组合近似模型方法研究及其在轿车车身轻量化设计的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着有限元技术的迅速发展,基于仿真的工程设计与优化已经广泛地应用到复杂工程产品设计中。以汽车工业为例,减轻汽车重量以实现节能减排是汽车工业发展的核心问题,新能源汽车与传统汽车都迫切需要轻量化。轿车车身轻量化设计必须满足碰撞安全、刚度和模态以及NVH(振动、噪声、舒适性)等要求,是多学科、多参数、多约束的复杂系统优化问题。实际轻量化设计中,针对碰撞安全、振动噪声等结构强非线性能响应,直接通过有限元分析开展优化很难满足现代车身设计与开发的要求,利用近似模型拟合或预测结构性能响应以代替有限元仿真是国内外研究的前沿与热点,可以减少优化过程的计算量,提高优化效率。尽管基于近似模型的优化方法被认为是解决复杂工程设计问题的最有效途径之一,但工程实践中仍存在很多不足,易引起轻量化设计方案失效。本文对近似模型的关键技术进行研究,提出了组合近似模型的构造方法,为车身结构性能响应的拟合提供精度更高的近似模型建模方法;建立了面向组合近似模型的序贯采样策略,进一步改善模型全局精度;分析了约束函数的近似模型修正方法,保证近似解的实际约束可行性;形成了基于组合近似模型的车身轻量化设计方法,将其应用于新能源轿车车身轻量化设计。主要研究工作及结论如下:
     (1)组合近似模型建模方法研究
     研究单一近似模型(如多项式响应面、径向基函数、Kriging和支持向量回归等)的预测能力,提出了基于交叉验证误差均值和方差的权系数计算方法,通过加权叠加构建组合近似模型,研究了组合近似模型的适用范围,并分析单一近似模型个数对组合近似模型精度的影响。通过大量测试函数和工程算例表明,该权系数计算方法在预测精度方面具有比已有组合近似模型构造方法和单一近似模型更为明显的优势,且当单一近似模型数量保持在3~5个时,组合近似模型的预测能力最好,非常适用于小样本条件下具有高维强非线性特征的车身结构性能响应的近似建模。
     (2)组合近似模型的序贯采样策略研究
     基于上述组合近似模型,从单一近似模型预测能力的差异性出发,提出了表征组合近似模型拟合不确定的评价指标——加权标准偏差,验证了该指标与组合近似模型实际误差存在较高的相关性。建立了基于加权标准偏差的组合近似模型序贯采样策略,在拟合不确定较大区域增加样本点逐步提高模型全局精度。通过数值算例和汽车耐撞性问题验证该策略的可行性,能有效指导组合近似模型的迭代更新,为后续车身轻量化设计提供高精度的近似模型。
     (3)面向约束优化的近似模型修正方法研究
     建立了基于安全裕量的约束函数组合近似模型修正方法,利用交叉验证误差的累计分布函数计量化给定保守度水平下的安全裕量值,使近似解满足实际约束可行性。提出了面向自适应循环优化的保守度水平序列更新策略,合理降低安全裕量值。通过基于耐撞性的车身前部结构轻量化案例,证明了结合组合近似模型、安全裕量和保守度水平序列更新策略开展车身轻量化设计可以在少量循环内快速获得能够满足约束条件要求、具有更小目标值的轻量化方案,具有很好的工程应用价值。
     (4)基于组合近似模型的轿车车身轻量化方法研究与工程应用
     综合组合近似模型及其序贯采样策略、约束函数近似模型修正方法,对轿车车身轻量化设计方法进行研究。提出了基于组合近似模型的车身轻量化设计总体框架及具体流程。以某新能源轿车车身为对象,开展了考虑多种碰撞形式(正面全宽碰撞、正面偏置碰撞、侧面碰撞和追尾碰撞)、车身刚度和模态以及NVH等性能的车身轻量化设计应用研究,验证了基于组合近似模型的车身轻量化设计方法的可靠性。
     本文针对轿车车身设计的多学科、多参数、多约束的复杂系统优化问题,对组合近似模型及其序贯采样策略、约束函数近似模型修正方法进行了研究,目的在于建立更适用于车身强非线性结构性能响应的近似模型以及保证近似优化解的实际工程可行性,为开展轿车车身轻量化设计提供准确、可靠的数学模型基础,指导和完善轻量化车身开发流程,促进我国汽车轻量化设计能力的提高。
Simulation-based design optimization is widely used in design of complex systems building upon the successful development of finite element techniques. Take automotive industry for example, it is a critical problem to reduce the weight to improve fuel efficiency and meet the gas emission requirement; this is an urgent problem for both traditional gasoline and fuel cell vehicles. Meanwhile, the lightweight vehicle should maintain, or achieve better performance in crashworthiness, stiffness, modal and noise, vibration, harshness (NVH) performance, etc. The above problem is widely recognized as a multi-disciplinary, multi-variable, and multi-constraint optimization problem. In practice, integrating structural optimization directly with expensive finite element simulations is generally infeasible since optimization search typically requires thousands or even millions of simulations on crashworthiness and NVH performance,. As a consequence, there is a growing interest in using surrogate model or metamodel to approximate the complicated highly nonlinear behaviors to manage the complexity in analysis and optimization for weight reduction of autobody.
