低浓度酒精/过氧化氢燃气发生器喷雾燃烧过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用理论分析、试验和数值仿真等方法,深入研究了低浓度酒精的雾化与蒸发、过氧化氢催化分解及低浓度酒精在低浓度过氧化氢催化分解产物中的点火和燃烧等过程,研究结果对低浓度酒精/过氧化氢燃气发生器的设计和性能改进有重要意义。
     对五种不同结构燃气发生器喷嘴的流量和雾化特性开展了试验研究。主要研究了喷嘴结构和工作参数对流量和雾化特性的影响,并利用自行设计的反压罐研究了反压对雾化的影响。结果表明:外混式喷嘴有独立的气体和液体通道,气体和液体流量系数受喷嘴结构影响较大,但受工作参数影响较小,而内混式喷嘴两相流流量系数受喷嘴结构和工作参数影响均较大;反压通过改变气体喷注速度影响雾化过程,高反压下,气体喷注速度为亚音速,反压增加使气体速度降低,从而导致雾化性能下降。
     建立了多组分液滴蒸发模型,并且通过试验验证了该模型的正确性。应用该模型对燃气发生器燃烧过程进行了数值仿真,结果表明:在低浓度酒精喷雾蒸发过程中,由于组分挥发性的差异,液滴中酒精的蒸发速度比水快,导致燃烧室的气相温度沿燃烧室轴线先增加后降低,喷注面板附近较高的燃烧温度有利于火焰稳定。
     设计了开窗模型燃气发生器,对喷雾燃烧过程进行了观测和拍照,研究了喷嘴结构、酒精浓度等因素对火焰和燃烧效率的影响,并对比了冷/热试中的喷雾和火焰。结果表明:增加同轴直流式喷嘴的缩进长度和内喷嘴出口角度,提高了混合性能,从而提高了燃烧性能。燃烧强度较低时,燃烧对雾化过程影响较小,火焰锥与冷试喷雾锥的宽度和张角相当;燃烧强度较大时,燃烧对雾化过程影响较大,火焰锥的张角明显大于冷试喷雾锥的张角。
     通过试验和仿真研究了不同浓度过氧化氢的催化分解性能、催化剂床低频不稳定性产生原因及消除方法。结果表明催化剂床及催化剂的吸热对过氧化氢分解过程影响很大,对催化剂床进行预热或采用热导率低的材料制造催化剂床等措施,可以降低催化剂床壁面吸热对催化分解过程的影响,提高催化剂床的响应特性和催化分解效率;催化剂床的低频不稳定是催化分解过程与供应系统耦合产生的,催化剂床气体界面的波动过程中,液体过氧化氢穿透催化剂床形成过氧化氢液体通道,过氧化氢液体通道的产生和扩大是催化剂床不稳定的主要原因,也是消除催化剂床不稳定的关键,试验中在催化剂床内加入分流板成功地抑制了催化剂床的低频不稳定。
     在以上研究的基础上,系统地研究了低浓度酒精/过氧化氢燃气发生器的点火性能和燃烧性能,分析了余氧系数、燃烧室特征长度和过氧化氢喷注速度等参数对燃气发生器点火性能和燃烧效率的影响。降低过氧化氢分解产物的流量和喷注速度或采用部分过氧化氢催化分解方案,能有效地提高燃气发生器的点火性能;燃气发生器的燃烧效率随特征长度和余氧系数的增加而增加。
Diluted ethanol spraying and evaporation, hydrogen peroxide catalytic decomposition, ignition and combustion of diluted ethanol in decomposed hydrogen peroxide were studied in detail by means of theoretic analysis, experimental investigation and numerical simulation. And many significant results, which are important to design and optimize diluted hydrogen peroxide/ethanol gas generator, have been acquired.
     The discharge and atomization characteristics of five types of gas generator injectors in different configurations were tested. The influences of injector configurations and test parameters on the discharge and atomization characteristics were experimentally studied in detail. The pressured container was designed to study the atomization performance under high pressure environment. Some important conclusions have been obtained from experimental results. Firstly, the discharge coefficient of gas and liquid in external-mixing injectors, which have gas channels and liquid channels separately, is affected obviously by injector configurations but rarely by test parameters. Secondly, the discharge coefficient of two phase flow in internal-mixing injectors is affected distinctly by both injector configurations and test parameters. Finally, the pressure affects the atomization through the velocity of gas. In the high pressure environment, the velocity of gas is subsonic, and the velocity decreases while the pressure rises, which worsens the atomization performance.
     The evaporation model of multi-composition droplet was presented, which was validated by experiments. The process of combustion in the model gas generator was simulated using the evaporation model, and the results showed that during the evaporation of diluted ethanol droplet, ethanol evaporates faster than water on the droplet surface because of different distillation characteristics, which makes the temperature of the combustion chamber increase at the beginning and then decrease along the axis. The high temperature around the injection panel is good to flame stabilization.
     The combustion experiments of model gas generator equipped with quarts windows were conducted. The law of flame propagation during ignition and stable combustion, and infuences of the ethanol concentration and the injector configuration on the flame and the combustion performance were investigated. The results showed that the coaxial shear injector with larger indent distance or exit angle has better mixing performance and higher combustion efficiency. When the intensity of combustion is low, combustion has little effect on the spraying and atomization, and the angles of the flame taper and non-reacting spraying taper are almost the same. When the intensity of combustion is high, combustion has obvious effect on the spraying and atomization, and the angle of flame taper is larger than that of non-reacting spraying taper.
     Hydrogen peroxide catalytic decomposition performance and the low frequency instability of catalyst bed were investigated by numerical simulations and experiments. The results show that the decalescence of catalyst bed affects the process of hydrogen peroxide catalytic decomposition greatly. If the catalyst bed is preheated or made up of materials with low thermal conductivity, that influence can be depressed. At the same time, the response characteristic of catalyst bed and the efficiency of catalytic decomposition can be improved. The low frequency pressure instability of catalyst bed occurs because of the coupling of catalytic decomposition and supplying. The decomposition plane pushes all the way through the catalyst bed during pressure oscillations, causing unreacted liquid hydrogen peroxide to be exhausted from the bed and leading to the appearance of liquid hydrogen peroxide channeling. Consequently, how to prevent or at least limit this channeling is the key to eliminate the pressure instability of catalyst bed. It was found that adding clapboard to the catalyst bed can depress the pressure instability efficiently.
