脉冲末修迫弹弹道特性分析与控制方案设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展低成本的有控迫弹是提高迫击炮武器系统射击精度的重要途径之一。本文以某型末修迫弹为研究对象,利用脉冲发动机作为其控制执行机构,采用简易控制技术实现末段弹道修正,提高命中精度。为此,针对末修迫弹在研究过程中遇到的弹道、控制等相关问题,本文开展了较为深入的研究,主要内容包括:
     (1)脉冲末修迫弹飞行弹道模型研究。针对脉冲发动机的特点及其力学作用过程,利用矩形波函数建立了瞬时脉冲控制力模型;基于冲量相等原则提出了等效平均脉冲控制力模型。在此基础上,根据牛顿第二定律和动量矩定理,建立了两种脉冲控制力下的迫弹六自由度刚体弹道模型:采用瞬时脉冲控制力和控制力矩的瞬态弹道模型用于弹道仿真计算;采用等效平均脉冲控制力和控制力矩的均态弹道模型用于脉冲作用下角运动和质心运动的理论分析。
     (2)脉冲末修迫弹弹道特性分析。根据脉冲末修迫弹飞行弹道模型,编制了弹道计算程序,对迫弹无控状态下末段弹道诸元的变化规律及最大射程条件下的落点散布等进行了仿真分析;在设定的脉冲控制参数条件下,对有控弹道特性进行了仿真分析;在此基础上,通过对迫弹的绕心运动进行合理简化,建立了其在脉冲作用下的攻角运动方程,推导出其相应的解析解,提出了可用于指导脉冲冲量大小及轴向偏心距离设计的飞行稳定性约束条件。
     (3)脉冲参数对修正弹道的影响。分析了脉冲参数(启控点、单脉冲冲量、脉冲作用个数、脉冲持续作用时间及多脉冲点火模式等)和脉冲布局(单排周向和双排周向布局)对修正弹道的影响;弹体自旋是实施脉冲修正的基础,为此,分析了弹体平衡转速对修正弹道的影响;在考虑脉冲发动机径向偏心距的条件下,研究了脉冲控制引起的转速变化对弹道的影响,结果表明,转速变化对弹道修正效果和飞行稳定性有较大的影响,在工程研制中应尽量减小脉冲发动机径向偏心距引起的转速变化。
     (4)脉冲末修迫弹参数优化设计模型及求解。针对脉冲末修迫弹的弹道特性,选取了优化设计变量,确定了目标函数和约束条件,建立了脉冲末修迫弹参数优化设计数学模型;提出了适于求解该优化模型的改进粒子群算法。仿真结果表明,该算法能够快速、可靠地求得最优解,为该类迫弹的参数设计提供了理论依据。
     (5)激光半主动体制下的末段控制方案设计。通过对激光半主动末修迫弹武器系统的组成、作用过程及末段修正原理进行分析,推导出采用捷联激光导引头的迫弹在弹道末段的目标捕获域公式;提出了一种根据激光导引头所提供的角度测量信息进行脱靶量预测的方法,采用衰减记忆滤波法对滚转角测量数据进行了降噪处理,在此基础上设计了适配的控制方案。仿真结果表明,采用本文的设计方案对迫弹实施末段弹道修正,可以大幅度提高其射击精度,满足设计要求。
     (6)卫星定位体制下的末段控制方案设计。针对卫星定位系统对迫弹的测量数据(三维位置和速度),构建了非线性弹道滤波器;基于对三自由度质点弹道模型的近似求解,提出了一种通过估算剩余飞行时间预测落点的方法,在此基础上设计了适配的控制方案。仿真结果表明,采用该方案对迫弹实施末段修正,能够大幅减小迫弹的落点散布,相同条件下其精度好于激光半主动体制下的弹道控制精度。
Developing low cost guided mortar projectiles is one of the most important approaches to fundamentally improve the firing accuracy for mortar guns. In this dissertation, a type of terminal trajectory correction mortar projectile is considered as the subject. This projectile is equipped with impulses and is of high accuracy by utilizeing the simple control technology. The problems concerning the ballistic characteristics and control scheme design for this type of projectiles are investigated. The main research work is listed as follows:
     (1) Study on the dynamic model for the terminal trajectory correction mortar peojectile equipped with lateral impulses. Aming to the mechanical action process of impulse engines and their specified characteristics, the model of transient impulse control force is established by using the rectangular wave function. The model of equivalent average impulse control force is also proposed based on the principle that the impulse is equal. In terms of Newton's second law and the theorem of moment of momentum, two kinds of 6D rigid trajectory mod-els are established. One is using the model of transient impulse control force and the other is utilizing the model of equivalent average impulse control force. The former is used to predict the trajectory and the latter is used to theoretically analyze the angular and translational mo-tion of the mortar projectile under the action of impulse engines.