     Although surrogate based design optimization is considered as one of the efficient approaches to dealing with complex engineering problems, inaccuracy in metamodeling may result in misleading design solutions.The dissertation concentrates on improving the quality of metamodeling techniques. An approach for constructing the ensemble of surrogates is proposed to provide better approximation of autobody structural responses. A strategy for sequential sampling is presented for ensemble of surrogates to improve its accuracy further. As a refinement, conservative prediction for constraints is put forward to ensure the actual constraint feasibility of the approximated solution. A lightweight design method based on ensemble of multiple surrogates is finally presented, followed by an industrial case study for weight reduction of autobody of fuel cell vehicle. The main research tasks and the corresponding conclusions from this dissertation are summarized as follows:
     (1) Study on the ensemble of surrogates
     Several individual surrogates are investigated in terms of prediction capability, such as polynomial response surface, radial basis function, Kriging and support vector regression. A new scheme for weights selection is proposed based on cross validation error, and the ensemble of surrogates are constructed through the weighted average method. The scope of application for ensemble of surrogates is discussed and the influence of the number of individual surrogates is also researched. By using a large amount of test functions and engineering cases, it is shown that the new weights selection method is more effective when compared with the currently existing weights selection methods and individual surrogates. It is also demonstrated that the prediction capability of the ensembled surrogates is the best when the number of individual surrogates is from 3 to 5. In conclusion, ensemble of surrogates is an effective approach for metamodeling on autobody structural responses, which possesses high dimensionality, high nonlinearity and small sampling points.
     (2) Sequential sampling strategy for ensemble of surrogates
     Based on the weights of individual surrogates and its prediction errors with ensemble of surrogates, an index of weighted standard deviation is proposed to represent the metamodel uncertainty for ensemble of surrogates. It has been demonstrated that the proposedhe index is highly correlated with the actual errors of ensemble of surrogates. A sequential sampling strategy is proposed to improve the accuracy of the ensembled surrogates by iteratively adding sample points with the maximum weighted standard deviations. We demonstrate the advantages of this strategy using analytical problems and one engineering problem. It is noted that the index of the weighted standard deviation is more useful for a qualitative identification rather than quantitative on the metamodel uncertainty. It is also shown that the sequential sampling strategy can effectively improve the prediction of ensemble of surrogates in the region of high uncertainty, especially for high dimensional and high nonlinear responses.
     (3) Conservative prediction of surrogates for constrained optimization
     The methodology of conservative prediction of surrogates is proposed by employing the concept of safety margin. An approach for estimating the safety margins under a given conservativeness level is proposed based on the cumulative distribution function obtained in cross validation. The method helps compensate surrogate errors to push the constrain boundary towards the feasible domain. Furthemore, a strategy for sequentially updating the conservativeness level is developed to decrease the safety margins effectively. The ensemble of surrogates, safety margins, and the scheme for updating the safety margin in surrogate based optimization are applied to lightweight design of vehicle structures under crashworthiness. The proposed techniques resulted in more feasible solutions and achieved more weight reduction within a limited number of optimization cycles, showing great potential for surrogate based design optimization in real engineering problems.
