端足类河蜾赢蜚的生活史及毒理敏感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
端足类是海洋底栖生物的重要组成部分,是受人类活动影响,尤其对污染物质反应最敏感的底栖生物群落之一,对沉积物物理化学性质的耐受性较好,是沉积物毒性生物检测优选受试生物。河蜾赢蜚隶属于端足目钩虾亚目蜾赢蜚科蜾赢蜚属,做U型孔,栖息于潮间带软泥和泥沙底质,本文以其为实验生物,在实验室开展了多世代长期连续培养试验研究,并深入研究了f1和f2代的生活史、f1至f4代毒理敏感性及其变化规律,探讨了重金属对其毒性作用机制,主要研究内容与结果如下:
     1.通过生物学实验研究,掌握了河蜾赢蜚f1和f2代的生活史。研究了实验室培养条件下,河蜾赢蜚的生活周期、繁殖周期,确定了河蜾赢蜚的存活率、存活时间、性比、产幼体数量、繁殖数量、繁殖次数等。研究结果表明:河蜾赢蜚f1和f2代,雌性最长存活时间分别为190d、170d,雄性分别为100d、120d,雄性最长存活时间仅为雌性的一半左右;生活周期平均为64d、58d;幼体阶段性比分别为1:0.76、1:0.75(雌性:雄性);雌性产幼体数量分别为13-28只幼体/雌体、11-27只幼体/雌体;雌性可连续繁殖5次;一生共产后代分别为64-149只幼体/雌体、81-127只幼体/雌体。
     2.通过加标镉的海水毒性实验,掌握了实验室恒温培养条件下河蜾赢蜚不同世代不同发育阶段的毒理敏感性变化规律。研究结果表明:河蜾赢蜚不同世代f1、f2、f3和f4代个体的毒理敏感性的变化规律为:f1到f2代个体的毒理敏感性逐渐增加,f2和f3代个体的毒理敏感性比较相近,而f4代个体的毒理敏感性又略有降低。f2和f3代个体适宜用于沉积物毒性检测中。河蜾赢蜚相同世代1、2和3周龄个体的毒理敏感性逐渐减弱,4周龄个体敏感性较3周龄要高,低于1和2周龄个体。结合生活史研究结果,建议在沉积物毒性检测中应选用2周龄个体。实验室培养个体的毒理敏感性与野生个体具有可比性。
     3.通过10 d加标镉沉积物毒性实验,研究了实验室恒温培养的f1、f2、f3和f4各世代2周龄个体及野生的2周龄个体的毒理敏感性。结果表明:河蜾赢蜚不同世代个体在加标沉积物中的半致死浓度分别为,291.673、261.857、215.792、306.459mg·kg-1,野生个体在加标沉积物中的半致死浓度为514.927 mg·kg-1;在加标沉积物中各世代毒理敏感性的变化规律与加标海水毒性实验中所得结果是一致的。野生的2周龄个体的毒理敏感性低于实验室培养个体。
     4.通过加标镉的海水毒性实验,研究了河蜾赢蜚生长、体内镉含量、抗氧化系统和脂质过氧化等在受镉胁迫时的变化规律。研究结果表明:随镉浓度升高,河蜾赢蜚死亡率增加,干重降低,存在较好的剂量-效应关系;河蜾赢蜚体内镉含量随海水中镉浓度的递增而增长;SOD活性随时间增加呈降低的趋势,随镉浓度增加呈增加-降低-增加的趋势;MDA含量随时间增加、随镉浓度增加呈抛物线型变化;MT含量随时间增加呈增加-降低-增加的趋势,随浓度增加而增加。干重和MT含量适宜作为毒性检测的终点指标。
     本文的实验结果表明河蜾赢蜚生活周期较短,易于实验室培养。实验室培养种群同野生一样,能准确反应沾污沉积物毒性。河蜾赢蜚是较理想的沉积物毒性检测的受试生物。本文研究成果将为该受试生物大量培养和广泛应用奠定科学基础,将极大地促进我国沉积物毒性生物检测工作向业务化方向迈进的进程。
Amphipods are ecologically important members of benthic infaunal communities and are one of the most sensitive members among benthic communities to anthropogenic disturbance, especially to pollution. They are tolerant to varying sediment physicochemical characteristics and are ideal testing organisms for sediment toxicity test. Corophium acherusicum in this study is a corophiid amphipod species, builds a U-shaped tube in sediments ranging from coarse sand to silty clay in the intertidal zone. The multi-generation cultivation system of C. acherusicum has established under the constant temperature in the laboratory. The life history and the toxicity sensitivity C. acherusicum were studied in this paper. The main results are listed as follows:
     1. C.acherusicum was cultured in laboratory at 20℃. The life-cycle and reproduction-cycle tests of the first and second generation C.acherusicum were carried out in order to determine survival, sex ratio, number of juveniles per female, the total number of offspring, reproduction frequency. The results showed that the longest survival time of the first generation female was 190d, the second generation was 170d; the longest survival time of the first generation male was 100d, the second generation 120d; the longest survival time of male was only about half of the female; the life cycle of the first and second generation were respectively 64d,58d; the sex ratio of the first and second generation juveniles were respectively 1:0.76,1:0.75 (females:males); number of juveniles per female were respectively 13-28 juveniles/female,11-27 juveniles/female; C.acherusicum reproduction at least 5 times; the first and second generation C.acherusicum produced offspring 64-149 juveniles/female,81-127 juveniles/female respectively.
