炮塔装配台的精度分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炮塔总装实验台为两自由度实验装置,主要用于被试系统的装配、调试、检测及质量、质心的测试,具有自动调平功能、手动调节功能、质量质心测量功能以及状态信息显示功能。
     试验台主体结构主要由主体框架、称重系统、调平驱动系统和倾角驱动系统等组成。在主体框架上层设置了一个称重系统,称重系统由4个称重传感器、变送器及控制器组成。主体框架由两层结构组成,称重传感器以上为上基板,传感器安装在上基板的四个支撑上,中间支撑安装在调平支撑板上。
     本文主要对试验台的精度保证进行研究。首先,通过对试验台称重系统和质心测量系统原理进行分析和研究,采用可倾斜平台测量法测量质心位置。然后对试验台称重系统和质心测量系统进行受力分析,对其测得的质量和质心位置精度进行计算,来确保两个系统满足设计所要求的精度。
     接着,着重针对试验台基板的结构进行设计。通过对基板受力的分析和精度要求,初步确定基板的结构,并用WORKBENCH画出基板的三维模型,然后导入ANSYS对其进行有限元分析,计算出试验台基板在工作状态下的总形变图,得出最大形变量,并与设计要求的精度值进行对比,确保满足设计要求。
     最后,进行试验台基板的优化工作。通过不断地建模和有限元分析,对试验台基板的结构和尺寸进行了优化,采取双支撑框和加板筋等措施,大大减少了基板的厚度,最终使得基板的最大形变量刚好接近设计的精度要求。这样既保证了试验台基板的精度又节省了基板的材料,基本达到了本论文研究的目的。
Turret assembly debugging platform is an experimental device with two degrees of freedom .It is mainly used to test the system by the assembly, commissioning, testing and quality testing center of mass. It has an automatic leveling function, manual adjustment function, quality of mass measurements, and status information display.
     Test bed of the main structure is dominated by the main frame, weighing system, leveling system and the angle drive system drive and other components. The upper set in the main frame of a weighing system. Weighing system consists of four load cells, deformation device and controller. Framework consists of two main structures. The top substrate is above the load cell. Sensors are installed in the middle supporting plate. Intermediate support plate mounted on the leveling support board.
     In this paper, the research is mainly on ensuring the accuracy of the test platform. Firstly, through researching and analyzing the weighing system of test platform and the centroid measurement system of test platform, we can find that it will be reliable to measure the centroid position with a tilt platform. Then, test-bed weighing system and measurement system for stress analysis centroid of its measured centroid position of the quality and accuracy of the calculation to ensure that the design of the two systems meet the required accuracy.
     Then, focus on test-bed for the design of the structure of the substrate. Through the force of the substrate and accuracy requirements, initially identified the structure of the substrate and the substrate with WORKBENCH draw three-dimensional model, and then import them ANSYS finite element analysis to calculate the test-bed substrates in the working state of the total deformation map, Reached the maximum deformation and the value of the required accuracy and design compared to ensure that meet the design requirements.
     Finally, I will take measures to optimize the design of the test-bed. Through continuous modeling and finite element analysis, test-bed structure and size of the substrate were optimized to double support frame and processing Ligament and other measures to significantly reduce the thickness of the substrate, and ultimately makes the substrate deformation is just close to the maximum design Accuracy. This will ensure the accuracy of the test-bed substrates and save the substrate material, basic to the purpose of this thesis.
引文
[1]宁培毅.装甲步兵战车炮塔的设计准则[J].现代兵器,1989(07).
    [2]苏红宇.英国海军的发展新战略[J].船舶工业技术经济信息,1999(07).
    [3]齐元.法国九十年代主战坦克装备序列[J].现代兵器,1986(03).
    [4]臧克茂,谢永成,李年裕.近代交流调速技术在炮塔传动中的应用[J].车辆与动力技术,1997(02) .
    [5]王早.德国前无畏舰简史[J].舰载武器,2007(01).