     (4) Method on lightweight design of autobody and industrial application based on ensemble of surrogates
     A method for lightweight design of autobody is proposed by integrating the ensemble of surrogates, sequential sampling strategy, and conservative surrogates for constraint function. The framework and the detail flowchart of ensemble of surrogates-based method for lightweight design of autobody are presented. An industrial application is studied to verify the feasibility of the proposed framework, where multidisciplinary optimization of autobody for a fuel cell vehicle is conducted considering various types of crash scenarios, including full-overlap frontal crash, 40% overlap frontal crash with deformable barrier, side impact, and rear impact, stiffness and modal frequency of body-in-white, and NVH.
     Design optimization for autobody is a complex, multi-disciplinary, multi-variable, and multi-constraint problem. This dissertation studies the ensemble of surrogates,its sequential sampling strategy, and conservative surrogates, in an attempt to construct more accurate surrogate models for autobody structural responses with high nonlinearity and to ensure the actual constraint feasibility of the approximate solution. The research aims for providing better surrogate models for lightweight design of autobody, as well as guiding and improving the process of lightweight autobody development, towards the end goal of improving the R&D capability of vehicle lightweight design.
引文
[1] Benedyk J.C., Light metal in automitve application, Light Metal Age, 2000, 10(1): 34-35.
    [2] Queipo N.V., Haftka R.T., Shyy W., et al. Surrogate-based analysis and optimization, Progress in Aerospace Science, 2005, 41:1-28.
    [3] Forrester A.I.J., Keane A.J., Recent advances in surrogate-based optimization, Progress in Aerospace Science, 2009, 45:50-79.
    [4] Viana F.A.C., Gogu C., Haftka R.T., Making the most out of surrogate model: tricks of the trade, In ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Montreal, Canada, Aug 16-18, 2010, DETC2010-28813.
    [5] Duddeck F., Multidisciplinary optimization of car bodies, Structural and Multidisciplinary Optimization, 2008, 35(4):375-389.
    [6] Schmit L.A., Farshi B., Some approximation concepts for structural synthesis, Journal of AIAA, 1974,12:692-699.
    [7] Barthelemy J.F.M., Haftka R.R., Approximation concepts for optimum structural design-a review, Structural Optimization, 1993,5:129-144.
    [8]隋允康,李善坡,结构优化中的建模方法概述,力学进展,2008,38(2):190-200.
    [9] Fadel G.M., Riley M.F., Barthelemy J.F.M., Two point exponential approximation method for structural optimization, Structural Optimization, 1990,0:117-1124.
    [10] Rasmussen, J., Accumulated approximations– a new method for structural optimization by iterative improvements. Preprint of 2nd Air Force/NASA Symp. On Recent Advances in Multidisciplinary Analysis and Optimization, 1990, 253-258.
    [11] Chang K.J., Haftka R.T., Giles G.L., Kao P.J., Sensitivity based scaling for correlating structural response from different analytical models, Proc. AIAA/AME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics and Materials Conf., 1991, AIAA 91-0925.
    [12] Box G.E.P., Wilson K.B., On the experiment attainment of optimum conditions(with discussion), Journal of Royal Statistical Society, 1951,13:1-45.
    [13] Myers R.H., Montgomery D.C., Response Surface Methodology, New York: John Wiley&Sons, Inc., 1995.
    [14] Amari S., Murata N., Muller K.R., et al. Statistical theory of overtraining– is cross-validation asymptotically effective?, Advances in Neural Information Processing Systems, 1996, 8: 176-182.
    [15] Rumelhart D.R., Mcclelland J.L., Parallel distributed processing [M]. MIT Press, Cambridge, MA, 1986.
    [16] Hagan M.T., Demuth H.B., Beale M. Neural Network Design, PWS Publishing Company, 1996.
    [17] Dyn N., Levin D., Rippa S. Numerical procedures for surface fitting of scattered data by radial basis function, SIAM J Sci Stat Comput, 1986, 7(2): 639-659.
    [18]杨华,姚卫星,基于径向基函数的机翼二维气动代理模型设计,计算力学学报,2008,25(6):797-802.
    [19] Sacks J., Welch W.J., Mitchell T.J., et al. Design and analysis of computer experiments, Statistical Science, 1989, 4(4): 409-423.
    [20]姜成晟,王劲峰,曹志冬,地理空间抽样理论研究综述,地理学报,2009,64(3):368-380.
    [21]高月华,张崎,王希诚,基于Kriging模型的汽轮机基础动力优化设计,计算力学学报,2008,25(5):610-615.
    [22]张勇,基于近似模型的汽车轻量化优化设计方法,湖南大学博士学位论文,2008.