     On the basis of the investigations above, the ignition and combustion performances of the diluted hydrogen peroxide/ethanol gas generator were studied systematically. Furthermore, the influences of the oxygen coefficient, the combustor character length and the injection rate of hydrogen peroxide on the performance of gas generator were analyzed. Adopting part of hydrogen peroxide through catalytic bed or reducing the flux and injecting rate of decomposed hydrogen peroxide can improve the ignition performance of this gas generator. Increasing the oxygen coefficient and the combustor character length can enhance the combustion efficiency likewise.
引文
[1]丛敏.国际性超燃冲压发动机研究进入飞行试验阶段[J].飞航导弹12:53-56,1998.
    [2]乐嘉陵.关于开展国家高超声速飞行器研究的建议[R].“863”航天高技术论证建议.1998.3.
    [3]周义,王永良,王自焰.高超音速武器的特点与发展现状[J].中国人民防空12:38-40,2004.
    [4]吴家彤.6.5马赫超燃冲压发动机的近期飞行试验结果[J].火箭推进,2004,30(2):48-53.
    [5]美国超燃冲压发动机取得进展[J].环球军闻5:2,2006.
    [6]沈剑.2004年美国成功的高超声速飞行试验[J].飞航导弹,2005(6):34-39.
    [7]陈英硕.X-43A创新的世界记录[J].飞航导弹,2004(12):2.
    [8]刘卫东,梁剑寒,等.超燃冲压模型发动机试验研究[R].国防科技报告,2003.9.
    [9]Murthy S N B,Curran E T.High-speed flight propulsion systems[J].Volume 137.Progress in astronautics and aeronautics,AIAA 1991.
    [10]龙玉珍.高超音速巡航导弹用超燃冲压发动机特点与设计方案[J].飞航导弹,1997(8):29-37.
    [11]Curran E T,Murthy S N B.Scramjet propulsion[J].Volume 189.Progress in astronautics and aeronautics,AIAA 2002.
    [12]Curran E T.Scramjet Engines:The first forty years[J].Journal of Propulsion and Power.17(6):1138-1148,2001
    [13]Andrews E H.Scramjet Development and testing in the United States[R].AIAA 2001-1927.
    [14]Matthew N Y,Stephen IdemAn.Experimental investigation of cold air-to-air ejectors[C].AIAA 2005-4281.
    [15]Nagaoka H,Suzuki S.Ejector coil employing coanda effect[R].AIAA 2005-5168.
    [16]Lanchao Lin,Ponnappant R.Two-phase high capacity spray cooling loop-nozzle orientation effects and performance results[R].AIAA 2005-5733.
    [17]Singhal G,Rajesh R et al.Two-stage ejector based pressure recovery system for small scale scoil[R].AIAA 2005-5171.
    [18]Taylor,Delbert.Supersonic Ejector[R].AGARD-AG-163.
    [19]徐万武.高性能、大压缩比化学激光器压力恢复系统研究[D].长沙:国防科学技术大学研究生院,2003.3.
    [20]沈赤兵.配套环形引射方案燃气发生器及冷试喷注器设计报告[R].国防科技报告,2004.
    [21]Nlinucci M A S.Oliva J L S.On the development of a gas generator for C02-N2gas dynamic lasers Utilizing Liquid Fuel and Liquid Oxidizer[R].AIAA 1993-3187.
    [22]Dijkstra F,Mayer A E,et al.Ducted rocket combustion experiments at low gas generator combustion temperatures[R].AIAA 95-241.
    [23]McGrath D K,Kirschner T J,et al.Mars Pathfinder Airbag Gas Generator Development[R].the American Institute of Aeronautics and Astronautics,Inc.,1998
    [24]陈元兴译.НПП激光系统四模块激光器压力恢复系统[C].国防科技大学理学院定向能技术研究所,2000.10.
    [25]Josef S,et al.Tactical high energy laser[C].The SPIE Proceedings on Laser and Beam Control Technologies,Volume 4632,2002.01.
    [26]Shwartz D J.Tactical high energy laser[R].SPIE 4632(10-20),2002.
    [27]Glaese R M,et al.Active Suppression of Acoustically Induced Jitter for the Airborne Laser.The SPIE Proceedings on Laser weapons Technology,volume 4034,2000.
    [28]Wilhite B A,et al.Design of a MEMS-Based microChemical Oxygen-Iodine Laser(μCOIL) System[J].IEEE Journal of Quantum Electronics.40(8),2004.8.
    [29]Chiappetta L M,Spadaccini L J,Huang H,et al.Modeling a hydrogen peroxide gas generator for rockets[R].AIAA 2000-3223.
    [30]庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995.7.
    [31]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991.
    [32]傅维标,卫景彬编著.燃烧物理学基础[M].北京:机械工业出版社,1984.
    [33]Lefebvre H.Atomization and Spray(No.~No4)[M].
    [34]成晓北.柴油机燃油喷射雾化过程的机理与试验研究[D].武汉:华中科技大学,2002.1.
    [35]Ogsawara M,Sami H.Study on the behavior of a fuel droplet injected into the combustion chamber of a diesel engine[R].SAE paper 670468.
    [36]Burt R,Troth K A.Penetration and vaporization of fuel sprays[J].Proc.Instn.Mech.Engins,1969-1970:147-170.
    [37]Dent J C.A basis for the combustion of various experimental methods for studying spray penetration[R].SAE paper 710572,1971.