    [6]段秀斌.战斗坦克发展30年1950-1980(七)[J].现代兵器,1984(06).
    [7]徐晓前.各国主战坦克发展现状[J].国外坦克,2001(01).
    [8]理查德.希尔,谢江萍.巨舰时代透视铁甲舰的技术演进[J].军事历史,2005(03).
    [9]秦鹏鑫,王泉水.大口径舰炮及其弹药的最新进展[J].舰载武器,2001 (01).
    [10]赵宏光. 1987年美国陆军武器展览(下)[J].现代兵器, 1988(07).
    [11]韩奎元.军事博物馆的武器分类与定名[J].中国博物馆, 2000(02).
    [12]朱绒霞,那静彦.炮膛清洗的新工艺[J].清洗世界, 2004(01).
    [13]杜朝平.大洋防空先驱——英国海军“战斗”级防空驱逐舰[J].舰载武器,2004(04).
    [14]阎向前.法国CSEE公司的火炮炮塔电驱动装置[J].现代兵器,1990 (11).
    [15]耿荣茂.第四代主战坦克综合电子系统的研究与讨论[J].车辆与动力技术, 1997(01).
    [16]王兆胜.远程炮武器系统射击精度研究与射击精度战技指标论证[D].南京理工大学.
    [17]杜春江,钱林方,陈龙淼,徐亚栋.炮塔托架体结构拓扑优化[J].弹道学报, 2009(04).
    [18]祝边益.现代坦克炮的特点及其发展趋势[J].现代兵器, 1983(02).
    [19]张素梅,黄天辰,彭灏.基于神经网络模型的武器装备作战效能评估[J].军事运筹与系统工程, 2006(04).
    [20]霍红卫.遗传算法在图论和优化中的应用[D].西安电子科技大学.
    [21]蒋晨.基于有限元技术的板材加工机械优化设计与分析[D].东南大学.
    [22]王华.复杂地形条件下闸室的数值仿真分析[D].西安理工大学.
    [23]白雪峰.预应力锚杆格构梁的受力机理及设计方法研究[D].中国优秀硕士学位论文全文数据库,2009(09).
    [24]黄向明.矿用隔爆变压器箱体的有限元分析及结构优化[D].湖南大学.
    [25]孙景玙,吕涛.对有限元技术发展过程的一种认识(详细摘要)[A].力学史与方法论论文集[C], 2003.
    [26]欧阳兴.仿人机器人有限元分析研究[D].清华大学.
    [27]陈晟,杨俊.基于ANSYS的压电圆片振子径向振动模式分析[J].计算机仿真, 2009(03).
    [28] Yi Liu;Tianhong. Cui Power consumption analysis of surface acoustic wave sensor systems using ANSYS and PSPICE [J]. Microsystem Technologies, 2006.
    [29] Jin-jun Wang. Cause of errors associated with application of drucker-prager yield criterion in MSC/NASTRAN program [J]. Journal of Shanghai University (English Edition), 2000.
    [30] Yong Wang;Yoram Rudy. Application of the Method of Fundamental Solutions to Potential-based Inverse Electrocardiography [J]. Annals of Biomedical Engineering,2006.8.
    [31] Gertjan Kloosterman;Vincent Bouwman; Automatic remeshing and rezoning for the simulation of 3D glass bottle forming with Abaqus/CAE, Abaqus/Standard and Abaqus/Explicit [J]. International Journal of Material Forming, 2009.
    [32]杨德春.大断面连拱隧道中墙厚度及支护参数优化研究[D].中国优秀硕士学位论文全文数据库,2008(06).
    [33] A. Prete;A. Anglani;T. Primo;A. Spagnolo; Computer Aided Simulation as valid tool for sheet hydroforming process development [J]. International Journal of Material Forming, 2008.
    [34] B. Dahhou;I. Queinnec;F. Y. Zeng;J. B. Pourciel;G. Goma; FPC-ICAD:an intelligent CAD for fermentation process control [J]. Bioprocess Engineering, 1991.