     (2) Analysis on ballistic characteristics for the terminal trajectory correction mortar peo-jectile equipped with lateral impulses. According to the dynamic model, the code for predict-ing the trajectory of 6D model is programmed. The variation law of flight trajectory without control and the impact point dispersion under the condition of maximum range are both simu-lated and analyzed. The controlled trajectory characteristics are preliminarily analyzed based on several determined impulse parameters. By simplifying the dynamic equation of motion around the point mass, the equation of angle of attack for mortar projectiles with the action of impulse is established. And the corresponding analytical solution is deduced. The constraint condition of flight stability is proposed which can be used to guide the design of impulse magnitude and axial eccentricity.
     (3) The effect of impulse parameters on the trajectory. The effect of the impulse pa-rameters (including starting point, single impulse magnitude and the number of impulse en-gines, impulse duration and multi-impulses ignition mode) and the layout on the trajectory are analyzed. Due to the fact that the projectile should be spin axially so as to realize the im-pulse correction, the influence of different equilibrium spin rates on the correction effective- ness is also analyzed. With the consideration of the radial eccentricity of impulse engines, the effect of the change of spin rate caused by the action of impulse on the trajectory is studied. The result indicates that the change of spin rate can largely influence the trajectory correction and flight stability. The change of spin rate caused by the radial eccentricity should be re-duced in the process of engineering research.
     (4) Modeling and soluting of the optimal design for the terminal trajectory correction mortar peojectile. According to the ballistic characteristics, several optimal design variables are selected and both of the constraint conditions and the objective function are determined. An optimal model for designing the relative parameters is established. A type of modified Particle Swarm Optimization which is suitable for solving the optimal model is proposed. The simulation results show that this modified Particle Swarm Optimization can be used to obtain the optimal solution rapidly and reliably which provides theoretical basis for the pa-rameters design of this type of mortat projectile.
     (5) Design of terminal trjectiry control scheme under laser semi-active system. By in-troduing and analyzing the composition and principle of the terminal trajectory correction mortar projectile weapon system under the laser semi-active system, the target capture field formula of the mortar projectile equipped with strap-down laser seeker during the terminal trajectory is deduced. A method for predicting the miss distance just using the angle informa-tion provided by the laser seeker is proposed. A Fading-Memory Filter is utilized to reduce the measurement noise of the spin angle data. Based on the previous work, a suitable control scheme is designed. Simulaiton results indicate that the accuracy can be improved by adopt-ing this control scheme which is in accordance with the design purpose.
     (6) Design of terminal trjectiry control scheme under satellite position. Based on the measurement data (three dimensional positions and velocities) provided by satellite, the state equation and measurement equation are built respectively. By solving the 3D point mass tra-jectory model analytically, an accurate and rapid method for predicting the impact point through estimating the time-to-go is proposed. Based on the work above, a suitable control scheme is designed. Simulation results show that this control scheme can also cut down the impact point dispersion effectively and its accuracy is better than that of the control scheme based on the laser semi-active system under same conditions.