    [38]金如山.航空燃气轮机燃烧室[M].宇航出版社,1988
    [39]N.Dombrowski,W.R.Johns.The Aerodynamic Instability and Disintegration of Viscous Liquid Sheet[J].Chem.Eng.Sci,vol.18:203-214,1963
    [40]Weber,C.Disintegration of liquid Jets.Z.Angew.Math[R].Vol.11,1931.
    [41]Hiroyasu H,Kadota T.Fuel droplet size distribution in diesel combustionchamber[R].SAE paper 740715,1974.
    [42]Hiroyasu H,Arai M.Fuel spray penetration and spray angle in diesel engines[J].Trans.Of SAE,21:5-11,1980.
    [43]Hiroyasu H,Arai M.Structure of fuel sprays in diesel engines[R].SAE paper 900475,1990.
    [44]Hiroyasu H,Arai M.Breakup length of a liquid jet and internal flow in a nozzle[C].ICLASS-91,Gaithersburg,MD,1991.
    [45]Espey C,Dec J E.The efect of TDC temperature and density on the liquid-phase fuel penetration in a D.I.Diesel Engine[R].SAE paper 950367,1995.
    [46]Canaan R E,Dec J E,et al.The influence of fuel volatility on the liquid phase fuel penetration in a Heavy-Duty D.I.Diesel Engine[R].SAE paper 980510,1998.
    [47]张宝炯,洪金等译.液体火箭发动机燃烧不稳定性[M].科学出版社,200 1.2.
    [48]吴道洪.气泡雾化喷嘴流量特性和激光散射测粒技术的研究[D].北京:北京航空航天大学.2000.
    [49]刘联胜.气泡雾化喷嘴的雾化特性及其喷雾两相流场的实验与理论研究[D].天津:天津大学,2001.
    [50]Zaller M.LOX/Hydrogen coaxial injector test program[R].NASA CR-187037.1990.
    [51]Lin S P,Lian Z W.Mechanisms of the breakup of liquid jets[J].AIAA Journal,28(1),1990.
    [52]Mayer W,Krulle G.Rocket engine coaxial injector liquid/gas interface phenomena[R].AIAA 1993-3389.
    [53]Ghafourian A,McGuffin R,et al.Dynamic response to acoustic perturbation of an stomizing voaxial jet in a liquid rocket engine[R].AIAA 1993-0232.
    [54]周猛.气液同轴式喷注器雾化特性和激光散射测粒技术的研究[D1.长沙:国防科技大学,1991.9.
    [55]童荣瑜.高反压大流量气液同轴式喷嘴流量特性及燃烧试验研究[D].长沙:国防科学技术大学,1999.4.
    [56]吴晋湘,不同反压下大流量气液同轴式喷嘴雾化特性及喷雾两相流场的试验和理论研究[D].长沙:国防科学技术大学,1993.11.
    [57]Ghafourian A,Mahalingam S,Dindi H,et al.A review of atomization in liquid rocket engines[R].AIAA 1991-0283.
    [58]Riebling R W.Effectoforifice length-to-diameter ratio on mixing in the spray from a pair of unlike impinging liquid jets.Journal of Spacecraft and Rocket.7(7),1970.
    [59]孙纪国,田昌义,等.气液同轴直流式喷嘴喷雾及燃烧试验研究[J].航空动力学报,15(3),2000.7.
    [60]Santoro R J,Merkle C L.Main chamber and prebumer Injector technology[R].NASA Final Report,NCC 8-46.
    [61]Wang H Y,McDonell V G;et al.The influence of spray angle on the continuousand discrete-phase flow field downstream of an engine combustor swirl Cup[R].AIAA 1992-3231.
    [62]Falk A Y.Coaxial Spray Atomization in accelerating gas stream[R].Final Rept.NASA CR-134825,June 1975.
    [63]Wanhainen J P,Parish H C.Effect of propellant injection velocity on Screech in 20000-pound Hydrogen Oxygen rocket engine[R].NASA TN D3373,1996.
    [64]Yang V,Anderson W E.Liquid Rocket Engine Combustion Instability[M].Progress in Astronautics and Aeronautics,1995.169.
    [65]Zaller M,Klem M D.Coaxial injector spray characterization using water/air as simulants[R].NASA TM- 105322,1991.11.
    [66]Burick R J.Atomization and mixing of Gas/Liquid coaxoal injectors[J].Journal of Spacecraft and Rockets,9(5),1972.
    [67]Sankar S V,Brena de la Rossa,et al.Liquid atomization by coaxial rocket injectors[R].AIAA 1991-0691.
    [68]Przekwas A J,Chuech S G,Gross K W.Computational modeling development for liquid propellant atomization[R].NAS8-37520.
    [69]Lixin Zhou,Fanpe Lei,et al.Numerical Study of Swirl Nozzle Internal Flow Field[C].Beijing:Sino-French Workshop on Space Propulsion,2001.9.
    [70]Ferrenbery A.Atomization and mixing study.Interim Report NASA CR-170943.
    [71]Mayer W,Tamura H.Propellant injection in a liquid Oxygen/Gaseous hydrogen rocket engine[J].Journal of Propulsion and Power,14(5),1998
    [72]才满瑞.可重复使用运载器的近期发展[J].导弹与航天运载技术,1999(2).
    [73]Daniel A,Heald,Don A.Hart.Advanced reusable engine for SSTO.AIAA 1991-2181.
    [74]Mcdonell V G,AdachiM.Structure of Reacting and Non- Reacting Swirling Air-Assisted Sprays[J].Combust.Sci.and Tech.82(225),1992.
    [75]徐行,郭志辉,顾善建.新型气动雾化喷嘴喷雾特性的实验研究[J].航空动力学报.12(3),1997.7.
    [76]Stanley D O,Engelund W C.Propulsion system requirements for reusable single-stage-to-orbit rocket vehicles[R].AIAA 1992-3504.
    [77]Balepin V V,Maita M.Third way of development of single-stage-to-orbit propulsion[J].Journal of Propulsion and Power,16(1),2000.