    [35]鲁扬.碳纳米管电泳的建模与仿真[D].中国优秀硕士学位论文全文数据库,2008,(06).
    [36] D. Moncalvo;L. Friedel;B. J?rgensen;T. H?hne; Nachrechnung der Leistungsparameter eines Sicherheitsventils mit ANSYS CFX [J]. Forschung im Ingenieurwesen, 2009.
    [37]王小敏.基于有限元方法的大坝变形分析与仿真研究[D].中国博士学位论文全文数据库,2010(10).
    [38] Fabin Li;Kun Fang;Hechao Li; Application of ANSYS 3D FEM in studies of surface deformation caused by pipe jacking [J]. Wuhan University Journal of Natural Sciences, 2007.
    [39] L. Dahmani;A. Khennane;S. Kaci; Crack identification in reinforced concrete beams using ANSYS software [J]. Strength of Materials, 2010.
    [40]鲍晓峰,丁德榜.汽车质心位置测试方法的研究[J].汽车技,1997(11).
    [41]薄悦.提高质心测量精度的关键技术研究[D] .机械科学研究院,2004.
    [42]常明.装甲车辆质心测试系统研究[D].长春理工大学,2007.
    [43]于大泳,丛大成,韩俊伟.特种重型车辆质心测试平台的运动学标定[J] .兵工学报, 2006(05).
    [44]于大泳,丛大成,韩俊伟.质心测试平台的运动学及其误差模型研究[J] .机床与液压, 2006(03).
    [45]叶建斌.试验平台测量汽车质心高度的误差分析[J] .专用汽车, 1997 (01).
    [46]倪栋,王一峰.车辆质心位置测量系统的研制[J] .工程机械, 2011 (02).
    [47]李建军.某火箭炮发射装置平台自动调平系统设计与研究[D] .南京理工大学, 2007.
    [48]陈国琛,汪宏强.数控机床位置精度检测与调试[J].制造技术与机床, 2004(05).
    [49]郭俊岑,周浚哲,唐健.基于单片机的坦克火控调试台自动调平系统研究[J] .沈阳理工大学学报, 2006(03).
    [50]朱世强,王可成,赵允,林建平.工程车辆电液自动调平系统[J] .工程机械, 1996(10).
    [51]张萌,柳旭.称重传感器高精度自动检测系统设计[J].厦门大学学报(自然科学版), 2005(02).
    [52]张芳.高精度平台调平控制系统研究[D]中北大学, 2008.
    [53]张艳兵,姚舜才,任作新. PLC控制的4点调平系统[J].华北工学院学报, 2004(03).
    [54]褚新峰,杨曙东.车载雷达电液自动调平系统[J].液压与气动, 2007 (05).
    [55]房蔓楠.电阻应变式传感器测量电路的非线性及其误差[J] .长春邮电学院学报, 1993(03).
    [56]邓素萍.串行通信RS232/RS485转换器[J].国外电子元器件, 2001 (07).
    [57]邓飙,邱义,张宝生.基于电液比例技术的快速自动调平系统[J] .兵工自动化, 2009(01).
    [58]刘克福,李晓虹.基于PLC的火炮性能测试调平系统设计[J] .机械工程师, 2008(07).
    [59]姜文刚,尚婕,邓志良,李建华.大型平台自动调平研究[J] .电气传动, 2005(12).
    [60]应文博,李亮亮.坦克火控系统调试台自动调平系统的研究[J] .科技资讯, 2006(20).
    [61] Study on Automatic Test System of a Kind of Weapon[A]Proceedings of the 3rd International Symposium on Test and Measurement[C], 1999.
    [62]王保贵,张洪伟,赵阳.质心测量平台实现方法及精度分析[J] .测试技术学报, 2008(03).
    [63]唐炼,邵长金,孙明礼.利用ANSYS求解静态电磁场[J] .物理与工程,2004(01).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700