     2. The cadmium-spiking water-only toxicity tests were carried out in order to determine the toxic sensitivity change rule of different generations and each phase in its whole life of C. acherusicum. The toxic sensitivity of C. acherusicum from f1、f2、f3、f4 generation were:f1 generation juveniles were less sensitive than f2 generation;f2 generation juveniles were near sensitive than f3 generation and more sensitive than f4 generation. f2 generation and f3 generation are amenable to the toxicity test. The results showed that the toxic sensitivity of C.acherusicum gradually weakened from one-week juveniles、two-week juveniles to three-week juveniles. Four-week juveniles were more sensitive than three-week juveniles, less than one-week and two-week juveniles. Considering life history research results, this study suggests that two-week juveniles are amenable to the toxicity test. Toxicity sensitivity of lab cultured C.acherusicum was comparable to those of field collected C.acherusicum in toxicity test.
     3. The 10-d sediment toxicity test has been developed with cadmium-spiked sediment using two-week juveniles of lab cultured f1, f2, f3, f4 generation and field collected of C.acherusicum. The LC50 values of f1, f2, f3, f4 generation C.acherusicum were 291.673、261.857、215.792、306.459 mg·kg-1 respectively. The LC50 values of field collected of C.acherusicum was 514.927 mg·kg-1.The toxic sensitivity change rule of different generations in spiked sediment test was coincident with the rule of C.acherusicum in spiked water test. C.acherusicum cultured in lab was more sensitive than that of collected in field.
     4. The effects of cadmium on the growth, antioxidant defense system and lipid peroxidation in C.acherusicum were investigated with cadmium-spiked poor water toxicity test. Dry weight and survival of C.acherusicum decreased in accordance with the increase of metal ions concentrations. The contents of cadmium in C.acherusicum were elevated with the increasing concentration of cadmium and the prolonged time. The SOD activities were decreased with the prolonged time. The SOD activities were increased at a low concentration of cadmium, the activity was decreased at intermediate concentration of cadmium, while the activity was increased at high concentration. The MDA activity showed a parabola trend with the increasing concentration of cadmium and the prolonged time. The MT content were increased at preliminary of exposure test, the content was decreased at intermediate of exposure test, while the content was increased at late of exposure test. The dry weigh and MT activity are more suitable to be the end point for toxicity test.
     Results from a variety of experiments in this study indicate that C.acherusicum has a relatively short life-cycle and is easy to be cultured in laboratory. In addition, C.acherusicum cultured in lab is sensitive to the toxicity of sediment as well as that of field collected. In conclusion, C.acherusicum is an ideal testing organism for sediment toxicity test. The results of this study indicate that more and more C.acherusicum will be cultured in lab and used in the sediment toxicity test later.
引文
[1]任先秋.中国动物志.无脊椎动物.第41卷,甲壳动物亚门.端足目.钩虾亚目.北京:科学出版社,2006.
    [2]任先秋.胶州湾底栖钩虾类(甲壳动物、端足目)研究.青岛海洋大学出版社,中国甲壳动物学会:甲壳动物学论文集第三辑,1992:214-334.
    [3]薛俊增,堵南山.甲壳动物学.上海:上海教育出版社,2009.
    [4]任先秋.南极半岛西北部水域底栖甲壳动物端足类的研究.海洋科学集刊.1991,32:187-323.
    [5]任先秋.香港及大亚湾邻近水域的钩虾类(甲壳动物、端足目).海洋科学集刊.1994,35:250-270.
    [6]宋鹏东.大连沿海无脊椎动物实习指导.北京:高等教育出版社,1989,241-248.
    [7]闫启仑,韩明辅,陈红星等.辽宁沿岸海洋底栖钩虾类的种类组成与分布.海洋环境科学,1998,17(1):26-29.
    [8]郑严,志珍,周利.现代生物饵料培养及开发利用.北京:中国农业出版社.2003,222-246.
    [9]Marjo P, Markus H & E L. First findings of the North American amphipod Gammarus tigrinusSexton,1939 along the Finnish coast. Memoranda Soc Fauna Flora Fennica,2004, 80:17-19.
    [10]闫启仑,陈红星,韩明辅等.温度对海洋底栖端足类日本大螯蜚存活、生长和发育的影响.生态学报,1999,19(4):495-498.
    [11]Reproduction and Population Dynamics of Grandidierella japonica in Upper Newport Bay.1993-94 SCCWRP Annual Report.1994.
    [12]Nipper M G, Greenstein D J, Bay S M. Short-and long-term sediment toxicity test methods with the amphipod Grandidierella japonica. Environ Toxicol Chem,1989,8: 1191-1200.
