大型重载平台的自动调平系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着我国装备制造业的振兴,重型装备的运输平台、大型钻机、重型起重机、武器发射平台等大型重载平台的自动调平技术研究刻不容缓。本文针对大型重载平台,采用电液比例控制系统,基于模糊PID控制策略,实现平台在精度范围内快速、稳定的调平。本文主要包括以下几个部分:
     首先,详述了系统的组成和工作原理,给出了自动调平系统的总体方案,包括平台的支撑方式、控制方式以及传动方式,并对系统涉及的主要硬件进行选型,给出主要参数,完成各个环节的匹配。同时,根据本系统的特征,结合平台模型和角度传感器的安装特点,基于常用调平方法和控制算法展开分析,选择了只升不降的调平方法。
     其次,对单支腿电液比例阀控液压系统进行建模分析。鉴于选用的硬件参数,推算了支腿电液比例控制系统的传递函数,并进行了稳定性分析。由于在分析过程中发现系统极易振荡,本文采用了滞后—超前网络校正。为了改善常规PID控制效果,采取模糊PID控制技术。设计了模糊PID控制器,给出了模糊控制规则,以及输入输出特性曲面,为后续的平台系统仿真做铺垫。
     最后,使用Matlab中simulink的对支腿电液比例控制系统进行模糊PID和常规PID控制对比仿真,发现模糊PID能有效的抑制振荡,能够保证平台更加快速、平稳的达到水平状态。同时,对整个平台系统进行整体仿真,包括“虚腿”判断的仿真模块设计,仿真表明,该调平策略明显提高系统性能。基于西门子PLC,设计了整个自动调平系统软件,并采用S7 ?PLCSIM进行了部分程序调试。
Along with the revitalization of China's equipment manufacturing industry, such as heavy equipment transport platform, a large drilling rig, heavy cranes, heavy weapons, launch platforms and other large platforms, the research of Auto-leveling technology is imperative. This paper uses electro-hydraulic proportional control technology platform within the precision rapid and stable leveling. It mostly includes following studies.
     First of all, it describes the system's composition and working principle,provides the overall program, including the platform’s structure, the control mode and the transmission mode, and the main hardware systems that involve selection, and then gives the main parameters to complete all aspects of the match. At the same time, according to the characteristics of the system,the platform model and the installation of angle sensor characteristics, combining with common leveling methods and control algorithms, it decides to select only-rise method.
     Secondly, as the single-leg electro-hydraulic proportional valve hydraulic system, firstly as the hardware parameters it receives the leg electro-hydraulic proportional control system transfer function, then makes stability analysis, and then regulates the instability system with Double T network, while the conventional PID control strategy is inappropriate; finally it decides to adopt intelligent PID control technology. It designs a fuzzy PID controller, gives fuzzy control rules, and provides input and output characteristics graphs, in order to pave the way behind the platform’simulation.
     Finally, based on simulink of Matlab , it compares conventional PID and fuzzy PID simulation of single-leg electro-hydraulic proportional control system, through contrast, there proves that fuzzy PID not only can quickly reach leveling, and can effectively restrain the oscillation. The whole simulation for the entire platform, including the simulation module design of "empty legs" to determine, shows fuzzy PID control strategy significantly improving system performance. Based on Siemens PLC, this paper designs the whole auto-leveling system software, and part of the procedures passes inspection.
引文
[1]单长虹.自动调平测深仪的单片机测控系统[J].电工教学.1997,19(2):60-63.
    [2]黎鑫溢,郭纪梅,李英智.汽车起重机支腿自动调平控制分析与策略研究[J].建筑机械,2007(7):51-54.
    [3]胡均平,李岸,李光.静力压桩机的PLC自动调平控制系统的研究[J].矿冶工程.2001,21(3):21-23.
    [4]李建军.某火箭炮发射装置平台自动调平系统设计与研究[D].南京理工大学硕士论文.南京:南京理工大学,2007.
    [5]姚舜才,张艳兵.基于PLC的自动调平系统[J].华北工学院学报.2003,24 (1):14-17.
    [6]叶康锋.重载、高精度平台调平控制系统的研究[D].重庆大学硕士学位论文.重庆:重庆大学,2004.
    [7]倪江生,翟羽建.六点支撑静基座液压平台的调平方法[J].东南大学学报.1996(2):74-79.
    [8]朱大昌.基于并联支撑机构的车载雷达天线自动调平系统研究[D].北京交通大学博士学位论文.北京:北京交通大学,2008.
    [9]张芳.高精度平台调平控制系统研究[D].中北大学硕士学位论文.太原:中北大学,2008.
    [10] James H Rillings. Rob J Roy,Analog Sensitivity Design of Saturn V Launch Vehicle[J].IEEE Transactions on Automatic Control.1970,15(4):437-442.
    [11]李光等.静压桩机自动调平系统的研制[J].建筑机械.2001(6):32-33.
    [12]冯仪,陈柏金.车载雷达机电式自动调平控制系统[J].华中科技大学学报.2004(6):66-68.
    [13]李迪科等.某雷达自动电调平控制系统的设计[J].重庆大学学报.2004(6):93-95.
    [14]吴百海等.多油缸同步运行智能控制的探讨[J].机床与液压.2003(4):29-32.
    [15]廖义德,杨文锐.基于高速开关阀的雷达天线平台水平调节系统[J].机械与电子.2003(3):53-54.
