超声速气流中点火、火焰传播实验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以带凹腔火焰稳定器的超声速燃烧室为研究对象,通过仿真与实验方法研究了超声速燃烧室流场特性以及超声速气流中点火过程初始火焰的形成与发展过程。
     对于超声速燃烧室内预混气体强迫点火过程,火花塞首先在凹腔内形成初始火焰,初始火焰进入凹腔剪切层,并在对流作用下迅速传播至凹腔下游,并点燃凹腔内驻留的可燃气体;对于高总温来流自点火过程,初始火焰在凹腔后部形成。驻留于凹腔内的可燃气体燃烧产生的热膨胀作用对点过程主流区域火焰的发展具有重要作用。对于单凹腔燃烧室,当驻留于凹腔内的气体消耗完后,主流区域的燃烧反应也无法维持;对于多凹腔燃烧室,凹腔结构形成的激波交汇于火焰锋面可能在燃烧室内形成爆轰,并以爆轰波的形式逆流传播。
     当燃料在壁面横向喷注时,对于强迫点火,初始火焰首先形成于凹腔内火花塞附近,随后穿透剪切层并在剪切层内高速对流作用下迅速点燃剪切层下游可燃气体;对于自点火过程,初始火焰首先出现于凹腔后壁面附近的剪切层,随后剪切层内初始火焰也在凹腔下游壁面附近形成剧烈反应区,另一方面剪切层内火焰前锋逆流扩张直至凹腔前沿位置。两种条件下,当剪切层内初始火焰形成后,都不断发展壮大,并逐步点燃燃料喷流柱。
     结合实验与仿真结果分析了带凹腔超声速燃烧室内点火过程两种不同的点火机制:一种是着火点不断提前的自动着火机制,认为凹腔回流区为剪切层上、下游间建立了一个能量反馈回路,通过上下游之间的能量反馈实现着火点的前移;另一种是湍流火焰逆流传播机制,认为初始火焰在剪切层内偏凹腔侧满足的低速区逆流传播。这两种点火方式存在着竞争的关系,其决定因素在于剪切层内燃料的分布。
The ignition processes of the ignition in a scramjet combustor with cavities were studied in this paper. The attention was focused on the formation and propagation of the initial flame.
     Numerical simulations of ignition in the pre-mixed flow show that: when the flame was initialed by a spark igniter, the initial flame format near the igniter which in the cavity and propagate into the cavity shear layer. Then the initial flame spreads along the cavity shear layer and ignites downstream gas very quickly by the convection of the shear layer. When the total temperature of the flow is high enough to auto-ignite, the initial flame format in the rump of the cavity. The expansion by the burning gas in the cavity is important for the spreading of the combustion in the main flow. To the combustor with single cavity, when the initial gas in the cavity is exhausted, the combustion in the main flow couldn’t be maintained, while to the combustor with several cavities, when the shock waves meet on the flame front, a detonation may generate and spread to the upstream.
     Numerical and experimental investigations on the ignition of fuel transverse Jet into Supersonic flow show that, for the forced ignition, the spark generates near the igniter, and grows to form flame in the cavity. The initial flame spreads along the cavity shear layer and ignites the fuel distributed downstream very quickly. With the pressure downstream rises up, the pre-combustion shock and the flame go against the stream and finally the whole fuel jet flame is ignited and stabilized. For the auto-ignition, the initial flame generate in tail of the shear layer, then the flame ignite the gas downstream the cavity on one way, and spread opposite the shear layer on the other way. When the whole shear layer is burning, the process of the flame spread is similar to the one of forced ignition.
     Two different flame spread mechanisms were discussed based the numerical and experimental data. One called the the sustaining auto-igniting mechanism consider that the cavity establish a feedback between the tail and head of the shear layer, while there is a another feedback between heat release from combustion and the upstream shock train. The other one is called the turbulent flame propagating mechanism, which consider that a banding zone in which the turbulent flame speed is higher than the gas velocity may extent in the shear layer. These two mechanism types have a competition-relation on the ignition.