    [13]Tsoi K H, Chiu K M, Chu K H. Effects of temperature and salinity on survival and growth of the amphipod Hyale crassicornis (Gammaridea, Hyalidae). Journal of Natural History,2005,39(4):325-336.
    [14]Grosse D J, Pauley G B, Moran D. Species profiles:Life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest)-Amphipods. U S Army Corps of Engineers.1986.
    [15]Nelson M K, Brunson E L. Postembryonic growth and development of Hyalella azteca in laboratory cultures and contaminated sediments. Chemosphere,1995,31(4): 3129-3140.
    [16]韩明辅,闫启仑,陈红星等.盐度对端足类日本大螯蜚生长发育的影响.海洋环境科学,1998,17(2):40-44.
    [17]Mclusky D C. Salinity preference in corophium volutator. J Mar Biol Ass UK,1970, 50:747-752.
    [18]陈红星,闫启仑,韩明辅等.室内培养底栖端足类日本大螯蜚饵料研究.海洋环境科学,1998,17(1):21-25.
    [19]Borowsky B. Reproductive patterns of three intertidal salt-marsh Gammaridean Amphipods. Marine Biology,1980,55:327-334.
    [20]Dexter D M. Life history of the sandy-beach amphipod Neohaustorius schmitzi (Crustacea:Haustoriidae). Marine Biology,1971,8:232-237.
    [21]EPA.600/R-94/025. Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods. Office of Research and Development. June 1994
    [22]Nipper M. Current approaches and future directions for contaminant-related impact assessments in coastal environments:Brazilian perspective. Aquatic Ecosystem Health and Management,2000,3:433-447.
    [23]Anderson B S, Hunt J W, Phillips B M. Comparison of marine sediment toxicity test protocols for the amphipod Rhepoxynius abronius and the polychaete worm Nereis (Neanthes) arenaceodentata. Environmental Toxicology and Chemistry,1998,17(5): 859-866.
    [24]国家海洋局.疏浚物海洋倾倒分类和评价程序.2003
    [25]Lee Yin King Fion. Ecology of marine amphipods with special emphasis on its use as test organisms for assessing the toxicity of marine sediments. Hong Kong:City University of Hong Kong.2002.
    [26]王睿睿.f2代日本大螯蜚的生活史及沉积物毒理敏感性研究:(硕士论文).大连:大连海事大学.2003.
    [27]Peter G Wells, Kenneth Lee, Christian Blaise. Microscale testing in aquatic toxicology:advances, techniques, and practice. CRC. Boca Raton Boston London New York Washington D C,1997.
    [28]Contaminated marine sediments-assessment and remediation. Committee on contaminated marine sediments marine board. National Academy Press.1989.
    [29]American Society for Testing and Materials. Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. In, Annual Book of ASTM Standards. Vol 11.05. E1367-99. West Conshohochen, PA, USA:ASTM.2000. pp: 711-738.
    [30]Environment Canada. EPS 1/RM/26 Biological test method:acute test for sediment toxicity using marine or estuarine amphipods. Canada:Environmental Protection Publication.1992.
    [31]ISO. Water quality-determination of acute toxicity of marine or estuarine sediment to amphipods. EN ISO 16712.2006.
    [32]Swartz R C, DeBen W A, Jones J K P, Lamberson J 0, Cole FA. Phoxocephalid amphipod bioassay for marine sediment toxicity. In:Cradwell R D, Purdy R, Bahne R C. Aquatic toxicity and hazard assessment, Seventh Symposium:ASTM STP 854. American Society for Testing and Materials, Philadelphia, PA, USA.1985,284-307.
    [33]Scott K J, Redmond M S. The effects of a contaminated dredge material on laboratory populations of the tubicolous amphipod, Ampelisca abdita. Aquatic Toxicology and Hazard Assessment 12th Volume. Cowgill UM, Williams LR (eds). STP1027, ASTM, Philadephia, PA.1989,289-303.
    [34]DeWitt TH, Swartz RC, Lamberson JO. Measuring the toxicity of estuarine sediment. Environ Toxicol Chem,1989,8:1035-1048.
    [35]Costa F 0, Correia A D, Costa M H. Acute marine sediment toxicity:A potential new test with the Amphipod Gammarus locusts. Ecotoxicology and Environmental Safety, 1998,40:81-87.
    [36]Melo SLR, Nipper M. Sediment toxicity tests using the burrowing amphipod Tiburonella viscana (Amphipoda:Platyischnopidae). Ecotoxicology and Environmental Safety.2007,66:412-420.
    [37]King C K, Gale S A, Hyne R V, et al. Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. Chemosphere,2006, 1466-1476.
    [38]王睿睿,闫启仑,韩名辅等.实验室培养端足类日本大螯蜚对镉的毒理敏感性研究.海洋学报,2008,30(3):160-164.
    [39]闫启仑,王睿睿,王超等.实验室培养的端足类日本大螯蜚f1代对Cd的急性毒性响应.海洋环境科学,2007,26(3):225-228.
