脂肪酸标记在黄海生态系统营养关系研究中的指示作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酸是海洋生物体内一种重要的生物大分子,它在生物体内不仅具有重要的生理作用,还能被用来作为标记指示海洋生物的食物组成和食物质量的好坏。本文首先研究了硅藻和甲藻的脂肪酸组成特征,并以单种微藻培养中华哲水蚤以验证脂肪酸作为标记指示浮游动物摄食的可行性。随后以脂肪酸作为标记研究了胶州湾和黄海浮游生态系统的关键营养过程,并从食物网的角度研究了物质和能量从浮游植物经浮游动物向鱼类等捕食者进行传递的过程,进一步阐明了黄海生态系统食物网的营养关系。
     对单种微藻脂肪酸组成的研究表明,锥状斯氏藻C Scrippsiella trochoidea)和海洋原甲藻(Proroceutrmn micaus)的主要脂肪酸有16:0,18:4w3,18:5w3,20:3w6,22:6w3,中肋骨条藻( Skeletouema costatm)和角毛藻Chaetoceros sp.)的主要脂肪酸为14:0, 16:0, 16:1c}7, 20:Sc}3。两种甲藻和两种硅藻分别都表现出典型的甲藻门和硅藻门的脂肪酸特征。在此基础上以饥饿培养为对照,以海洋原甲藻CProroceutrmn micaus)和中肋骨条藻C Skeletouema costatmn培养胶州湾的浮游动物优势种一一中华哲水蚤C Cala}tus si}ticus )。虽然中华哲水蚤对不同脂肪酸的吸收和转化效率不同,但脂肪酸标记还是成功的指示了中华哲水蚤对微藻的摄食。在饥饿培养中,首先消耗的是那些浮游动物自身不能合成的多不饱和脂肪酸,Ifu结构脂肪酸都表现出了较高的保守性。结合各脂肪酸标记的变化趋势和Pearson相关性分析的结果认为,18:4c}3, 18:4c}3/16:1c}7, }18/}16能较好的指示中华哲水蚤对海洋原甲藻的摄食,仅16:1c}7/18:4c}3能较好的指示中华哲水蚤对中肋骨条藻的摄食。
     分析了2007年11月至2008年11月胶州湾颗粒悬浮物和中华哲水蚤脂肪酸组成的时空分布特征,以研究中华哲水蚤食物状况的时空变化以及中华哲水蚤和颗粒悬浮物之间的营养关系。颗粒悬浮物总脂肪酸与叶绿素“显著正相关,表明浮游植物是颗粒悬浮物的重要组分,此外,有机碎屑、纤毛虫、细菌等对颗粒悬浮物也具有重要的贡献。从颗粒悬浮物脂肪酸组成来看,硅藻对胶州湾东北部
     (AS站)的贡献最大,对湾外(D7站)的贡献最小。相对来说,湾东北部(AS站)颗粒悬浮物的脂类营养物质含量要高十湾中部(C3站)和湾外(D7站)。从主成分分析来看,2008年7月AS和C3两站具有不同十其他月份和站位的特点。其颗粒悬浮物中甲藻含量较高,目颗粒悬浮物的脂类营养物质丰富。各脂肪酸标记的变化指示了颗粒悬浮物中各组分的变化。胶州湾的硅藻水华在春季和夏季均有出现,Ifu甲藻水华则出现在夏季。随着水华的发生,颗粒悬浮物脂类营养物质也增多。中华哲水蚤脂肪酸组成对春季水华存在明显的响应,但时间上有所滞后。中华哲水蚤体内必需脂肪酸20:5w3和22:6w3的含量占总脂肪酸的50%以上,远高十极区的挠足类。另外,其体内16:1c}7的含量远高十18:4w3,说明胶州湾中华哲水蚤摄食的主要浮游植物是硅藻。但与极区挠足类相比,中华哲水蚤20:1+22:1脂肪酸的含量较低,说明其植食性程度并不高。除浮游植物之外,中华哲水蚤具有一个包括有机碎屑、卵、细菌、纤毛虫在内的广泛的食谱。
     研究了2006年12月、2007年3月、5月和8月黄海颗粒悬浮物和中华哲水蚤脂肪酸组成的时空分布特征。黄海颗粒悬浮物总脂肪酸含量、硅藻标记、甲藻标记、PUFA和艺w3脂肪酸表现出相似的时空分布特征。在春季3月和5月,这些脂肪酸标记的含量要高十其他季节。说明春季黄海浮游植物比较丰富,颗粒悬浮物的脂类营养物质也相对较高。从空间上来看,调查区域中部海区这些脂肪酸标记的浓度要低十北部和南部的海区。说明中部海区颗粒悬浮物中浮游植物相对较小,脂类营养物质也相对较少。与胶州湾相比,黄海的中华哲水蚤多不饱和脂肪酸和艺w3脂肪酸(特别是20:5w3和22:6c}3的含量明显较低,Ifu 20:1+22:1的含量则偏高。说明黄海中华哲水蚤植食性的程度要高十胶州湾。中华哲水蚤雌体产卵率与其体内的16:1c}7,艺16和20:5w3呈正相关关系。从脂肪酸的角度证明了浮游植物(特别是硅藻)对中华哲水蚤繁殖的重要作用。
     2009年6月黄海颗粒悬浮物脂肪酸组成的空间分布与2006年12月一2007年8月几个航次相似。靠近长江口的C04站和调查区域北部的B18站颗粒悬浮物中浮游植物含量较高,目‘具有较高的脂类营养物质。通过对浮游动物脂肪酸组成分析发现,中华哲水蚤雌体和挠足幼体均具有植食性特征,但挠足幼体20:1+22:1和18:4w3脂肪酸的含量远高十雌体,说明挠足幼体植食性的程度更高,Ifu b‘更倾向十摄食甲藻。太平洋磷虾18:4w3的含量要高十16:1c}7,说明太平洋磷虾也具有对甲藻的选择性摄食。箭虫体内22:6w3的含量很高,它对食物脂肪酸存在较高的吸收和转化速率,它在浮游动物中处十一个较高的营养级。虫戎体内16:1c}7和18:4w3月旨肪酸的含量较高,表现出显著的植食性特征,另外其体内20:1+22:1月旨肪酸的含量也很高,推测这些脂肪酸都是来自十虫戎类对植食性挠足类的摄食。沙海蛰脂肪酸中15:0+17:0, 22:0+24:0特征明显,说明碎屑对沙海蛰脂肪酸组成具有较大的贡献。从脂类营养物质的角度来看,浮游动物中的中华哲水蚤、太平洋磷虾以及虫戎对浮游动物食性的捕食者来说具有更高的营养价值。应用脂肪酸组成对17种游泳和底栖生物的分析发现,口本崛、壳蜻蝙、鹰爪虾和!脊腹褐虾具有碎屑的特征脂肪酸15:0+17:0和22:0+24:0,这些脂肪酸有可能来自它们对碎屑的直接摄入,也有可能指示了它们对底栖生物的摄食。小黄鱼、星康吉鳗、黑鳃梅童鱼、黄卿脂肪酸含量远高十其他种类,相对来说它们具有较高的脂类营养价值。它们体内16:1c}7和18:4w3脂肪酸的含量均较高,表明它们直接或间接的摄入了大量的植食性浮游动物并目‘对脂肪酸具有较高的吸收和转化率。