引文
[1]姜海涛,李伟录.百年迫击炮竞风流[J].轻兵器,2004,(6):35-38.
    [2]尹明,张荣武.浅议迫榴炮及自行迫榴炮开发设想[J].四川兵工学报,2001,22(1):3-6.
    [3]赵喜发,李志龙.迫击炮杂谈[J].轻兵器,2008,(4):9-11.
    [4]宋德军.近战利器现代迫击炮[J].国防科技,2006,(2):10-12.
    [5]景小飞,宋德军.陆战场的近战利器——现代迫击炮[J].四川兵工学报,2006,27(1):7-9.
    [6]Hollis M S L Design and Analysis of a Prototype Range Correction Device for a Mortar Projectile[R]. Adelphi, MD:Army Research Laboratory,1998.
    [7]Hollis M S L, Brandon F J, Muller P C. Design and Flight Test of a Prototype Range Control Module for an 81-mm Mortar[R]. Adelphi, MD:Army research laboratory, 1999.
    [8]王颂康.弹药家族之十灵巧弹药:弹药家族的“新秀”[J].现代军事,2004,(4):68-70.
    [9]王儒策,赵国志,杨绍卿.弹药工程[M].北京:北京理工大学出版社,2002.
    [10]王儒策,刘荣忠,苏玳,等.灵巧弹药的构造及作用[M].北京:兵器工业出版社,2001.
    [11]Gander T J. Mortar ammunition update[J]. Armada International,2003,27(2):18-20,22, 24.
    [12]王晓宇,薛杰.现代迫击炮弹的发展现状[J].外军炮兵,2004,(3):40-45.
    [13]Terhune J, Pezzano A. XM395 Precision Guided Mortar Munition (120mm PGMM): Responsive, Standoff Precision Lethality for Highly Deployable and Mobile Forces[C]// 40th Annual Armament Systems:Guns-Ammunition-Rockets-Missiles Conference & Exhibition. New Orleans, LA:[s.n.],2005.
    [14]Shipunov A, Babichev V, Rabinovich V. GRAN:NEW COMBAT CAPABILITIES OF MORTAR ARMAMENT[J]. Military Parade,2002,(5):4-6.
    [15]Biass E H, Braybrook R. Guided mortar bombs[J]. Armada International,2002,26(6): 56-57.
    [16]IAI's novel approach to laser guided munitions:the sensor is the shooter[J]. IAI News, 2008,(26):7.
    [17]王狂飙.激光制导武器的现状、关键技术与发展[J].红外与激光工程,2007,36(5):651-655.
    [18]王狂飙.激光半主动制导技术的新发展[J].红外与激光工程,2008,37(增刊):275-279.
    [19]林德福,贺嫒媛,祁载康.70mm低成本制导火箭弹综述[J].飞航导弹,2005,(6):47-49.
    [20]Barnych G, Davis D. Low Cost Course Correction (LCCC) Demonstration Program[C]// 40th Annual Armament Systems:Guns-Ammunition-Rockets-Missiles Conference & Exhibition. New Orleans, LA:[s.n.],2005.
    [21]Horwath T G, Barnych G. Low cost course correction (LCCC) technology applica-tions[C]//International Armaments Technology Symposium and Exhibition. Parsippany, NJ:[s.n.],2004.
    [22]Jolliffe R A, Buzzett J. Low Cost Course Correction Technology[C]//37th Annual Gun & Ammunition Symposium & Exhibition. Panama City, FL:[s.n.],2001.
    [23]杨绍卿.论武器装备的新领域灵巧弹药[J].中国工程科学,2009,11(10):4-7.
    [24]Jitpraphai T. Lateral pulse jet control of a direct fire atmospheric rocket using an inertial measurement unit sensor system[D]. Oregon:Oregon State University,2001.
    [25]徐劲祥,夏群力.末段修正迫弹主要参数确定方法研究[J].弹箭与制导学报,2005,25(2):80-82.