    [40]Carolin Peters, Wolfgang Ahlf. Reproduction of the estuarine and marine amphipod Corophium volutator (Pallas) in laboratory for toxicity testing. Chemosphere,2005, 59:525-536.
    [41]Lamberson J O, DeWitt T H, Swartz R C. Assessment of sediment toxicity to marine benthos. In:Allen Burton G, Jr(Ed.). Sediment Toxicity Assessment. Lewis Publishers, Boca Raton,1992,183-211.
    [42]Rees H L (ed.). Utility of experimental measures of biological effects for monitoring marine sewage-sludge disposal sites. Aquatic Environment Monitoring Report, Ministry of Agriculture, Fisheries and Food, Directorate of Fisheries Research, Lowestoft, UK,1990, (24):45.
    [43]Hill IR, Matthiessen P, Heimbach. Guidance document on sediment toxicity tests and bioassays for freshwater and marine environments. Society of environmental Toxicology and Chemistry-Europe, Brussels, Belgium,1994.
    [44]Stebbing A R D, Dethlefsen V, Carr M, et al. Biological effects of contaminants in the North Sea. Results of the ICES/IOC Bremrhaven Workshop. Marine Ecology Progress Series 91(1-3),1992,1-316.
    [45]MacDonald D A, M B Matta, L J Field, et al. The coastal resource coordinator's bioassessment manual. Report No.HAZMAT 93-1(revised). Seattle, WA. National Oceanic and Atmospheric Administration.2003.
    [46]Mark J Ringenary, Alan H Molof, John T Tanacredi, et al. Long-term sediment bioassay of lead toxicity in two generations of the marine amphipod Elasmops laevis (S I Smith,1873). Environmental Toxicology and Chemistry,2007,26(8):1-43.
    [47]Sundelin B, Ryk C, Malmberg G. Effects on the sexual maturation of the sediment-living amphipod Monoporeia affinis. Environ Toxicol,2000,15:518-526.
    [48]Kuhn Anne, Wayne R Munns Jr, Jonathan Serbst, et al. Evaluating the ecological significance of laboratory response data to predict population-level effects for the estruarine amphipod Ampelisca abdita. Environmental Toxicology and Chemistry,2002, 21(4):865-874.
    [49]EPA. Method for Assessing the Chronic Toxicity of Marine and Estuarine Sediment-associated Contaminants with the Amphipod Leptocheirus plumulosus. EPA 600/R-01/020, March 2001. Office of Research and Development Western Ecology Division. U S Environmental Protection Agency Newport, OR 97365
    [50]Steven P Ferraro, Faith A Cole. A field validation of two sediment-amphipod toxicity tests. Environmental Toxicology and Chemistry,2002,21(7):1423-1437.
    [51]Smit M G D, Kater B J, Jal R G, et al. Translating bioassay results to field population responses using a Leslie matrix-model for the marine amphipod Corophium volutator. Ecol Modell,2006,196:515-526.
    [52]Donald P Weston. Further development of a chronic Ampelisca abdita bioassay as an indicator of sediment toxicity. USA:University of California,1996.
    [53]Boese B L, Lamberson J 0, Swartz R C, et al. Photoinduced toxicity of f luoranthene to seven marine benthic crustaceans. Arch Environ Contam Toxicol,1997,32:389-393.
    [54]Lawrence A J, Poulter C. Impact of copper, pentachlorophenol and benzo[a]pyrene on the swimming efficiency and embryogenesis of the amphipod Chaetogammarus marinus. Mar Ecol Prog Ser,2001,223:223-231.
    [55]Wallace W G, Estephan A. Differential surscrptibility of horizontal and vertical swimming activity to cadmium exposure in a gammaridean amphipod (Gammarus lawrencianus). Aquatic Toxicology,2004,69:289-297.
    [56]Chris Lloyd Mills, Deepa H Shukla, Graham J Compton. Development of a new low cost high sensitivity system for behavioutal ecotoxicity testing. Aquatic Toxicology, 2006,77:197-201.
    [57]Correia A D, Livingstone D R, Costa M H. Effects of water-borne copper on metallothionein and lipid peroxidation in the marine amphipod (Gammarus locusta). Mar Environ Res,2002,54:357-360.
    [58]Timofeyev M A, Steinberg C E W. Antioxidant response to natural organic matter (NOM) exposure in three Baikalean amphipod species from contrasting habitats. Comparative Biochemistry and Physiology, Part B.2006,145:197-203.
    [59]Ann-Kristin Eriksson Wiklund, Brita Sundelin. Bioavailability of metals to the amphipod Monoporeia Affinis:Interactions with authigenic sulfides in urban brackish-water and freshwater sediments. Environmental Toxicology and Chemistry,2002, 21(6):1219-1228.
    [60]Jocelyne Hellou, Kerri Cheeseman, Marie-Laure Jouvenelle, et al. Behavioral response of Corophium volutator relative to experimental conditions, physical and chemical disturbances. Environ Toxicol Chem,2005,24(12):3061-3068.