    [78]Manski D,Goertz C,Hulka J R,et al.Overview of Cycles for Earth-to-Orbit Propulsion[C].Third International Symposium on Space Propulsion Primary and Upper Stage Propulsion System From Launch to Space,1998.
    [79]Schmidt M G,Micci M M.Combustion performance of RP-1/O2/H2tripropellants.AIAA 1998-3686.
    [80]Kumakawa A,Ono F,YatsuyanagiN.Combustion and heat transfer of LO2/HC/Hydrogen tripropellant[R].AIAA 1995-2501.
    [81]Ramamurthi K,Madhavan G.Coaxial swirl injection element for a tripropellant engine[R].AIAA 1998-3514.
    [82]Turtushov V A,Orlov V A,Hulka J.Final model development and full-scale testing of a soot-free fuel-rich kerosene tripropellant prebumer[R].AIAA 1996-2630.
    [83]Turtushov V A,Orlov V A.Development status of a soot-free fuel-rich kerosene tripropellant prebumer for reusable liquid rocket engine applications[R].AIAA 1995-3002.
    [84]李清廉.同轴式三组元喷嘴性能分析、工程应用及设计评定[D].长沙:国防科学技术大学,2003.4.
    [85]高鸽,陈锐.一种新型气动雾化喷嘴[C].中国航空学会,燃烧与传热传质学术讨论会,1994.10.
    [86]Dombrowski N,Johns W R.The aerodynamic instability and disintegration of viscous liquid sheet[J].Chem.Eng.Sci.,18:203-214,1963.
    [87]范全林、郭志辉、梁学萍等.气泡雾化喷嘴水平喷射特性的研究[J].航空动力学报,1996.10.
    [88]Kushari A,Neumeier Y,Zinn B T.A theoretical investigation of the performance of the performance of a internally mixed liquid atomizer[R].AIAA 2000-1021.
    [89]侯晓春.Y型燃油喷嘴雾化粒度研究[C].中国航空学会第八界燃烧及传热传质学术讨论会,1992.10.
    [90]赵虹,谢名湖等.高粘度液体燃料Y型喷嘴的雾化机理及其雾化性能的研究[J].工程热物理学报,13(4),1992.
    [91]Wang M R,Lin T C,et al.Atomization performance of an atomizer with internal impingement[C].ILASS-ASIA 2004.9~(th) Annual cConference on Liquid Atomization and Spray Systems,2004.
    [92]Forghan F.Discharge Coefficient of Diffusion Holes[R].AIAA 95-3622.
    [93]张洪才.气动喷嘴空气通道的流通特性[C].中国航空学会燃烧专业学术交流会,1984.5.
    [94]张路宁.气液正交内混式高压喷嘴的研究[D].长春:东北大学,1989.
    [95]赵虹、谢名湖等.Y型喷嘴的流量计算方法[J].工程热物理学报,1992.03.
    [96]刘联胜,傅茂林.气泡雾化喷嘴流量特性的实验研究[J].燃烧科学与技术,5(3),1999.
    [97]李清廉、王振国、周进,内混式喷嘴混合腔压力变化规律研究[C].中国工程热物理学会燃烧学术会议,2002.09.
    [98]沈赤兵、童荣瑜等.三组元喷嘴流量特性的试验研究[J].中国空间科学技术,1999.03.
    [99]田章福,李清廉等,三组元喷嘴结构参数对混合腔中两相流的影响[J].推进技术,23(4),2002.08.
    [100]李清廉,田章福,王振国.模型三组元喷嘴喷注通道流量特性研究[J].推进技术,23(4),2002.08.
    [101]Li Q L,Tian Z F,Wang Z G et al.Experiment study of two phase mixing volume operating status in GH2/LO2/kerosene tripropellant injector[R].AIAA 2001-3714.
    [102]李清廉,王振国,周进.内混式喷嘴混合腔压力变化规律研究[C].南京:中国工程热物理学会燃烧学2002学术会议,2002.09.
    [103]李清廉,田章福等.新型三组元喷嘴雾化特性研究[J].工程热物理学报,23(5),2002.
    [104]Li Q L,Wang Z G,et al.The progress in the study of tripropellant injector[C].BeiJing:Sino-French Workshop on Space Propulsion.2001.9.
    [105]Inamura T,Nagai N.The relative performance of externally and internally mixed twin-fluid atomizers[C].ICLASS-85.
    [106]Acosta W A.Experimental study of the spray characteristics of a research airblastatomizer[R].85-GT-229.
    [107]Sridhara S N.Raghunandan.Studies on the performance of arblast atomizer under varying geometric and flow conditions[R].AIAA 1999-2460.
    [108]曹明骅.燃烧室压力对空气雾化喷嘴雾化性能的影响[J].航空动力学报,9(2),1994.4.
    [109]Tate R W.Droplet size distribution data for internal-mixing pneumatic atomizers[C].ICLASS-85.
    [110]甘晓华,赵其寿.三元空气雾化喷嘴内液膜厚度理论分析[R].北京航空学院科学研究报告,GF59962,1984.9.
    [111]Rizk N K,Lefebvre A H.Influence of airblast atomizer design features on mean drop size[R].AIAA 1982-1073.
    [112]Inamura T,Nagai N.The Relative Performance of Externally and Internally Mixed Twin-Fluid Atomizers[C].ICLASS-85.
    [113]Shaw S G,JasujaA K.Effect of injector geometry variables upon the spray performance of a plain-jet airblast atomizer[C]. 85-IGT-134.
    [114] Liao Y, Jeng S M, Jog M A, Benjamin M A. An advanced sub-model for airblast atomizer[R]. AIAA 1999-2207.
    [115] Couto H S, Carvalho J A, Bastos-Netto D, et al. Theoretical prediction of mean droplet size of Y-Jet atomizers[J]. Journal of Propulsion and Power, 15(3), 1993.
    [116] Mayer W. TEKAN—research on cryogenic rocket engines at DLR Lampoldshausen[R]. AIAA 2000-3219.
    [117] Mayer W, Schik A et al. Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions[J]. Journal of Propulsion and Power. 14(5): 835-842,1998.