引文
[1] Unmeel B M, Jeffrey V B. Two-Stage-to-Orbit Spaceplane Concept with Growth Potential [J]. Journal of Propulsion and Power, 2001, 17 (6):1147~1161
    [2] Tsien H S, Beilock M. Heat Source in a Uniform Flow [J]. Journal of Aeronautical Sciences, 1949, 16 (2)
    [3] Pinkle, Serafini. Graphical Method for Obtaining Flow Field in Two-Dimensional Supersonic Stream to Which Heat is Added [J]. NASA TN-2206, 1950,
    [4] Ferri A. Discussion on M. Roy's paper propulsion supersonic par turboreacturs et par statoreacteurs [J]. Advances in Ameronautical Sciences, 1959, 1:79~112
    [5] Weber R J, McKay J S. An analysis of ramjet engines using supersonic combustion [R]. NACA TN-4386, 1958
    [6] Alexander S R, Vyacheslav L S, John W H. Recent Flight Test Results of the Joint CIAMNASA Mach 6.5 Scramjet Flight Program [R]. NASA/TP- 1998-206548, 1998
    [7] Cockrell C E, Auslender A H, Guy R W, McClinton C R, Welch S S. Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development [R]. AIAA Paper 2002-5188, 2002
    [8] Ben-Yakar, K. H R. Experimental Investigation of Flame-Holding Capability of a Transverse Hydrogen Jet in Supersonic Cross-Flow [C]. Proceeding of the 27th International Symposium on Combustion.1998. 2173~2180
    [9] Gouskov O V, Kopchenov V I. Investigation of Ignition and Flame Stabilization behind the Strut in Supersonic Flow [J]. AIAA-2002-5227, 2002,
    [10] Thakur A, Segal C. Flameholding Analyses in Supersonic Flow [J]. AIAA Paper 2004-3831, 2004,
    [11] Ben-Yakar A, Hanson R K. Cavity flameholders for ignition and flame stabilization in scramjets - Review and experimental study [C]. AIAA 98-3122, 1998
    [12]俞刚,李建国,陈立红等.煤油-氢双燃料超声速燃烧点火特性研究[J].流体力学实验与测量, 2000, 14 (1):63
    [13]丁猛.基于凹腔的超声速燃烧火焰稳定技术研究[D].长沙:国防科技大学, 2005
    [14]潘余.超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D].长沙:国防科技大学, 2007
    [15]汪洪波.超声速燃烧凹腔剪切层非定常特性研究[D].国防科技大学, 2007
    [16]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[D].长沙:国防科技大学, 2008
    [17] Ben-Yakar A, Hanson R K. Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview [J]. JOURNAL OF PROPULSION AND POWER, 2001, 17 (2001.7~8):869~878
    [18] Curran E T, Murthy S N B. Scramjet Propulsion [J]. Progress in astronautics and aeronautics, 2002, 189:211~245
    [19]司徒明,王春,陆惠萍.双燃式冲压发动机中富油燃气射流的超燃研究[J].推进技术, 2001, 22 (3):127~240
    [20]俞刚,李建国,陈立红.煤油-氢双燃料超声速点火特性研究[J].流体力学实验与测量, 2000, 14 (1):63~71
    [21]宋文艳,黎明,蔡元虎.超音速燃烧室碳氢燃料点火实验研究[J].中国航空学报(英文版), 2004, 17 (2):65
    [22] Gallimore S D. A Study of Plasma Ignition Enhancement for Aeroramp Injectors in Supersonic Combustion Applications [D]. Virginia Polytechnic Institute and State University, 2001
    [23] Harrison A J, Weinberg F J. Flame stabilization by plasma jets [J]. Proceedings of the Royal Society of London, 1971, 321:95~103
    [24] Choi I. OH LIF Studies of Low Temperature Plasma Assisted Oxidation and Ignition in Nanosecond Pulsed Discharges [D]. The Ohio State University, 2011
    [25] Do H. PLASMA-ASSISTED COMBUSTION IN A SUPERSONIC FLOW [D]. STANFORD UNIVERSITY, 2009
    [26] Leonov S B, Firsov A A, Isaenkov Y I, Shurupov M A, Yarantsev D A. Plasma-Based Fast Mixing and Ignition in Supersonic Flow [C]. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. AIAA 2011-2327, 2011
    [27] Donbar J, Powell O, Gruber M, Jackson, T., Eklund D, Mathur T. Post-test Analysis of Flush-Wall Fuel Injection Experiments in a Scramjet Combustor [J]. AIAA Paper 2001-3197,