    [61]Salomons W, NMdeRooji, HKerdijk, et al. Sediment as a sources for contaminants?. Hydrobiologia,1987,149:13-30.
    [62]Christopher G, Ingersoll. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates:A review of methods and applications. Environ Toxicol Chem,1995,14:1885-1894.
    [63]Riba I, DelValls T A, Forja J M, et al. Comparative toxicity of contaminated sediment from a Mining Spill using two amophipod species:Corophium volutator (Pallas, 1776) and Ampelisca brevicornis (Costa A,1853). Bull Environ Contam Toxicol,2003, 71:1061-1068.
    [64]Weston D P. Further development of a chronic Ampelisca abdita bioassay as an indicator of sediment toxicity:summary and conclusion. Regional Monitoring Program for Trace Substances. San Francisco Estuary Institute, Richmond, CA,1995, pp108-115.
    [65]Lamberson J, Swartz R, Ozrtich R, et al. Field validation of acute and chronic marine amphipod sediment toxicity tests with Grandidierella japonica. Abstract presented at the 17th SETAC annual meeting in Washington, DC,1996,17-21.
    [66]DeWitt TH, Glover SA, Emlen JM. Using multi-generation exposure experiments with amphipod to test predictions of chronic toxicity tests and population models. Society of Environmental Toxicology and Chemistry annual meeting, San Francisco, CA.1997.
    [67]Hoke. Evaluation of equilibrium partitioning theory for predicting the acute toxicity of field-collected sediments contaminated with DDT, DDD and DDE to the amphipod Hyalella azteca. Environ Toxicol Chem,1994,13:157-166.
    [68]West. Sediment core vs grab samples:Evaluation of contamination and toxicity at a DDT contaminated site. Ecotoxicol Environ Saf,1994,28:208-220.
    [69]EPA. EPA-822-R-01-001. Update of ambient water quality criteria for cadmium.4304. United States Environmental Protection Agency. Office of water, Office of Science and Technology. Washington DC.2001.
    [70]Christopher W Hickey, Michael L Martin. Relative sensitivity of five benthic invertebrate species to reference toxicants and resin-acid contaminated sediments. Environ Toxicol Chem,1995,14(8):1401-1409
    [71]Lee Jung-Suk, Lee Kyu-Tae, Park Gyung Soo. Acute toxicity of heavy metals, tributyltin, ammonia and polycyclic aromatic hydrocarbons to benthic amphipod Grandidierella japonica. Ocean Science Journal,2005,40(2):61-66.
    [72]Call. The Chironomus tentans survival and growth upon the following generation and an application of the bioassay in evaluating sediment quality. Final Project Report, U S Army Corps of Engineers. WQterawys Experiment Station, Vicksburg, MS 1993.
    [73]Peijnenburg WJGM, Jager T. Monitoring approaches to assess bioaccessibility and bioavailability of metals:Matrix issues. Ecotox Environ Safe,2003,56(1):63-77.
    [74]Valeria G Veloso, Elen S silva, Carlos H S Caetano, et al. Comparison between the macroinfauna of urbanized and protected beaches in Rio de Janeiro State, Brazil. Biological Conservation,2006,127:510-515.
    [75]Canivet V, Chambon P, Gibert J. Toxicity and bioaccumulation of arsenic and chromium in epigean and hypogean freshwater macroinvertebrates. Arch Environ Contam Toxicol,2001,40:345-354.
    [76]Ahsanullah M. Acute toxicity of chromium, mercury, molybdenum and nickel to the amphipod Allorchestes compressa. Australian Journal of Marine and Freshwater Research, 1982,33 (3):465-474.
    [77]Lee W Y, Macho S A, Nicol J A C. Changes in nesting behavior and lipid content of a marine amphipod (Amphithoe valida) to the toxicity of a No.2 fuel oil. Water Air and Soil Pollution,1981,15:185-195.
    [78]Audrey C H, Burton G A. Phototoxicity of fluoranthene to two freshwater crustaceans Hyalella azteca and Daphnia magna:measures of feeding inhibition as a toxicological endpoint. Hydrobiologia,1999,400:243-248.
    [79]Andrew K Leight, Robert F Van Dolah. Acute toxicity of the insecticides Endosulfan, Chlorpyrifos, and Malathion to the epibenthic estuarine amphipod Gammarus Palustris (Bousfield). Environmental Toxicology and Chemistry,1999,18(5):958-964.
    [80]Brown R J Conradi, M Depledge M H. Population effects of 4-nonylphenol on the estuarine amphipod Corophium Volutator.1998,14(5):45-55.
    [81]Hoppnheit M, Murray C N, Woodhead D S. Uptake and effects of americium-241 on a brackish-water amphipod. Helgolander Meersunters,1980,33:138-152.
    [82]黄瑛.火腿许水蚤的繁殖生物学研究和在三丁基氧化锡毒性评价中的应用:(博士论文).青岛:中国海洋大学.2008.
    [83]Brian A, Patricia N, Kristime G, et al. Overview of freshwater and marine toxicity tests:a technical toll for ecological risk assessment society of environmental toxicology and chemistry. University of California.2004.