    [118] Mayer W, Ivancic B, et al. Propellant atomization in LOX/LH2 rocket combustors[R]. AIAA 1998-3685.
    [119] Ivancic B, Mayer W, et al. Experimental and numerical investigation of time and length scales in LOX/LH2 rocket combustors[R]. AIAA 1999-2211.
    [120] Mayer W, Schik A. Injection and mixing processes in high pressure LOX/LH2 rocket combustors[R]. AIAA 1996-2620.
    [121] Mayer W, Tamura H. Propellant injection in a liquid Oxygen/gaseous hydrogen rocket engine[R]. AIAA Journal of Propulsion and Powers, 12(6): 1137-1147,1996.
    [122] Sankar S V, Wang G, et al. Characterization of coaxial rocket injector sprays under high pressure environments[R]. AIAA 1992-0228.
    [123] Immich H, Mayer W. Cryogenic liquid rocket engine technology developments within the German National Technology Programme[R]. AIAA 1997-2822.
    [124] Kim I. Three-dimensional droplet interactions in dense spray[R]. AIAA 1991-0073.
    [125] Bellan J, Harstad K. Evaporaton, ignition and combustion of nondilute clusters of drops[J]. Combustion and Flame. 79: 272-286, 1992.
    [126] Abramzpn B, Sirignano W A. Droplet vaporization model for spray combustion calculation. 32 (9): 1605-1618,1989.
    [127] Godsave G A E. Studies of the combustion of drops in a fuel spary: The burning of single drops of fuel[C]. Forth Symposium(International) on combustion,Williams and Wilkins, Baltimore Md. 818-830, 1953.
    [128] Spalding D B, The combustion of liquid fuels. Forth Symposium(International) on combustion[C]. Williams and Wilkins, Baltimore Md. 847-864, 1953.
    [129] Law C K. Unsteady droplet vaporization with droplet heating[J]. Combustion and Flame. 26: 17-22, 1976.
    [130] Aggarwal S K, Peng F. A review of droplet dynamics and vaporization modeling for engineering calculations[J]. J. Eng. Gas Turbines Power 117: 453—461, 1995.
    [131] Aggarwal S K, Tong A Y, Sirignano, W.A. A comparison of vaporization models in spray calculations[R]. AIAA Journal of Propulsion and Powers, 22:1448-1457,1984.
    [132] Sirignano W A. Theory of Multi-component fuel droplet vaporization[J].Archives of Thermodynamics and Combustion. 9(2): 231-247, 1978.
    [133] Chen X Q, Pereira J C F. Computation of turbulent evaporating sprays with well-specified measurements: A Sensitivity Study on Droplet Properties[J]. Heat Mass Transfer. 39: 441-454,1996.
    [134] Aggarwal S K. Modeling of a dilute vaporizing multicomponent fuel spray[C].30(9): 1949-1961,1987.
    [135] Aggarwal S K, Tong AY, Sirignano W A. A comparison of vaporization models in spray calculations[J]. AIAA J. 22(10): 1448-1457,1984.
    [136] Feath G M. Current status of droplet and liquid combustion[J]. Proceedings of Energy Combustion Science. 8: 191-224,1977.
    [137] Law CK. Recent advance in droplet vaporization and combustion[R]. Prog.Energy combust Sci. 8: 171-201,1982.
    [138] Prakash S, Sirignano W A. Theory of convective droplet vaporization with unsteady heat transfer in the circulating liquid phase[R]. Vol.23: 253-268, 1980.
    [139] Haywood R, Renksizbulut M. On variable property, blowing and transient effects in convective droplet evaporation with internal circulation[C]. Proc. The 8th Int.Heat Transfer Conf. San Francisco. 4: 1861-1866, August 1986.
    [140] Tong AY, Sirignano W A. Analysis of vaporizing droplet with slip, internal circulation, and unsteady liquid-phase and quasi-steady gas-phase heat transfer[C]. ASME/JSME Thermal Engng Joint Conf. Proc. 2:.481-487, 1983.
    [141] Jia H, Gogos G High pressure droplet vaporization: effects of liquid-phase gas solubility[R]. Combust Sci. and Tech, 36(18): 4419-4431,1993.
    [142] Hsieh K C, Shuen J S, Yang V. Droplet vaporization in high-pressure environment I: Near critical conditions[R]. Combust Sci. and Tech. Vol.76:111-132,1991.
    [143] Prakash S, Sirignano W A. Liquid fuel droplet heating with internal circulation[J].Int. J. of Heat and Mass Transfer Vol.21: 885-895,1978.
    [144] Zhu G S, Aggarwal S K. Fuel droplet evaporation in supercritical environment[R].ASME Paper 99-GT-301,1999.
    [145] Bellan J, Summerfield M. Theoretical examination of assumptions commonly used for the gas phase surrounding a burning droplet[J]. Combust. Flame 33:107-122,1978.
    [146] Miller R S. Effects of non-reacting solid particle and liquid droplet loading on an exothermic reacting mixing layer[J]. Phys. Fluids 13: 3303-3320,2001.
    [147] Miller R S, Bellan J. Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet laden stream[J]. Fluid Mech.384:293-338,1999.
    [148]Miller R S,Bellan J.Direct numerical simulation and subgrid analysis of a transitional droplet laden mixing layer[J].Phys.Fluids 12:650-671.,2000.
    [149]Miller R S,Harstad K,Bellan J.Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations[J].Multiphase Flow,24:1025-1055,1998.
    [150]Sirignano WA.Fluid dynamics of sprays[J].Fluids Eng.115:345-378,1993.
    [151]Wood B J,Wise H,Inami S H.Heterogenous combustion of multicomponent fuels[J].Combust.Flame,4:235-242.,1960.
    [152]Landis R B,Mills A F.Effect of internal diffusional resistance on the evaporation of binary droplets[C].Proc.5th Int.Heat Transfer Conf.,4:345-349,1974.