    [28] Vigor Yang, Li J, Choi J Y. Ignition Transient in an Ethylene Fueled Scramjet Engine with Air Throttling Part I: Non-Reacting flow Development and Mixing [C]. AIAA 2010-409. 2010
    [29] Yang V, Li J, Choi e Y, Lin K-C. Ignition Transient in an Ethylene Fueled Scramjet Engine with Air Throttling Part II: Ignition and Flame Development [C]. AIAA 2010-410. 2010
    [30]丁猛,余勇,梁剑寒,刘卫东,王振国.碳氢燃料超燃冲压发动机点火技术试验[J].推进技术, 2004, 25 (6):566~569
    [31] Takita K, Sato T. Effects of Addition of Radicals Supplied by Plasma Torch on Burning Velocity [R]. AIAA paper 99-2247, 1999
    [32] Tomika S. AutoIgnition in a supersonic combustor with perpendicular injection behind backward-facing Step [R]. NASA report, No: A9736189, 1997
    [33] Sato Y, Sayama M, Masuya G. Experiment study on autoignition in a scramjet combustor [J]. Journal of Propulsion and Power, 1991, 7 (2)
    [34] Schnaubelt S, Moriue O. Detailed Numerical Simulations for the Multi-Stage Self-Ignition Process of n-Decane Single Droplets with Complex Chemistry [J]. Microgravity sci. technol, 2001, XIII/I:20~23
    [35] Routovsky V. Autoignition Study on Kerosene Combustion in Supersonic Flow [R]. Contract N F 61708-96-WO286, stage I-III, 1997
    [36] Ben-Yakar A. Experimental investigation of mixing and ignition of transverse jets in supersonic crossflows [D]. Doctor thesis, Stanford university, 2000
    [37]刘联胜,王恩宇,吴晋湘.燃烧理论与技术[M].化学工业出版社, 2008
    [38] Mitani T, Kouchi T. Flame structures and combustion efficiency computed for a Mach 6 scramjet engine [J]. Combustion and Flame, 2005, 142:187
    [39]孙英英,韩肇元,司徒明,琚诒光.超声速预混可燃气流的点火与燃烧[J].工程物理学报, 2002, 23 (6)
    [40] Micka D J, Driscoll J F. Dual-Mode Combustion of a Jet in Cross-Flow with Cavity Flameholder [R]. AIAA 2008-1062, 2008
    [41] Micka D J, Driscoll J F. Reaction Zone Imaging in a Dual-Mode Scramjet Combustor Using CH-PLIF [R]. AIAA 2008-5071, 2008
    [42]丁猛.基于凹腔的超声速燃烧火焰稳定技术研究[D] [D].国防科技大学, 2005
    [43]刘陵等.超音速燃烧与超音速燃烧冲压发动机[M].西北工业大学出版社, 1993
    [44]张兆顺.近代空气动力学丛书—湍流[M].北京:国防工业出版社, 2002
    [45]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社, 2005
    [46] Gardiner W C. Combustion Chemistry [M]. New York: Springer-Verlag, 1984
    [47] Schumann U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli [J]. Journal of Computational Physics, 1975, 18
    [48] Erlebacher G, Hussaini M Y, Speziale C G, Zang T A. Toward the large eddy simmulation of compressible turbulent flows [J]. Journal of Fluid Mechanics, 1992, 238:85
    [49] Smagorinsky J. General circulation experiments with the primitive equations I, the basic experiment [J]. Monthly Weather Review, 1963, 91 (3):99
    [50] Spyropoulos E T, Blaisdell. G A. Evaluation of the dynamic model for simulations of compressible decaying isotropic turbulence [J]. AIAA JOURNAL, 1996, 34 (5):990~998
    [51] Bardina J, Ferziger J H, Reynolds. W C. Improved turbulence models based on large eddy simulations of homogeneous, incompressible, turbulent flows [R]. Tech.Rep.TF-19, 1983
    [52] Fureby C. On subgrid scale modeling in large eddy simulations of compressible fluid flow [J]. PHYSICS OF FLUIDS, 1996, 8 (5):1301~1311
    [53] Schumann U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli [J]. Journal of Computational Physics, 1975, 18:376
    [54] Yoshizawa A, Horiuti K. Statistically derived subgrid scale kinetic energy model for Large-eddy simualtion of turbulent flows [J]. Journal of the Physical Society of Japan, 1985, 54:2834