    [23] Gunn .R. Support vector machines for classification and regression. Technical report. Image Speech and Intelligent Systems Research Group, University of Southanmpton, Southanmpton, 1997.
    [24] Vapink V. Statistical learning theory [M], New York:Wiley,1998.
    [25]肖建,于龙,白裔峰,支持向量回归中核函数和超参数选择方法综述,西南交通大学学报,2008,43(3):297-303.
    [26] Yun Y., Yoo M., Nakayama H. Multi-objective optimization based on meta-modeling by using support vector regression, Optimization and Engineering, 2009, 10(2):167-181.
    [27] Wang H., Li E., Li G.Y. The least square support vector regression coupled with parallel sampling scheme metamodeling technique and application in sheet forming optimization, Materials and Design, 2009,30:1468-1479.
    [28]何明辉,毛嘉成,范如玉等,基于SVM回归的圆柱壳体抗脉冲强度预估模型,力学学报,2009,41(3):383-388.
    [29] Lancaster P., Salkauskas K., Surface generated by moving least squares methods, Math Computation, 1981, 37: 141-158.
    [30] Friedman J.H. Multivariate adaptive regression splines, Ann Stat, 1991, 19(1):1-141.
    [31] Macky D.J.C. Introduction to Gaussian processes, In: Bisho CM Neural networks and machine learning, Vol 168 of NATO ASI Series, 1998, Springer, Berlin, 133-165.
    [32] Simpson T.W., Mauery T.M., Korte J.J., et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 2001, 39(12): 2233-2241.
    [33] Jin R., Chen W., Simpson T.W. Comparative studies of metamodeling techniques under multiple modeling criteria. Structural and Multidisciplinary Optimization, 2003, 23(1): 1-13.
    [34] Clarke S.M., Griebsch J.H., Simpson T.W. Analysis of support vector regression for approximation of complex engineering analysis. ASME, Journal of Mechanical Design, 2005, 127(11): 1077-1087.
    [35]穆雪峰,姚卫星,余雄庆等,多学科设计优化中常用代理模型的研究,计算力学学报,2005,22(5):608-612.
    [36] Guo Peng, Liu Wei, Cui Weicheng. A comparison of approximation methods for multidisciplinary design optimization of ship structures. Journal of Ship Mechanics, 2007, 11(6): 913-923.
    [37]赵良玉,杨树兴,佘浩平,火箭弹气动学科近似方法分析,弹箭与制导学报,2008,28(3):175-180.
    [38] Yang R.J., Gu L., Gearhart C., et al. Approximations for safety optimization of large systems. Proceedings of the ASME Design Engineering Technical Conferences, 2000, DAC-14245.
    [39] Stander N., Roux W., Giger M., et al. A comparison of metamodeling techniques forcrashworthiness optimization. AIAA 2004-4489.
    [40] Hamza K., Saitou K. Crashworthiness design using meta-models for approximating the response of structural members. Proceeding of MDP-8, Cairo University Conference on Mechanical Design and Productiong, Cairo, Egypt, 2004, 591-601.
    [41] Fang H., Rais-Rohani M., Liu Z., et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Computers and Structures, 2005, 83(25-26): 2121-2136.
    [42] Yang R.J., Wang N., Tho C.H., et al. Metamodeling development for vehicle frontal impact simulation. ASME, Journal of Mechanical Design, 2005, 127(9): 1014-1020.
    [43]张勇,李光耀,钟志华,基于移动最小二乘响应面方法的整车轻量化设计优化,机械工程学报,2008,44(11):192-196.
    [44]张宇,基于稳健与可靠性优化设计的轿车车身轻量化研究,上海交通大学博士学位论文,2009.
    [45] Zerpa L.E., Queipo N.V., Pintos S., et al. An optimization methodology of alkaline-surfactant-polymer folding processes using field scale numerical simulation and multiple surrogates. Journal of Petroleum Science and Engineering, 2005, 47: 197-208.
    [46] Goel T., Haftka R.T., Shyy W., et al. Ensemble of surrogates. Structural and Multidisciplinary Optimization, 2007, 33(3): 199-216.
    [47] Acar E., Rais-Rohani M. Ensemble of metamodels with optimized weight factors. Structural and Multidisciplinary Optimization, 2009, 37(3): 279-294.