    [26]林德福,徐劲祥,宋锦武.弹道修正弹箭的脉冲控制参数设计[J].兵工自动化,2005,24(3):23-24.
    [27]姚文进,王晓鸣,李文彬,等.弹道修正引信脉冲修正参数研究[J].制导与引信,2007,28(2):24-27.
    [28]王佳伟,霍鹏飞,陈超.基于蒙特-卡洛法的冲推器数量与冲量优化[J].探测与控制学报,2010,32(1):92-96.
    [29]施坤林,翟蓉.遗传优化算法在末段弹道脉冲修正弹设计中的应用[C]//第十二届引信学术年会论文集.昆明:[出版者不详],2001:309-314.
    [30]Donnard R E, Fenton S J, Stoliar A P. Antitank weapon system application of impulse control and semiactive homing[R]. Philadelphia:Research and.Development Group, Frankford Arsenal,1964.
    [31]Jitpraphai T, Burchett B, Costello M. A Comparison of Different Guidance Schemes for a Direct Fire Rocket with a Pulse Jet Control Mechanism[R]. Corvallis:Oregon State University,2002.
    [32]Jitpraphai T, Costello M. Dispersion reduction of a direct fire rocket using lateral pulse jets[J]. Journal of Spacecraft and Rockets,2001,38(6):929-936.
    [33]Fresconi F, Plostins P. Control Mechanism Strategies for Spin-Stabilized Projectiles[R]. Adelphi, MD:Army Research Laboratory,2008.
    [34]Gupta S K, Saxena S, Singhal A, et al. Trajectory correction flight control system using pulsejet on an artillery rocket[J]. Defence Science Journal,2008,58(1):15-33.
    [35]Glebocki R, Vogt R. Guidance system of smart mortar missile[J]. The Archive of Me-chanical Engineering,2007,54(1):47-63.
    [36]曹营军,毕晓蒙.基于脉冲力修正的弹道追踪导引律在末修弹中的应用研究[J].弹箭与制导学报,2008,28(2):158-160.
    [37]徐劲祥.弹道修正弹追踪制导律研究[J].弹箭与制导学报,2004,24(4):163-165.
    [38]肖顺旺,安志勇,李升才,等.基于不同导引律的脉冲修正弹广义弹道偏差研究[J].弹箭与制导学报,2010,(02):205-207.
    [39]曹营军,杨树兴,张成.末修火箭弹抛物线比例导引的特性[J].固体火箭技术,2008,31(1):1-3.
    [40]曹营军,杨树兴,李杏军.基于抛物线导引的末修弹着角控制研究[J].弹道学报,2008,20(2):52-55.
    [41]张成,曹营军,杨树兴.一种低速滚转弹药脉冲发动机弹道修正方法[J].弹道学报,2008,20(2):45-48.
    [42]徐劲祥.弹道修正弹六自由度弹道仿真研究[J].兵工学报,2007,28(4):411-413.
    [43]张成.脉冲修正弹药射程预测控制方法[J].弹道学报,2010,22(1):20-23.
    [44]赵捍东.脉冲发动机提供控制力的火箭弹弹道修正理论及技术研究[D].南京:南京理工大学,2008.
    [45]曹营军,杨树兴,李杏军.基于脉冲控制的末段弹道修正弹点火相位优化研究[J].兵工学报,2008,29(8):897-901.
    [46]杨红伟,甘明刚.基于粒子群算法的防空修正弹控制方法研究[J].弹道学报,2011,(2):57-61.
    [47]Sunahara Y. An approximate method of state estimation for nonlinear dynamical sys-tems[J]. Journal of Basic Engineering,1970,92:385.
    [48]Bucy R S, Renne K D. Digital Synthesis of Nonlinear Filter[J]. Automatica,1971,7(3): 287-289.
    [49]Song T L. The Modified Gain Extended Kalman Filter and ParameterIdentification in Linear System[J]. Automatica,1986,22(1):59-75.