    [84]Sosnowski S, Gentile J. Toxicological comparison of natural and cultured populations of Acartia tonsa to cadmium, copper, and mercury. J Fish Res Can,1978, 35:1366-1369.
    [85]王超,王睿睿,闫启仑等.温度对底栖端足类河蜾蠃蜚(Corophium acherusicum)存活、生长和发育的影响.海洋环境科学.2009,28(2):138-141.
    [86]王超,闫启仑,王睿睿等.端足类河蜾蠃蜚生活周期及其沉积物毒理敏感性研究.华东师范大学学报(自然科学版),2009,145(3):1-6.
    [87]Rice C A, Plesha P D, Casilias E, et al. Growth and survival of three marine invertebrate species in sediments from the Hudson-Raritan estuary, New York. Environmental Toxicology and Chemistry,1995,14(11):1931-1940.
    [88]王超,闫启仑,王睿睿等.盐度对底栖端足类河蜾蠃蜚(Corophium acherusicum)存活、生长和发育的影响.科技论文在线.
    [89]Nair K K C, Anger C K. Experimental studies on the life cycle of Jassa falcata (Crustacea, Amphipoda). Helgolander wiss. Meeresunters,1979,32:444-452.
    [90]Redmond M S, Scott K J, Swartz R C, et al. Preliminary culture and life-cycle experiments with the benthic amphipod Ampelilsca abdita. Environmental Toxicology and Chemistry,1994,13(8):1355-1365.
    [91]Mccabe J, Dunn A M. Adaptive significance of environmental sex determination in an amphipod. J Evol Boil,1997,10:515-527.
    [92]Takeuchi I, Hirano R. Growth and reproduction of Caprella danilevskii (Crustacea: Amphipoda) reared in the laboratory. Marine Biology,1991,110:391-397
    [93]Theodoros Kevrekidis. Population dynamics, growth and reproduction of Corophium insidiosum (Crustacea:Amphipod) at low salinities in Monolimni lagoon (Evros Delta,North Aegean Sea).Hydrobiologia,2004,522:117-132.
    [94]郑重.英国几种钩虾的生殖量.郑重文集.
    [95]郑重.甲壳动物生殖量和环境关系Ⅲ-其他甲壳类.生态学杂志,1991,10(3):41-47.
    [96]Mann R M, Hyne R V, Spadaro D A, et al. Development and application of a rapid amphipod reproduction test for sediment-quality assessment. Environ Toxicol Chem, 2009,28(6):1244-1254.
    [97]王菊英.海洋沉积物的环境质量评价研究:(博士学位论文).青岛:中国海洋大学,2004.
    [98]Environment Canada. EPS 1/RM/30. Guidance Document on measurement of toxicity test precision using control sediments spiked with a reference toxicant. Canada: Environmental Protection Publication.1995.
    [99]国家海洋局.GB 17378.7-1998,海洋监测规范.北京:海洋出版社.1998.
    [100]国家海洋局.GB 3097-1997,海水水质标准.1997.
    [101]Bat L, Raffaelli D, Marr I L. The accumulation of copper, zinc and cadmium by the amphipod corophium volutator (Pallas). J Exp Mar Biol Ecol,1998,223:167-184.
    [102]Tay K-L, Doe K G, Wade S J, et al. Sediment bioassessment in Halifax Harbor. Environ Toxicol Chem,1992,11:1567-1581.
    [103]Long E R. Spatial extent of sediment toxicity in U. S. estuaries and marine bays. Environ Monit Assess,2000,64:391-407.
    [104]Hong Jae-Sang, Donald J R. Acute toxicity of cadmium to eight species of marine amphipod and isopod crustaceans from southern California. Bull Environ Contam Toxicol, 1987,39:884-888
    [105]Ross V Hyne, Alicia C Hogan, Fleur Pablo, Anthony C Roach. Toxicity of selenomethionine-and seleno-contaminated sediment to the amphipod Corophium sp. Ecotoxicology and Environmental Safety,2002,52:30-37.
    [106]McCready S, Greely CR, Hyne RV, et al. Sensitivity of an indigenous amphipod (Corohpium colo) to chemical contaminants in laboratory toxicity tests conducted with sediments from Sydney harbor, Australia, and Vicinity. Environ Toxicol Chem,2005, 24:2545-2552.
    [107]American Society for Testing and Materials. E1367-03. Standard test method for measuring the toxicity of sediment-associated contaminants with estuarine and marine invertebrates.2003.
    [108]0norati F, Bigongiri N, Pellegrini D. The suitability of Corophium orientale (crustacean, amphipod) in harbor sediment toxicity bioassessment. Aquatic Ecosystem Health and Management,1999,2:465-473.
    [109]Tatem H E, Anderson J W, Neff J M. Seasonal and laboratory variations in the health of grass shrimp, Palaernonetes pugio:Dodecyl sodium sulface bioassay. Bull Environ Contam Toxicol,1976,16:368-375.