    [153]Randolph A L,Makino A,Law,C.K.Liquid-phase diffusional resistance in multicomponent droplet gasification[C].Proceedings of the 21 st Symposium (International) on Combustion,601-608,1986.
    [154]Lara P,Sirignano W A.Theory of transient multicomponent droplet vaporization in a convective field[C].Proceedings of the 18th Symposium(International) on Combustion,1365-1374,1981.
    [155]Edwards T,Maurice L.Surrogate mixtures to represent complex aviation and rocket fuel[R].AIAA 1999-2217.
    [156]Wood C P.Development and application of a surrogate distillate fuel[J].AIAA Journal of Propulsion and Power,5(4):399-405,1989.
    [157]Schulz W D.Oxidation products of a surrogate JP-8 fuel[J].Journal of Propulsion and Power,9(1):5-9,1993.
    [158]Harstad K G,et al.A robust statistical model for the evaporation of multicomponent-fuel drops containing a nultitude of chemical species[R].AIAA 2003-1321
    [159]Manuel A Z,Rosnerb D E.Multicomponent fuel droplet vaporization and combustion using spectral theory for a continuous mixture[J].Combustion and Flame.135:271-284,2003.
    [160]Aggarwal S K,Shu Z.Multicomponent fuel effects on the vaporization of a surrogate single-component fuel droplet[J].Engineering for Gas Turbines and Power,1997.
    [161]Aggarwal S K,Shu Z.Mongia H.,et al.Multicomponent fuel effects on the vaporization of a surrogate single-component fuel droplet[R].AIAA 1998-0157.
    [162]胡小平.单元推进剂在高温惰性环境中的分解燃烧[D].长沙:国防科技大学,1986.
    [163]苏凌宇.负压环境中燃料液滴蒸发过程的试验和理论研究[D].长沙:国防科技大学,2006.
    [164]Okajima S,Kumagai S.Further investigations of combustion of free droplets in a freely falling chamber including moving droplets[C]Fifteenth Symposium(International)on Combustion,the Combustion Institute Pittsburgh,Pa.401-417,1975.
    [165]Law C K,Lee C H,Srinivasan N.Combustion characteristics of water-in-oil emulsion droplets[J].Combustion,Flame.37:125-143,1980.
    [166]Miyasaka K,Law C K.Combustion of strongly interactiong linear droplet arrays[C].Eighteenth Symposium(international) on Combustion,the Combustion Institute,Pittsburgh,283-292,1981.
    [167]Matlosz R L,Leipiger S,Tordo T P.Investigation of liquid drop evaporation in a high temperature and high pressure environment[R].Vol.15:831-852,1972.
    [168]Yuen M C,Chen L W.Heat transfer measurement of evaporating liquid droplet[R].21:537-542,1978.
    [169]Renksizbulut M,Yuen M C.Experimental study of droplet evaporation in a high-temperature air stream[J].ASME J.of Heat Transfer 105:384-388,1983
    [170]Haywood R L R,Natziger M.Renksizbulut.A detailed examination of gas and liquid phase transient processes in convective droplet evaporation[J].J.of heat transfer 111:494-502,1989.
    [171]Narusawa U,Springer G S.Measurement of evaporation rates of water[J].J.Coll.Interf.Sci.,50(2):392-395,1975.
    [172]LeClair B P,Hamielec A E.A theoretical and experimental study of the internal circulation in water drops falling atterminal velocity in air[J].J.of The Atmospheric Sciences,29:728-740,1972.
    [173]Abramzpn B,Sirignano W A.Droplet vaporization model for spray combustion calculation[C].32(9):1605-1618,1989.
    [174]朱宁昌等编著.液体火箭发动机设计[M].北京:宇航出版社,1994.
    [175]刘大有.二相流体动力学[M].北京:高等教育出版社,1993.9.
    [176]张远君.王慧玉等编译.两相流动力学[M].北京:北京航空学院出版社,1988.
    [177]方丁酉编著;两相流动力学[M].长沙,国防科技大学出版社,1988.
    [178]周进,沈赤兵等.三组元双工况火箭发动机喷注器研究报告[R].国防科学技术报告,1998.7.
    [179]周进,沈赤兵等.三组元火箭发动机喷注器研究报告(一):试验研究报告[R].国防科学技术报告,2000.5
    [180]顾善建,范全林.气泡喷嘴下游雾化与流场特性的研究[J].燃烧科学与技术.1996:2(4).
    [181]吕出崇.热工参数测量与处理[M].北京:清华大学出版社,2001.9.
    [182]王方编译.火焰学[M].北京:中国科学技术出版社,1994.12.
    [183]贾绍义、柴诚敬.化工传质与分离过程[M].北京:化学工业出版社,2001.
    [184]乔佩N P等.化工计算手册[M].北京:化学工业出版社,1988.
    [185]童景山.流体的热物理性质[M].北京:中国石化出版社,1996.
    [186]Liu A B,Mather D,Reitz R D.Modeling the effects of drop drag and breakup on fuel sprays[R].SAE Technical Paper 930072,SAE,1993.
    [187]O'Brien T F,Starkey R P,Lewis M J.Quawi-One-Demensional High-Speed Engine Model with Finite-Rate Chemistry[R].University of Maryland.
    [188]Curtis W J,William A.Catalyst bed instability within USFE H202/JP-8 rocket engine[R].AIAA 2000-3301.
    [189]庄逢辰等译.燃烧导论[M].长沙:国防科学技术大学出版社,1981.
    [190]陈议良,张孝春,等编译.燃烧原理[M].北京:航空工业出版社,1992.
    [191]Sisco J C,Austin B L,Mok J S,et al.Ignition studies of hydrogen peroxide and kerosene fuel[R].AIAA 2003-831.
    [192]Mok J S,Sisco J C,Anderson W E.Analysis and experiments of hydrogen peroxide vaporization and decomposition[R].AIAA 2003-4621.
    [193]欧阳水吾,谢中强编著.高温非平衡空气绕流[M].北京:国防工业出版社,2001.