    [50]Fisher J L, Casasent D P, Neuman C P. Factorized extended Kalman filter:case study results[J]. Applied Optics,1988,27(9):1877-1885.
    [51]Algrain M C, Saniie J. Interlaced Kalman Filtering of 3-D Angular Motion Based on Euler's Nonlinear Equations[J]. IEEE Transactions on Aerospace and Electronic Sys- tems,1994,30(1):175-185.
    [52]Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems[C]//Proceedings of the American Control Conference (Vol.3). Piscataway, NJ: IEEE,1995:1628-1632.
    [53]Julier S J, Uhlmann J K, Durrant-Whyte H F. A New Method for the Nonlinear Trans-formation of Means and Covariances in Filters and Estimators[J]. IEEE Trans.on Auto-matic Control,2000,45(3):477-482.
    [54]Julier S J, Uhlmann J K. Unscented Filter and Nonlinear Estimation[J]. Proceedings of the IEEE,92(3):401-422.
    [55]Corriveau D, Berner C, Fleck V. Trajectory correction using impulse thrusters for con-ventional artillery projectiles[C]//Galvez F, Sanchez-Galvez V. Proceedings of 23rd In-ternational Symposium on Ballistics. Tarragona, Spain:[s.n.],2007:639-646.
    [56]Davis B, Malejko G, Dohrn R, et al. Addressing the challenges of a thruster-based preci-sion guided mortar munition with the use of embedded telemetry instrumentation[J]. ITEA Journal,2009,30(1):117-125.
    [57]Malejko G, Burke P J, Dohrn R, et al. Jet interaction effect on the precision guided mor-tar munition (PGMM)[C]//26th Army Science Conference. Orlando, Florida:[s.n.], 2008.
    [58]孟新宇,王晓鸣,方清.6自由度修正弹道脉冲推力仿真研究[J].系统仿真学报,2006,(09):2657-2660.
    [59]Cobb K K. Dynamic design considerations for an impulsed-corrected, laser guided rocket[J]. Journal of Guidance, Control, and Dynamics,1978,1(5):293-297.
    [60]德米特里耶夫斯基A.A.,雷申科JI H.,波哥吉斯托夫C.C.外弹道学[M].韩子鹏,薛晓中,张莺译.北京:国防工业出版社,2000.
    [61]Guidos B J, Cooper G R. Linearized Motion of a Fin-Stabilized Projectile Subjected to a Lateral Impulse[J]. Journal of Spacecraft and Rockets,2002,39(3):384-391.
    [62]王中原,王良明.修正弹道飞行稳定性分析[J].兵工学报,1998,19(4):298-300.
    [63]王中原,丁松滨,等.弹道修正弹在脉冲力矩作用下的飞行稳定性条件[J].南京理工大学学报:自然科学版,2000,24(4):322-325.
    [64]王中原,艾东民.修正弹道的飞行稳定性研究[J].弹道学报,1999,11(4):1-6.
    [65]施坤林.末段修正弹对脉冲修正力的角运动响应分析[J].探测与控制学报,2001,23(1):7-11.
    [66]曹小兵,徐伊岑,王中原,等.迫弹横向脉冲控制飞行稳定性[J].弹道学报,2008,20(4):41-44.
    [67]徐明友.火箭外弹道学[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [68]宋丕极.枪炮与火箭外弹道学[M].北京:兵器工业出版社,1993.
    [69]浦发,芮筱亭.外弹道学(修订本)[M].北京:国防工业出版社,1989.
    [70]Lighthill M J. An Introduction to Fourier Analysis and Generalized Functions[M]. New York:Cambridge University Press,2003.
    [71]郭锡福.底部排气弹外弹道学[M].北京:国防工业出版社,1995.
    [72]郭锡福,赵子华.火控弹道模型理论及应用[M].北京:国防工业出版社,1997.
    [73]闵杰,郭锡福.实用外弹道学[M].北京:兵器工业部教材编审室,1986.
    [74]郭锡福.远程火炮武器系统射击精度分析[M].北京:国防工业出版社,2004.