    [48] Raza W., Kim K.Y. Evaluation of surrogate models in optimization of wire-wrapped fuel assembly. Journal of Nuclear Science and Technology, 2007, 44(6): 819-822.
    [49] Goel T., Dorney D.J., Haftka R.T., et al. Improving the hydrodynamic performance of diffuser vanes via shape optimization. Computers and Fluids, 2008, 37: 705-723.
    [50] Samad A., Kim K.Y., Goel T., et al. Multiple surrogate modeling for axial compressor blade shape optimization. Journal of Propulsion and Power, 2008, 24(2): 302-33310.
    [51] Lee K.D., Kim K.Y. Optimization of a cylindrical film cooling hole using surrogate modeling. Numerical Heat Transfer, Part A: Applications, 2009, 55(4): 362-380.
    [52] Glaz B., Goel T., Liu L., et al. Multiple-surrogate approach to helicopter rotor blade vibration reduction. AIAA Journal, 2009, 47(1): 271-282.
    [53] Bloomfield M.W., Herencia J.E., Weaver P.M. Analysis and benchmarking of meta-heuristic techniques for lay-up optimization. Computers and Structures, 2010, 88(5-6): 272-282.
    [54] Sacks J., Welch W.J., Mitchell T.J., et al. Design and analysis of computer experiments. Statistical Science, 1989, 4(4): 409-423.
    [55] Simpson T.W., Toropov V., Balabanov V., et al. Design and analysis of computer experiments in multidisciplinary design optimization: A review of how far we have com–or not. 2008, AIAA-5802.
    [56] Wang G.G., Shan S. Review of metamodeling techniques in support of engineering design optimization. ASME, Journal of Mechanical Design, 2007, 128(4): 370-380.
    [57] Chen V.C.P., Tsui K.L., Barton R.R., et al. A review on design, modeling and applications ofcomputer experiments. IIE Transactions, 2006, 38(4): 273-291.
    [58] Simpson T.W., Lin D.K.J., Chen W. Sampling strategies for computer experiments: Design and analysis. International Journal of Reliability Application, 2001, 2(3):209-240.
    [59]张勇,李光耀,孙光永,汽车车身耐撞性与NVH多学科设计优化研究,中国机械工程,2008,19(4):1760-1763.
    [60] Morris M.D., Mitchell T.J. Exploratory designs of computational experiments. Journal of Statistical Planning and Inference, 1995, 43: 381-402.
    [61] Fang K.T., Ma C.X., Winker P. Centered L2-discepancy of random sampling and latin hypercube design and construction of uniform designs. Mathematics of Computation, 2002, 71: 275-296.
    [62] Jin R., Chen W., Sudjianto A. An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 2005, 134: 268-287.
    [63] Grosso A., Jamali A., Locatelli M. Finding maximin latin hypercube designs by iterated local search heuristics. European Journal of Operational Research, 2009, 197(2): 541-547.
    [64] Viana F.A.C., Venter G., Balabanov V. An algorithm for fast optimal latin hypercube design of experiments. International Journal of Numerical Methods in Engineering, 2010, 82(2): 135-156.
    [65] Glaz B. Active/Passive optimization of helicopter rotor blades for improved vibration, noise, and performance characteristics. Ph.D. Dissertation of University of Michigan, 2008.
    [66] Bi J., Fang H., Wang Q., et al. Crashworthiness optimization of foam-filled thin-walled structures. AIAA 2008-2061.
    [67]李烁,徐元铭,张俊,复合材料加筋结构的神经网络响应面优化设计,机械工程学报,2006,42(11):115-119.
    [68] Forrester A.I.J., Keane A.J. Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 2009, 45: 50-79.
    [69] Wang L.Q., Shan S.Q., Wang G.G. Mode-pursuing sampling method for global optimization on expensive black-box functions. Engineering Optimization, 2004, 36(4): 419-438.
    [70] Sharif B., Wang G.G., Elmekkawy T.Y. Mode pursuing sampling method for discrete variable optimization on expensive black-box functions, ASME, Journal of Mechanical Design, 2008, 130(2): 021402.
    [71] Duan X., Wang G.G., Kang X., et al. Performance study of mode-pursuing sampling method. Engineering Optimization, 2009, 41(1): 1-21.
    [72] Zhang Y., Deng Y.M., Sun B.S. Injection molding warpage optimization based on a mode-pursuing sampling method. Polymer-Plastics Technology and Engineering, 2009, 48(7): 767-774.