    [194]余勇.超燃冲压发动机燃烧室工作过程理论和试验研究[D].长沙:国防科技大学,2004.
    [195]胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙:国防科技大学,2006.
    [196]王振国.液体火箭发动机燃烧室内部工作过程数值仿真研究[D].长沙:国防科技大学,1993.
    [197]徐春光.复杂喷流流场数值模拟及应用研究[D].长沙:国防科技大学,2002.
    [198]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [199]Evans J S,Schexnayder C J.Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames[J].AIAA Journal,18:188-193,1980.2.
    [200]Funk J E,Heister S D,Humble R,et al.Development testing of non-toxic,storable hypergolic liquid propellants[R].AIAA 1999-2878.
    [201]Humble R,Bipropellant engine development using hydrogen peroxide and hypergolic fuel[R].AIAA 2000-3554.
    [202]Palmer K.Development and testing of non-toxic hypergolic miscible Fuels[D].Masters Thesis in Aeronautics and Astronautics,Purdue University,2002.
    [203]Ventura M,Yuan S.Commercial production and use of hydrogen peroxide[R].AIAA 2000-3556.
    [204]Ventura M,Garbodem G.A brief history of concentrated hydrogen peroxide uses[R].AIAA 1999-2739.
    [205]Ventura M,Mullens P.The ues of hydrogen peroxide for propulsion and power[R].AIAA 1999-2880.
    [206]Tsujikado N,Koshimae M,et al.An application of commercial grade hydrogen peroxide for hybrid/liquid rocket engine[R].AIAA 2002-3573.
    [207]Markopoulos P,Abel Y.Development and testing of a hydrogen peroxide hybrid upper stage propulsion system[R].AIAA 2001-3243.
    [208]Wemimotit E,Mullens P.Recent developments in hydrogen peroxide monopropellant devices[R].AIAA 1999-2741.
    [209]Zhang B J,Wang Y,Hydrogen peroxide/kerosene for spacecraft on-orbit propulsion[J],1997.
    [210]Ross R,Morgan D,Crockett D,et al.Upper stage flight experiment 10K engine design and test results[R].AIAA 2000-3558.
    [211]贺芳,方涛.新型绿色液体推进剂研究进展[R].液体火箭推进技术发展研讨会,2005.
    [212]白云峰,林庆国等.过氧化氢单元催化分解火箭发动机研试[R].液体火箭推进技术发展研讨会,2005.
    [213]Austin B L J,Frolik S,et al.Characterization of non-toxic hypergolic bi-propellants[R].Second International Hydrogen Peroxide Propulsion Conference,1999.
    [214]Kirchner J R."Hydrogen Peroxide",Kirk-othmer encyclopedia of chemical technology[R].New York,John Weley & Sons,1995.
    [215]Lorenzo C,Dario P.Oxidizer conrtol and optimal design of hybrid rockets for small satellites[R].AIAA 2003-4748.
    [216]Brian M M,Grubelich M.Investigation of hypergolic fuels with hydrogen peroxide[R].AIAA 2001-3837.
    [217]Ahn Sang-Hee,Choi Tae-Hoon,Krishnan S,et al.A laboratory scale hydrogen-peroxide rocket-engine facility[R].AIAA 2003-4647.
    [218]Matthew R L,William E A,Ronald W H.Bi-centrifugal swirl injector development for hydrogen peroxide and non-toxic hypergolic miscible fuels[R].AIAA 2002-4026.
    [219]Frolik S A.Hypergolic liquid fuels for use with rocket grade hydrogen peroxide[D].Masters Thesis in Aeronautics and Astronautics,Purdue University,2000.
    [220]David H S.The GAMMA rocket engines for Black Knight[J].Journal of The British Interplanetary Society,43:301-310,1990.
    [221]Frolik S A,Austin B L.Development of hypergolic liquid fuels for use with hydrogen peroxide[R].AIAA 2001-0013.
    [222]Rusek J J,Minthom M K,Purcell M L,et al.Non-toxic homogeneous miscible fuel development for hypergolic bipropellant engines[R].Sixth Annual AIAA BMDO TBMD Conference,San Diego,1997.
    [223]Funk J E,Rusek J.Assessment of United States Navy Block 0 NKMF/RGHP propellants[R].Second International Hydrogen Peroxide Propulsion Conference,1999.
    [224]Wu P K,Fuller R P,Morlan P W,et al.Development of a pressure-fed rocket engine using hydrogen peroxide and JP-8[R].AIAA 1999-2877.
    [225]Escher W J D,Flomes B J.A study of composite propulsion systems for advanced launch vehicle applications[R].The Marquardt Company Report 25194,1966.
    [226]Miller K J,Sisco J C,Austin B L,et al.Design and ground testing of a hydrogen peroxide kerosene combustor for RBCC application[R].AIAA 2003-4477.
    [227]Quinn J E.Oxidizer Selection for the ISTAR Program[R].AIAA 2002-4206.
    [228]Palumbo N,Moes T R,Vachon M J.Initial flight tests of the NASA F-15B propulsion test fixture[R]NASA TM-2002-210736,2002.
    [229]Hulbert E,Zhang B J,Wang Y.Nontoxic orbital maneuvering and reaction control system for reusable spacecraft[J]Journal of Propulsion and Power,14:676-687,1998.
    [230]Ventura M,Mullens P.The use of hydrogen peroxide for propulsion and power[R].AIAA 1999-2880.
    [231]Long M R,Anderson W E,Humble R W.Bi-centrifugal swirl injector development for hydrogen peroxide and non-toxic hypergolic miscible fuels[R].AIAA 2002-4026.
    [232]Whitehead J C.Test results for a reciprocating pump powered by decomposed hydrogen peroxide[R].AIAA 2001-3839.
    [233]Wernimont E,Garboden G.Experimentation with hydrogen peroxide oxidized rockets[R].AIAA 1999-2743.
    [234]Lewis,Richard J S.Hazardous Chemicals Desk Reference[C]New York,John Wiley & Sons,1997.