    [75]袁子怀,钱杏芳.有控飞行力学与计算机仿真[M].北京:国防工业出版社,2001.
    [76]韩子鹏.弹箭外弹道学[M].北京:北京理工大学出版社,2008.
    [77]王中原,周卫平.外弹道设计理论与方法[M].北京:科学出版社,2004.
    [78]Kannan B K, Kramer S N. An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design[J]. Journal of Mechanical Design,1994,116(2):405-411.
    [79]Geoffrion A M. Generalized Benders decomposition[J]. Journal of optimization theory and applications,1972,10(4):237-260.
    [80]Borchers B, Mitchell J E. An improved branch and bound algorithm for mixed integer nonlinear programs[J]. Computers & Operations Research,1994,21(4):359-367.
    [81]Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approxima-tion[J]. Mathematical Programming,1994,66(1-3):327-349.
    [82]Westerlund T, Pettersson F. An extended cutting plane method for solving convex MINLP problems[J].1995,19(s1):131-136.
    [83]Cardoso M F, Salcedo R L, de Azevedo S F, et al. A simulated annealing approach to the solution of minlp problems[J]. Computers & Chemical Engineering,1997,21(12): 1349-1364.
    [84]Lin B, Miller D C. Tabu search algorithm for chemical process optimization [J]. Com-puters & Chemical Engineering,2004,28(11):2287-2306.
    [85]Yan L, Shen K, Hu S. Solving mixed integer nonlinear programming problems with line-up competition algorithm[J]. Computers & Chemical Engineering,2004,28(12): 2647-2657.
    [86]贺益君,陈德钊.适于混合整数非线性规划的混合粒子群优化算法[J].浙江大学学报(工学版),2008,42(5):747-751.
    [87]高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社,2006.
    [88]段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172.
    [89]Venter G, Sobieszczanski-Sobieski J. Particle Swarm Optimization[J]. AIAA journal, 2003,41(8):1583-1589.
    [90]Homaifar A, Qi C X, Lai S H. Constrained optimization via genetic algorithms[J]. Simulation,1994,62(4):242-253.
    [91]Michalewicz Z, Attia N. Evolutionary optimization of constrained problems[C]//Pro-ceedings of the Third Annual Conference on Evolutionary Programming.[s.l.]:World Scientific,1994:98-108.
    [92]Joines J A, Houck C R. On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with GA's[C]//Proceedings of the First IEEE International Conference on Evolutionary Computation. Piscataway, NJ:IEEE, 1994:579-584.
    [93]Kazarlis S, Petridis V. Varying fitness functions in genetic algorithms:studying the rate of increase of the dynamic penalty terms[C]//Proceedings of the 5th International Conference on Parallel Problem Solving from Nature. Heidelberg:Springer-Verlag, 1998:211-220.
    [94]Rasheed K. An adaptive penalty approach for constrained genetic-algorithm optimiza-tion[C]//Proc. of the 3rd Annual Conf. on Genetic Programming (GP'98)/Symp. on Genetic Algorithms (SGA'98). San Francisco, California:Morgan Kaufmann Pub-lisher,1998:584-590.
    [95]Yokota T, Gen M, Ida K, et al. Optimal design of system reliability by an improved genetic algorithm[J]. Electronics and Communications in Japan (Part Ⅲ:Fundamental Electronic Science),1996,79(2):41-51.
    [96]Clerc M. Standard Particle Swarm Optimisation From 2006 to 2011[EB/OL]. /(2011-07-13)[2011-7-20]. http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf.
    [97]Lemonge A C C, Barbosa H J C. An adaptive penalty scheme for genetic algorithms in structural optimization[J]. International Journal for Numerical Methods in Engineering, 2004,59(5):703-736.
    [98]Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of the IEEE In-ternational Conference on Neural Networks:Vol 4. Piscataway, NJ:IEEE,1995: 1942-1948.