    [73] Won K.S., Ray T. A framework for design optimization using surrogates. Engineering Optimization,2005, 37(7): 685-703.
    [74] Jones, D.R., Schonlau M., Welch W.J. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998, 13: 455-492.
    [75]王红涛,竺晓程,杜朝辉,基于Kriging代理模型的改进EGO算法研究,工程设计学报,2009,16(4):266-270,302.
    [76] Sasena M.J., Papa;ambros P., Goovaerts P. Exploration of metamodeling sampling criteria forconstrained global optimization. Engineering Optimization, 2002, 34(3): 263-278.
    [77] Sobester A., Leary S.J., Keane A.J. A parallel updating schemes for approximating and optimizing high fidelity computer simulations. Structural and Multidisciplinary Optimization, 2004, 27: 371-383.
    [78] Sobester A., Leary S.J., Keane A.J. On the design of optimization strategies based on global response surface approximation models. Journal of Global Optimization, 2005, 33: 31-59.
    [79] Jones D.R. A taxonomy of global optimization methods based on response surfaces. Journal of Global optimization, 2001, 21: 345-383.
    [80] Farhang-Mehr A., Azarm S. Bayesian meta-modelling of engineering design simulations: A sequential approach with adaptation to irregularities in the response behavior. International Journal of Numerical Methods in Engineering, 2005, 62(15): 2104-2126.
    [81] Lanzi L., Airoldi A., Chirwa C. Application of an iterative global approximation technique to structural optimizations. Optimization and Engineering, 2009, 10(1): 109-132.
    [82] Zhu P., Zhang Y., Chen G.L. Metamodel-based lightweight design of automotive front-body structure using robust optimization. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223: 1133-1147.
    [83] Kleijnen J.P.C., Beers W.V., Nieuwenhuyse I.V., Constrained optimization in expensive simulation: Novel approach. European Journal of Operational Research, 2010, 202(1): 164-174.
    [84] Schonlau M., Welch W.J., Jones D.R. Global versus local search in constrained optimization of computer models. National Institute of Statistical Sciences, NC, 1998.
    [85] Picheny V., Ginsbourger D., Roustant O., et al. Adaptive designs of experiments for accurate approximation of target regions. ASME, Journal of Mechanical Design, 2010, 132: 071008.
    [86] Chen S.K., Xiong Y., Chen W. Multiresponse and multistage metamodeling approach for design optimization. AIAA Journal, 2009, 47(1): 206-218.
    [87] Lee J.S., Kang S.K. GA based meta-modeling of BPN architecture for constrained approximate optimization. International Journal of Solids and Structures, 2007, 44: 5980-5993.
    [88] Song C.Y., Lee J.S. Strength design of a knuckle component using moving least-squares response-surface-based approximate optimization methods. International Journal of Automotive Engineering, 2009, 223: 1019-1032.
    [89]潘锋,朱平,基面向约束优化的改进响应面法在车身轻量化设计中的应用,机械工程学报,2011,47(10):82-87.
    [90] M. Goede, M. Stehlin, L. Rafflenbeul, et al. Super light car– lightweight construction thanks to a multi-material design and function integration, European Transport Research Review, 2009, 1(1): 15-20.
    [91] T. Howard, K. Raghavan, J. Buttles. Application of advanced high strength steel to NVH components, Transactions of SAE International, 2009-01-0801.
    [92] D.M. Baskin, D.B. Reed, T.N. Seel, et al. A case study in structural optimization of an automotive Body-In-White design, Transactions of SAE International, 2008-01-0880.
    [93]马鸣图,路洪洲,李志刚,论轿车白车身轻量化的表征参量和评价方法,汽车工程,2009,31(5):403-406,439.
    [94]龙江启,兰凤崇,陈吉清,车身轻量化与钢铝一体化结构新技术的研究进展,机械工程学报,2008,44(6):27-35.
    [95]桂良进,周长路,范子杰,某型载货车车架结构轻量化设计,汽车工程,2003,25(4):404-407.
    [96]高云凯,张海华,余海燕,轿车车身结构修改灵敏度分析,汽车工程,2007,29(6):511-514,536.
    [97]张代胜,张林涛,谭继锦等,基于刚度灵敏度分析的客车车身轻量化研究,汽车工程,2008,30(8):718-720.