    [55] Chakravarthy V, Menon S. Large eddy simulations of turbulent premixed flames in the flamelet regime [J]. Combustion Science and Technology, 2001, 162:175
    [56] Mass U, Warnatz J. Ignition processes in hydrogen oxygen mixtures [J]. Combustion and Flame, 1988, 74:53~69
    [57] Yiguang Ju , NIIOKA T. Ignition Simulation of Methane/Hydrogen Mixtures in a Supersonic Mixing Layer [J]. COMBUSTION AND FLAME, 1995, 102 (1995):462
    [58] Jinhyeon Noh, Jeong-Yeol Choi, Jong-Ryul Byun, Shik Lim, Yang V. Numerical Simulation of Auto-Ignition of Ethylene in a Scramjet Combustor with Air Throttling [J]. AIAA 2010-7036, 2010,
    [59]孙明波,耿辉,梁剑寒,王振国.超声速来流稳焰凹腔上游气体燃料横向喷注的流动混合特征[J].推进技术, 2008, 29 (2008)
    [60] Mott D R, Oran E S, Leery B v. A Quasi-Steady-State Solver for the Stiff Ordinary Differential Equations of Reaction Kinetics [J]. Journal of Computational Physics, 2000, 164:407~428
    [61] Oevermann M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling [J]. Aerospace Science Technology, 2000, (4):463
    [62] Waidmann W, Alff F, Brummund U, Bohm M, Clauss W, Oschwald M. Experimental Investigation of Combustion Process in a Supersonic Combustion Ramjet (SCRAMJET) [R]. 1994
    [63]范周琴,孙明波,刘卫东.超声速反应流火焰面/进度变量模型研究[J].航空动力学报,
    [64]蒋德明,夏来庆,袁大宏,王绍光.火花点火发动机的燃烧[M].西安:西安交通大学出版社, 1992
    [65] Miki K, Menon S. Local dynamic subgrid closure for compressible MHD turbulence simulation [C]. 37th Plasmadynamics and Lasers Conference. San Francisco.2006.
    [66] Duclos J-M, Colin O. [J]. COMODIA, 2001:343~350
    [67] O. Colin, Truffin K. A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES) [J]. Proceedings of the Combustion Institute, 2011, 33 (2011):3097
    [68] R. Dahms a, T.D. Fansler, M.C. Drake, T.-W. Kuo, A.M. Lippert, Peters N. Modeling ignition phenomena in spray-guided spark-ignited engines [J]. Proceedings of the Combustion Institute, 2009, 32 (2009):2743
    [69] G. Lacaze a, E. Richardson, Poinsot T. Large eddy simulation of spark ignition in a turbulent methane jet [J]. Combustion and Flame, 2009, 156 (2009):1993
    [70] Bradley D, Lung F. [J]. Combustion and Flame, 1987, 69 (1):71~93
    [71] Chakraborty N, Mastorakos R S, Cant E. [J]. combustion of science and technology, 2007, 179 (1-3):293~317
    [72] W.P. Jones, Prasad V N. LES-pdf simulation of a spark ignited turbulent methane jet [J]. Proceedings of the Combustion Institute, 2011, 33 (2011):1355
    [73] Lacaze G, Cuenot B, Poinsot T, Oschwald M. Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration [J]. Combustion and Flame, 2009, 156:1166~1180
    [74] Phuoc T, White F. [J]. Combustion and Flame, 1999, 119:203~216
    [75] Bradley D, Sheppard C G W, Suardjaja I M, Woolley R. [J]. Combustion and Flame, 2004, 138:55~77
    [76]刘次华,万建平.概率论与数理统计(第二版) [M].高等教育出版社, 2003
    [77] Baurle R A, Tam C J, Dasgupta S. Analysis of Unsteady Cavity Flows for Scramjet Applications [C]. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2000
    [78] http://www.ca.sandia.gov/chemkin/index.html, 2010
    [79]刘世杰,覃慧,林志勇,孙明波,刘卫东.连续旋转爆震波细致结构及自持机理[J].推进技术, 2011, 32
    [80] Ben-Yakar A. Experimental investigation of mixing and ignition of transverse jets in supersonic crossflows [D]. Stanford University, 2000
    [81]张松寿.工程燃烧学[M].上海交通大学出版社, 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700