    [99]薛惠锋,吴晓军,解丹蕊,等.复杂性人工生命研究方法导论[M].北京:国防工业出版社,2006.
    [100]Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C]//IEEE World Congress on Computational Intelligence. Piscataway, NJ:IEEE,1998:69-73.
    [101]Kennedy J, Eberhart R C, Shi Y H. Swarm intelligence[M]. San Diego:Academic Press, 2001.
    [102]Engelbrecht A P. Fundamentals of computational swarm intelligence[M]. Hoboken, NJ: John Wiley & Sons, Inc.,2005.
    [103]Parsopoulos K E, Vrahatis M N. Particle Swarm Optimization and Intelligence:Ad-vances and Applications[M]. Hershey, PA:Information Science Reference,2010.
    [104]Rao S S. Engineering Optimization:Theory and Practice[M].4th ed. Hoboken, New Jersey:John Wiley & Sons, Inc.,2009.
    [105]Clerc M. Particle Swarm Optimization[M]. London:ISTE Ltd,2006.
    [106]曾建潮等.微粒群算法[M].北京:科学出版社,2004.
    [107]Marsaglia G, Zaman A. The kiss generator[R]. Tallahassee, FL:Florida State Univer-sity,1993.
    [108]Barbosa H J C, Lemonge A C C. An adaptive penalty method for genetic algorithms in constrained optimization problems[J]. Frontiers in Evolutionary Robotics, I-Tech Education Publ., Austria,2008.
    [109]王金华,尹泽勇.一个约束离散优化问题的粒子群算法研究[J].计算机工程与应用,2008,(03):242-244.
    [110]Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation,2000,4(3):284-294.
    [111]Burke P J, Kundel T R. The new precision-guided mortar munition (PGMM)[J]. FA Journal,2006,11(5):39.
    [112]祁载康,曹翟,张天桥.制导弹药技术[M].北京:北京理工大学出版社,2002.
    [113]宋新彬.外军精确制导炮弹<现状及发展趋势)[J].现代军事,2009,(9):48-51.
    [114]谭千里.四象限探测器组件在激光制导技术中的应用[J].半导体光电,2005,26(2):155-157.
    [115]刘士建,郭立,刘昌进,等.基于衰减记忆法滤波的多假设跟踪算法[J].信号处理,2004,(4):346-349.
    [116]张玉春,姚俊,李娜.基于衰减记忆算法的弹道参数滤波方法[J].哈尔滨师范大学自然科学学报,2008,(3):27-29.
    [117]高青伟,赵国荣,吴芳,等.衰减记忆自适应滤波在惯导系统传递对准中的应用[J].系统工程与电子技术,2010,(12):2648-2651.
    [118]龙正平,刘卫东.一种自适应指数加权衰减记忆滤波算法[J].指挥控制与仿真, 2006,(6):41-44.
    [119]El-Rabbany A. Introduction to GPS:the global positioning system[M]. London:Artech house publishers,2002.
    [120]袁建平,方群,郑谔.GPS在飞行器定位导航中的应用[M].西安:西北工业大学出版社,2000.
    [121]刘将军.炮位侦察校射雷达的随机误差对定位精度的影响[D].南京:南京理工大学,2003.
    [122]袁信,俞济祥,陈哲.导航系统[M].北京:航空工业出版社,1993.
    [123]常思江,王中原,韩成辉.一种基于过程噪声控制的弹道滤波方案[J].空军工程大学学报(自然科学版),2011,(1):51-54.
    [124]丁传炳.制导弹箭弹道测量及弹道重构技术研究[D].南京:南京理工大学,2011.
    [125]Zarchan P. Tactical and Strategic Missile Guidance[M].2 ed. Reston, VA:American Institute of Aeronautics and Astronautics,1997.
    [126]Hainz L, Costello M. In Flight Projectile Impact Point Prediction[C]//AIAA Atmos-pheric Flight Mechanics Conference and Exhibit. Reston, VA:AIAA,2004:1-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700