57
    [74] Glarborg P, Miller J A, Kee R J. Kinetic modeling and sensitivity analysis of nitrogen oxider formation in well-stirred reactors. [J]. Combustion and Flame, 1986, 65: 177-202
    [75] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Pro Energy Combust Science, 1989, 15: 287-338
    [76] http://www.me.berkeley.edu./gri_mech/
    [77] http://chem.Leeds.ac.uk/combustion/combustion.html
    [78] http://homepages.vub.ac.be/akonnov
    [79] R. A. Yetter, F. L. Dryer, H. Rabbitz. Combust Sci Technol, 1991, 79, 97-128
    [80] T. J. Kim, R. A. Yetter, F. L. Dryer. Proc Combust Inst 1994, 25, 759-766.
    [81] Mueller, M.A.; Yetter, R.A.; Dryer, F.L.; Int J Chem Kinet 1999, 31, 113-125
    [82] M. O. Connaire, H. J. Curran, J. M. Simmie, W. J. Pitz and C. K. Westbrook. A Comprehensive Modeling Study of Hydrogen Oxidation. International Journal of Chemical Kinetics, 36(11):603-622, 2004
    [83]孙金华,王青松,纪杰.火焰精细结构及其传播动力学.北京:科学出版社. 2011. 60-90
    [84]严传俊,范玮.燃烧学.西安:西北工业大学出版社. 2005. 95-142
    [85] Kenneth K Kuo.燃烧原理.陈义良等译.北京:航空工业出版社. 1992. 234-280
    [86]周力行.燃烧理论与化学流体力学.北京:科学出版社. 1986. 73-114
    [87]汪亮.燃烧试验诊断学.北京:国防工业出版社, 2005.5
    [88] H. C. Barnett, R. Hibbard, Basic Considerations in the Combustion of Hydrocarbon Fuels with Air, NACA Report 1300,1959
    [89]王宁.定量测量OH基浓度的PLIF技术研究及应用[D].湖南长沙:国防科技大学, 2009
    [90] Pamela A. Berg, Deborah A. Hill, Alison R. Noble, Gregory P. Smith, Jay B. Jeffries, David R. Crosley. Absolute CH Concentration Measurements in Low-Pressure Methane Flames: Comparisons with Model Results. Combustion And Flame, 2000, 121: 223-235
    [91] T. Bohma, N. Ditzianb, G. Peitera, H R. Volppa, S. Cheskis, J. Wolfrum.Absolute radical concentration measurements in low-pressure H2/O2 flames during the combustion of graphite. Proceedings of the Combustion Institute, 2005, 30:2131-2139
    [92]耿辉.超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究[D].湖南长沙:国防科技大学, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700