    [98]孙宏图,申国哲,胡平,杨姝等,汽车镁合金车身设计,机械设计与制造,2009,7(7):4-6.
    [99]宋学伟,王登峰,张群等,基于局部结构改进的车身正面碰撞安全性研究,汽车工程,2009,31(12):1177-1180,1184.
    [100]郑松林,王彦生,卢曦等,基于强度变化特征的汽车结构件轻量化设计方法,机械工程学报,2008,44(2):129-133.
    [101]吕毅宁,吕振华,基于等刚度条件下的薄壁结构的一种材料替代轻量化设计分析方法,机械工程学报,2009,45(12):289-294.
    [102]李亦文,徐涛,左文杰等,基于相对灵敏度的车身结构模型修改,吉林大学学报(工学版),2009,39(6): 1435-1440.
    [103] Yuliang Shi, Ping Zhu, Libing Shen, et al. Lightweight design of automotive front side rails with TWB concept, Thin-Walled Structures, 2007, 45(1): 8-14.
    [104] Sobieszczanski-Sobieski J., Kodiyalam S., Yang R.J. Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash. Structural and Multidisciplinary Optimization, 2001, 22: 295-306.
    [105] Gu L., Yang R.J., Tho C.H., et al. Optimisation and robustness for crashworthiness of side impact. International Journal of Vehicel Design, 2001, 26(4): 348-360.
    [106] Youn B.D., Choi K.K. A new response surface methodology for reliability-based design optimization. Computers and Structures, 2004, 82:241-256.
    [107] Sinha K. Reliability-based multiobjective optimization for automotive crashworthiness and occupant safety. Structural and Multidisciplinary Optimization, 2007, 33:255-268.
    [108] Fang H., Solanki K., Horstemeyer M.F. Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization. International Journal of Crashworthiness, 2005, 10(2):161-172.
    [109] Jansson T., Nilsson L., Redhe M. Using surrogate models and response surface in structural optimization– with application to crashworthiness design and sheet metal forming. Structural and Multidisciplinary Optimization, 2003, 25: 129-140.
    [110] Craig K.J., Stander N., Balasubramanyam S. Worst-case design in head impact crashworthiness optimization. International Journal of Numerical Methods in Engineering, 2003, 57: 795-817.
    [111] Rais-Rohani M., Solanki K., Eamon C. Reliability-based optimization of lightweight automotive structures for crashworthiness. AIAA 2006-7004.
    [112] Zhang Y., Zhu P., Chen G.L., et al. Study on structural lightweight design of automotive front side rail based on response surface method. ASME, Journal of Mechanical Design, 2007, 129(5): 553-557.
    [113]孙光永,李光耀,钟志华等,基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计,机械工程学报,2009,45(2):224-230.
    [114]张维刚,廖兴涛,钟志华,基于逐步回归模型的汽车碰撞安全性多目标优化,机械工程学报,2007,43(8):142-147.
    [115]刘桂萍,韩旭,官凤娇,基于信赖域近似模型管理的多目标优化方法及其应用,中国机械工程,2008,19(10):1140-1143,1196.
    [116]王平,郑松林,吴光强,基于协同优化和多目标遗传算法的车身结构多学科优化设计,机械工程学报,2011,47(2):102-108.
    [117]李邦国,陈潇凯,林逸,基于代理模型的薄壁钣件抗撞性优化设计,汽车工程,2009,31(11):1034-1036.
    [118]曹立波,崔崇桢,白中浩等,八边形逐级吸能梁的设计与优化,湖南大学学报(自然科学版),2010,37(1):29-34.
    [119] Lanzi L., Castelletti L.M.L., Anghileri M. Multi-objective optimization of composite absorber shape under crashworthiness requirements. Composite Structures, 2004, 65: 433-441.
    [120] Zhu P., Shi Y.L., Zhang K.Z., et al, Optimum design of an automotive inner door panel with a tailor-welded blank structure, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008,222(8):1337-1348.
    [121] Fang H., Wang Q. On the effectiveness of assessing model accuracy at design points for radial basis functions. Communications in Numerical Methods in Engineering, 2008, 24: 219-235.
    [122] Goel T., Stander N. Comparing three error criteria for selecting radial basis function network topology. Computer Methods in Applied Mechanics and Engineering, 2009, 198(27-29): 2137-2150.