    [16]盛英仇,原鹰.6腿支撑液压式平台自动调平算法[J].西安电子科技大学学报,2002,29(5):593-596.
    [17]冯智贵.基于ARM+FPGA的雷达伺服控制器设计[D].南京理工大学硕士学位论文.南京:南京理工大学,2008.
    [18] Malisch, Ward R. Buying a laser leveling system [J].Aberdeen’s Concrete Construction.1996(5):61-65.
    [19] Ellmann, Siegfried, Loser. Electromechanical Leveling System [J].Echische Mitteilungen Krupp(English Edition).2002(12):4-18.
    [20] Gmehlich ,R. Specification and validation of embedded systems using LUSTRE and ARGOS. Case study: The automatic headlight leveling system [J].Design Automation for Embedded System.2001(4):151-175.
    [21]殴同庚等.水平面基准系统的自动调平方法研究[J].大地测量与地球动力学.2008(10):130-132.
    [22]何希才.传感器技术及应用[M].北京:北京航空航天大学出版社,2005.
    [23]陈荣,王玉彬.低成本的PLC输入点扩展方法研究[J].PLC&FA.2003(11):25-26.
    [24]王树清.工业过程控制工程.北京:化学工业出版社,2003.
    [25] Siemens AG. Siemens SIMATIC STEP7 V5.1编程手册[M].北京:西门子(中国)股份公司,1998.
    [26]王晓芳.液压与气动技术[M].北京:中国轻工业出版社,2006.
    [27]何林立,潘宏侠,高强.基于PLC的模糊PID控制策略在调平控制中的应用[J].装备制造技术.2009(8):82-83.
    [28]张利平.液压传动与控制[M].西安:西北工业大学出版社,2005.
    [29]陈建民,蔡淳鹏,刘彦武.基于虚拟仪器技术的海上实时自动调平系统设计[J].船海工程.2009(4):125-127.
    [30]王春行.液压伺服控制系统[M].北京:机械工业出版社,1981.
    [31]姜文刚等.大型平台自动调平研究[J].电气传动.2005(12):29-31.
    [32]汪伟.重型车辆液压自动调平模糊PID控制研究[D] .武汉理工大学硕士学位论文.武汉:武汉理工大学,2009.
    [33]杨征瑞.电液比例与伺服控制[M].北京:冶金工业出版社,2009.
    [34]高钦和等.大型装置起竖过程的电液比例控制研究[J].机械工程学报.2004(2):189-192.
    [35] Dinh Quang Truong. Application of Fuzzy-PID Controller in Hydraulic Load Simulator[J].Proceedings of the 2007 IEEE.International Conference on Mechatronics and Automation.2007(8):3338-3343.
    [36] Z.Situm,D. Pavkovic,B. Novakovic.Servo pneumatic position control using fiizzy PID gain scheduling[J]. Transactions of the ASME.2004(6):376-387.
    [37] Zadeh L A.Fuzzy Sets[J].Information Control.1965(8):338-353.
    [38] Zadeh L A.Fuzzy Algorithm[J].Information Control.1968(12):94-102.
    [39] P.J.King , et.The Application of Fuzzy Control System to Industrial Processes[J].Automat.1977,13(3):235-242.
    [40] Kickert W J M,Mamdani E H.Analysis of a Fuzzy Logic Controller.Fuzzy Sets and Systems.1978,1(1):29-44.
    [41] E.H.Mandani.Application of Fuzzy Algorithm for Control of Simple Dynamic [J].Plat.Proc.IEEE.1974,21(2):1585-1588.
    [42] R.M.Yong.Synthesis of Fuzzy Models for Industrial Process[J]. Int.Gen. Syst.1978(4):143-162.
    [43] Hung-Ching Lu,et al.A Heuristic Self-tuning Fuzzy Controller[J].Fuzzy Sets and Systems.1994(6):249-264.
    [44] Tanak K, Sugeno M.Stability Analysis and Design of Fuzzy Control Systems [J].Fuzzy Sets and Systems.1992,45(2):135-156.
    [45] Lee C C.Fuzzy Logic in Control Systems: Fuzzy Logic Controller. PartⅠand PartⅡ[J].IEEE Trans.SMC.1990,20(2):404-435.
    [46] M Sugeno,et.Fuzzy Control on Model Car[J].Fuzzy Sets.1985(6):106-113.
    [47] M Sugeno,et.Fuzzy Parking Control of Model Car[J].in 23thIEEE conf.on Decision and Control,Lad Vegas,1984.
    [48] Bao-Gang Hu,George K.I.Mann.Raymond G.Gosine.A systematic study of fuzzy PID controllers Function-based evaluation approach[J].IEEE transactions on fuzzy systems.2001(10):5-9.
    [49] B.M.Mohan,Arpita Sinha.Analytical structures for fuzzy PID controllers[J]. IEEE transaction on fuzzy systems.2008(2):16-17.
    [50]Saadat H.Computer aids in control systems using MATLAB[M].New York:McGraw Hill International Book Company.1993.
    [51] Kuo B C,Hanselman D C.MATLAB tools for control system analysis and design[M].Englewood Cliffs:Prentice Hall.1993.
    [52] Siemens AG. Configuring Hardware and Communication Connections STEP 7 V5.2 Manual[M].2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700