    [110]McGee B L, Wright D A, Fisher D J. Biotic factors modifying acute toxicity of aqueous cadmium to estuarine amphipod Leptocheirus plumulosus. Arch Environ Contam Toxicol,1998, (34):34-40.
    [111]张彤,金洪钧.摇蚊幼虫的水生态毒理学研究进展.环境保护科学,1995,21(4):17-21.
    [112]Rainbow P S.海洋生物对重金属的积累及意义.海洋环境科学,1992,11(1):44-52.
    [113]Noack U, Becker S, Kraetzig G. Marine Biotest:comparative investigations on acute toxicity of ammonium chloride to Corophium volutalor. Fresenius Environmental Bulletin,2003,12:608-612.
    [114]0shida P S, Word L S, Mearns A J. Effects of hexavalent and trivalent chromium on the reproduction of Neanthes arenaceodentata (Polychaeta). Mar Environ Res,1981, 5:41-49.
    [115]Hyne R V, Everett D A. Application of benthic euryhaline amphipod, Corophium sp., as a sediment toxicity testing organism for both freshwater and estuarine systems. Arch Environ Contam Toxicol,1998,34:26-33.
    [116]Golding C J, Gobas F A P C, Birch G F, et al. A fugacity approsch for assessing the bioaccumulation of hydrophobic organic compounds from estuarine sediment. Environ Toxicol and Chem,2008,27(5):1047-1054.
    [117]Golding C J, Gobas F A P C, Birch G F, et al. Characterization of polycyclic aromatic hydrocarbon bioavailability in estuarine sediments using thin-film extraction. Environ Toxicol and Chem,2006.26(5):829-836.
    [118]Ana R6, Rodrigues A M, Quintino V. Acute toxicity testing with the European estuarine amphipod Corophium multisetosum. Hydrobiologia,2007,587:89-99.
    [119]国家海洋局.GB 18668-2002,海洋沉积物质量.2002.
    [120]周永欣,章宗涉.水生生物毒性试验方法.北京:农业出版社,1989.157-169.
    [121]Robinson A M, Lamberson J 0, Cole F A, et al. Effects of culture conditions on the sensitivity of a phoxocephalid amphipod, Rhepoxynius abronius, to cadmium in sediment. Environmental Toxicology and Chemistry,1988,7:953-959.
    [122]USEPA. USEPA/600/R-99/011. Fulton M H, Scott G I, Key P B, et al. Comparative toxicity testing of selected benthic and epibenthic organisms for the development of sediment quality test protocols. Final Report.1999.
    [123]Anderson B S, Lowe S, Phillips B M, et al. Relarive sensitivities of toxicity test protocols with the amphipods Eohaustorius estuaries and Ampelisca abdita. Exotoxicology and Environmental Safety,2008,69:24-31.
    [124]Emery V L, Moore D W, Gray B R, et al. Development of a chronic sublethal sediment bioassay using the estuarine amphipod Leptocheirus plumulosus (shoemaker). Environ Toxicol Chem,1997,16(9):1912-1920.
    [125]Anrienne J B, Borgmann U, Dixon D G, et al. Accumulation of tributyltin in Hyalella azteca as an indicator of chronic toxicity survival growth and reproduction. Environmental Toxicology and Chemistry,2004,23(12):2878-2888.
    [126]Mcloughlin N, Yin DaQiang, Maltby L, et al. Evaluation of sensitivity and specificity of two crustacean biochemical biomarkers. Environmental Toxicology and Chemistry,2000,19(8):2085-2092.
    [127]Duan Yihao, Guttman SI, Oris JT, et al. Differential survivorship among allozyme genotypes of Hyalella azteca exposed to cadmium, zinc or low pH. Aquatic Toxicology, 2001,54:15-28.
    [128]Neuparth T, Correia AD, Lima G, et al. Multi-level assessment fo chronic toxicity of estuarine sediments with the amphipod Gammarus locusta:Ⅰ. Biochemical endpoints. Marine Environmental Research,2005,60:69-91.
    [129]吴海一.重金属对扁额细首纽虫抗氧化防御系统及脂质过氧化作用的影响:(博士学位论文).青岛:中国海洋大学,2008.
    [130]Correia A D, Helena M C, Luis 0 J, et al. Age-related changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in whole body Gammarus locusta (Crustacea:Amphipoda). Journal of Experimental Marine Biology and Ecology.2003,289:83-101.
    [131]Guan R, Wang W X. Cd and Zn uptake kinetics in Daphnia magna in relation to Cd exposure history. Environmental Science and Technology,2004,38:6051-6058.
    [132]张融,范文宏,唐戈等.水体中重金属镉和锌对大型蚤联合毒性效应的初步研究.生态毒理学报,2008,3(3):286-290.
    [133]周名江,颜天.中国海洋生态毒理学的研究进展.环境科学研究,1997,10(3):1-5.
    [134]吴坚,石油对紫贻贝早期发育影响的研究.海洋湖沼通报,1992(2):46.