    [235]E.Wernimont,P.Mullens.Capabilities of hydrogen peroxide catalyst beds[R].AIAA 2000-3555.
    [236]田含晶.高浓度过氧化氢分解催化剂的研究[R].中科院大连化物所,2000,
    [237]杨黄河.过氧化氢分解反应及其催化剂的研究[R].中科院大连化物所,2001.
    [238]王永忠.过氧化氢催化剂床结构研究[J].火箭推进,29(5),2003.
    [239]Wernimont E,Ventura M.Catalyst bed testing for development of a 98%hydrogen peroxide procurement specification.AIAA 2002-3852.
    [240]Beutien T R,Heister,et al.Cordierite-based catalytic beds for 98%hydrogen peroxide[R].AIAA 2002 -3853.
    [241] Mok J S, Sisco J C, Anderson W E. Analysis and experiments of hydrogen peroxide vaporization and decomposition[R]. AIAA 2003-4621.
    [242] Mok J S, Helms W J, Sisco J C, et al. Decomposition and vaporization studies of hydrogen peroxide[R]. AIAA 2002-4028.
    [243] Hoare D E, Protheroe J B, Walsh A D. The thermal decomposition of hydrogen peroxide vapour[J] Transactions of the Faraday Society, 55: 548-557, 1990.
    [244] Pearson N, Pourpoint T, Anderson W E. Vaporization and decomposition of hydrogen peroxide drops[R]. AIAA 2003-4642.
    [245] Spadaccini L J, TeVelde J A. Autoignition characteristics of aircraft-type fuels[R].NASA CR-159886,1980.
    [246] Curtis W J, William A. Catalyst bed instability within USFE H2O2/JP-8 rocket engine[R]. AIAA 2000-3301.
    [247] Muss J A, Johnson C W, et al. The performance of hydrocarbon fuels with H2O2 in a uni-element combustor[R]. AIAA 2003-4623.
    [248] Charles K W, Ederick L D. Simplified Reaction Mechanism for the Oxidation of Hydrocarbon[J]. Combustion Science and Technology. 27: 31-43,1981.
    [249] Huzel K D, Huang H D. Modern engineering for design of liquid propellant rocket engine[J]. Progress in Astronautics and Aeronautics, 147: 155-218.
    [250] Morgan D, Beichel R. Stoichiometric gas generator—a strategic deparure[R].AIAA 1991-2584.
    [251] Kim S, Trinh H P. Design study of an advanced gas generator which can be ignited during start-up period of turbine engines[R]. AIAA 1993-2158.
    [252] Nguyen H. Flow thermal analysis of X-34 orbital stage gas generator design[R].AIAA 1996-3226.
    [253] Foust M J, Deshpande M, Pal S, et al. Experimental and analytical characterization of a shear coaxial combusting GO2/GH2 flowfield[R]. AIAA 1996-0646
    [254] Rahman S A, Pal S, Santoro R J. Critical issues for making droplet measurements in liquid oxygen/hydrogen combusting sprays[R]. AIAA 1997-3238.
    [255] Rahman S A, Pal S, Santoro R J. Swirl coaxial atomization: cold-flow and hot-fire experiments[R]. AIAA 1995-0381.
    [256] Beoser M A, Pal S, Moser M D. Shear coaxial injector atomization in a LO2/LH2 propellant rocket[R]. AIAA 1994-2775.
    [257] Farhangi S, Hunt K, Tuegel L, et al. Oxidizer-rich preburner for advanced rocket engine application[R]. AIAA 1994-3260.
    [258] Gloyer P W, Knuthx W H. Crawford R A. Oxygen rich gas generator design and performance Analysis[R]. AIAA 1993-2159.
    
    [259] Mah C S. Evaluattngthe operational limits Ofagas generator. AIAA 2001-3990.
    [260] Nguyen H. Flow/thermal analysis of X-34 orbital stage gas generator design[R]. AIAA 1996-3226.
    [261]Dennis H J,Sanders T.ASA Fastrac Engine Gas Generator Component Test Program and Results[R],AIAA 2000-3401.
    [262]Foumet A,Lonchard J M,Thomas J L.Technological demonstration for Low Cost Gas Generator[R].AIAA 2004-4006.
    [263]Froehlke H,Haidn H.First Hot Fire Test Campaign at the French/German Research Facility P8[R].AIAA 1997-2929.
    [264]Thomas JL,Berque J,Sion M.Tricoaxial Injector Technology Development[R].AIAA 1999-2492.
    [265]Fournet A,Lonchard JM,Thomas JL.Development of tricoaxial injection gas generator technological demonstrator[C].4th International Conference on Launcher Technology,2002.
    [266]Vingert L,Habiballah M.A test facility for cryogenic combustion research at high pressure[C].51 st International Astronautical Congress,Brazil,2000.10.
    [267]加洪等著[前苏联],任汉芬、颜子初等译.液体火箭发动机结构设计[M].北京:宇航出版社,1992.9.
    [268]Kwon S T,Lee C,Jae W L.Development of fuel rich gas generator for 10 tonf liquid rocket engine[R].AIAA 2004-3363.
    [269]王振国,周进,鄢小清.预燃室内气氢气氧射流燃烧过程数值分析[J].国防科技大学学报,1996
    [270]刘卫东,王振国,周进.液氢/液氧火箭发动机喷雾燃烧过程三维数值模拟[J].推进技术.20(1),1999.2.
    [271]聂万胜,庄逢辰.喷雾特性对液体火箭发动机燃烧稳定性的影响[J].推进技术.21(3),2000.6.
    [272]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(Ⅰ).计算模型和方法.推进技术[J].23(2),2002.4
    [273]冯喜平,何洪庆,葛李虎.预燃室三维湍流和燃烧过程的数值模拟(Ⅱ).计算模型和方法.推进技术[J].23(3),2002.6
    [274]曹再勇,蔡体敏,谭永华.富氧燃气发生器三维燃烧流场的数值模拟[J].西北工业大学学报.23(5),2005.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700