    [123] Forsberg J., Nisson L. Evaluation of response surface methodologies used in crashworthiness optimization. International Journal of Impact Engineering, 2006, 32: 759-777.
    [124] Cui X.T., Wang S.X., Bi F.R., et al. Multi-criterion optimal design of automotive door based on metamodeling technique and genetic algorithm. Transactions of Tianjin University, 2007, 13(3): 169-174.
    [125]高云凯,孙芳,余海燕,基于Kriging模型的车身耐撞性优化设计,汽车工程,2010,32(1):17-21.
    [126] Pan F., Zhu P., Zhang Y. Metamodel-base lightweight design of B-pillar with TWB structure via support vector regression. Computers and Structures, 2010, 88(1-2): 36-44.
    [127] Cherkassky V., Ma Y., Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 2004, 17:113-126.
    [128] Viana F.A.C., Haftka R.T., Steffen V., Multiple surrogate: how cross-validation errors can help us to obtain the best predictor. Structural and Multidisciplinary Optimization, 2009, 39:439-457.
    [129]潘锋,朱平,基于支持向量回归技术的轿车车顶压溃耐撞性研究,中国汽车工程学会第十二届汽车安全技术年会,中国:武汉,2009,51-56.
    [130] Wall E., Sullivan R;, Carpenter J., Progress report for automotive lightweighting materials Volume I, October, 2007.
    [131]唐启义,冯明光著,DPS数据处理系统—试验设计、统计分析及数据挖掘,科学出版社,2006.
    [132] Jin R.C., Chen W., Sudjianto A., An efficient algorithm for constructing optimal design of computer experiments, Journal of Statistical Planning and Inference, 2005,134(1):268-287.
    [133] Viana F.A.C., Picheny V., Haftka R.T., Using cross validation to design conservative surrogates. AIAA Journal, 2010, 48(10):2286-2298.
    [134] Lee T.H., Jung J.J., A sampling technique enhancing accuracy and efficiency of metamodel-based RBDO: Constraint boundary sampling. Computers and Structures, 2008, 86:1463-1476.
    [135] Kim C., Choi K.K., Reliability-based design optimization using response surface method with prediction interval estimation. ASME Journal of Mechanical Design, 2008, 130(12):121401.
    [136] Cho T.M., Lee B.C., Reliability-based design optimization using convex linearization and sequential optimization and reliability assessment method. Structural Safety, 2011, 33(1):42-50.
    [137] Song C.Y., Lee J.S., A realization of constraint feasibility in a moving least squares response surface based approximate optimization. Computation Optimization and Applications, 2011, In press.
    [138] Nationa Crash Analysis Center, Ford Taurus Model 2001, 2010, http:www.ncac.gwu.edu/vml/models.html.
    [139]梅小宁,杨树兴,复杂系统的多学科设计优化综述,工程设计学报,2010,17(3):173-180.
    [140]苏瑞意,桂良进,吴章斌等,大客车车身骨架多学科协同优化设计,机械工程学报,2010,46(18):128-133.
    [141]张勇,李光耀,孙光永等,多学科设计优化在整车轻量化设计中的应用研究,中国积雪工程,2009,18(7):877-881.
    [142]史国宏,陈勇,姜欣等,基于全参数化模型的白车身多学科设计优化,汽车工程,2010,32(11):928-931.
    [143] Agte J., Weck O., Sobieszczanski-Sobieski J., et al., MDO: assessment and direction for advancement-an opinion of one international group. Structural and Multidisciplinary Optimization, 2010, 40:17-33.
    [144] Sobieszczanski-Sobieski J., Haftka R.T., Multidisciplinary aerospace design optimization: survey of recent development. Structural and Multidisciplinary Optimization, 1997, 14(1):1-23.
    [145] Kodiyalam S., Sobieszczanski-Sobieski J., Multidisciplinary design optimisation- some formal methods, framework requirements, and application to vehicle design. International Journal of Vehicle Design, 2001, 25(1):3-22.
    [146]余卓平,张觉慧,燃料电池轿车碰撞安全性的仿真与实验,汽车安全与节能学报,2010,1(2):115-121.
    [147]李向荣,万党水,白鹏等,燃料电池汽车正面碰撞安全性研究,汽车工程,2010,32(3):213-216.
    [148]章斯亮,朱平,冯奇等,氢能汽车氢瓶框架的耐撞性设计,汽车安全与节能学报,2010,1(3):205-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700