    [135]陈细香.重金属污染对可口革囊星虫的毒性效应:(博士学位论文).厦门:厦门大学,2007.
    [136]张翠,翟毓秀,宁劲松等.镉在水生动物体内的研究概况.水产科学,2007,26(8):465-470.
    [137]秦松,林光恒.化学诱变剂在实验海洋食物链中的流动以及遗传毒性的检测-镉在褐指藻→中国对虾→欧氏六线鱼试验食物链中的传递.海洋与湖沼,1993,24(5):542-546.
    [138]Wang W X. Dominace of dietary intake of cadmium and zinc by two marine predatory gastropods. Aquaric Toxicology,2002,56(3):153-165.
    [139]Huiskes AHL, Gieskes WWC, Rozema J, et al. Antarctic Biology in a Global Context. Leiden:Backhuys Publish.2003,129-134.
    [140]http://www.bofep.org/corophiu.htm
    [141]Marsden I D, Raibow P S. Does the accumulation of trace metals in crustaceans affect their ecology-the amphipod example? Journal of Experimental Marine Biology and Ecology,2004,300:373-408.
    [142]刘冰.镉和苯并[a]芘对长江河口弹涂鱼(Perioph thalmus modes tus)毒性效应的研究.上海:华东师范.
    [143]韩照祥,吕春霞.重金属离子对凡纳滨对虾的致病机理研究.水生态学杂志,2008,1(1):69-74.
    [144]李涌泉,王兰,刘娜等.镉对长江华溪蟹酶活性及脂质过氧化的影响.水生生物学报,2008,32(3):373-379.
    [145]陈荣.石油烃污染对僧帽牡蛎的氧化胁迫:(博士学位论文).厦门:厦门大学.2001
    [146]孙振兴,张梅珍,许炳庆等.重金属毒性对刺参SOD活性的影响.海洋科学,2009,33(2):27-31.
    [147]王明华.镉、镍在海洋浮游食物链上的传递及其生理生化效应:(博士学位论文).厦门:厦门大学.2007.
    [148]Almeida E A D, Miyamoto S, Bainy A C D, et al. Protective effete of phospholipids hydroperoxide glutathione peroxidase (PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals. Mar Pollut Bull,2004,49:386-392.
    [149]Geret G, Serafim A, Barreira L, er al. Response of antioxidant systems to copper in the fills of the clam Ruditapes decussates. Mar Environ Res,2002,54:413-417.
    [150]Viarengo A, Canesi L, Pertica M, et al. Heavy metal effects on lipid peroxidation in the tissues of Mytilus galloprovincialis Lam. Comp Biochem Physiol,1990,97:37-42.
    [151]Rom6o M, Gnassia-Barelli M, Lafaurie M. Heavy metals pollution in marine food chains. J Eui Hydrol,1995,26(2):227-238.
    [152]柏世军.水环境镉对罗非鱼的毒性作用和机理探讨:(博士学位论文).杭州:浙江大学,2006.
    [153]Romeo M, Bennani N, Gnassia-Barelli M, et al. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquatic Toxicology,2000,48:185-194.
    [154]Prakash T N, Rao K S J. Modulations in antioxidant enzymes in different tissues of marine bivalve Perna viridit during heavy metal exposure. Mol Cell Biochem,1995, 146:107-113
    [155]叶属峰,陆健健.无脊椎动物金属硫蛋白(MT)多样性及其生态服务功能.生物多样性,2000,8(3):317-324.
    [156]Moksnes P, Lindahl U, Haux C. Metallothionein as a bioindicator of heavy metal exposure in the tropical shrimp, Penaeus vannamei:a study of dose-dependent induction. Marine Environmental Research,1995,39:143-146.
    [157]吴众望,潘鲁青.重金属离子对凡纳滨对虾肝胰脏MT含量的影响.水产学报,2005,29(5):715-718.
    [158]Ritterhoff Jurgenand Zauke Gerd-Peter. Potential role of metal-binding proteins in cadmium detoxification in Themisto libellula (Mandt) and Themisto abyssorum Boeck from the Greenland Sea. Marine Environmental Research,1998,45(2):179-191.
    [159]王海黎,陶澍.生物标志物在水环境研究中的应用.中国环境科学,1999,19(5):421-426.
    [160]Legras S, Mouneyrac C, Amiard J C, et al. Changes in metallothionein concentrations in response to variation in natural factors (salinity, sex, weight) and metal contamination in crabs from a metal rich estuary. Journal of Experimental Marine Biology and Ecology,2000, (246):259-279.
    [161]Geret F, Jouan A, Tuipin V, et al. Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks:the oyster (Crassostrea gigas) and the mussel (Mytilus edulls). Aquat Living Resour,2002,15:61-66.
    [162]Viarengo A, Burlando B, Ceratto N, et al. Antiosidant role of metallothioneins: a comparative overview. Cell Mol Biol,2000,46:407-417.
    [163]谭树华,邓先余,蒋文明等.高浓度铬对克氏原螯虾抗氧化酶系统的影响.农业环境科学学报,2007,26(4):1356-1360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700