     以往的关十营养关系的研究大多基十“量”的概念。本文初步利用脂肪酸作为标记研究了黄海食物网的营养关系,并以之作为标记反映了黄海食物网中的脂类物质营养价值高低。相对十高纬度海区,利用脂肪酸作为标记对温带海区营养关系的研究要相对复杂一些。在将来的研究中还有必要结合同位素标记等多种方法,以便对生态系统的营养关系进行更全面和准确的研究。
As one of the important biological macromolecules, fatty acid plays verymportant roles in marine organisms. Besides, fatty acid could also be used as markersto indicate the feeding of predators. Fatty acid features of diatoms and dinoflagellateswere analyzed. Subsequently, feeding experiment was carried out with the copepodCalauus siuicus using unialgae as diets to verify the validity of fatty acid as markers.Fatty acid markers were then employed in the study of the trophic relationships inJiaozhou Bay and southern Yellow Sea.
     The fatty acid compositions were analyzed for Scrippsiella trochoidea,Proroceutruin inicaus, Skeletoueina costatuin and Chaetoceros sp二For S. trochoideaand P. micaus, the dominance of 16:0, 18:4c}3, 18:Sc}3, 20:3c}6, 22:6c}3 indicated atypical fatty acid composition of dinoflagellates. For S. costatmn and Chaetoceros sp.,the dominant fatty acids were 14:0,16:0,16:1c}7,20:Sc}3, suggesting a diatom feature.Although the incorporation and turnover rates of dietary fatty acids were differentfrom each other, the feeding experiment could still provide clear evidence for thepotential of specific fatty acids as trophic markers. Polyunsaturated fatty acids whichcannot be synthesized by copepods decreased obviously during the starvationexperiment, while structural fatty acids with more conservative chemical propertieswere consumed in a lesser degree. 18:4c}3, 22:6c}3, 18:4c}3/16:1c}7,∑18/∑16 and22:6w3/20:Sw3 increased in different degrees at the end of the feeding experimentwhen Calauus siuicus was offered with P. micaus. However, the structural fatty acid22:6c}3 was not a suitable marker to indicate the ingestion of dinoflagellate. When thecopepod was fed with S. costatmn, only 22:603 and 16:10}7/18:40}3 increased at the end of the experiment. Based on overall considerations of the variations of these fattymarkers and the Pearson correlation analysis, we deemed that 18:4c}318:4c}3/16:1c}7 and∑18/∑16 were useful markers to reflect the ingestion of P. micausby C. siuicus, and only 16:1c}7/18:4c}3 could be used as marker for the ingestion of S.costatu}n.
     Seston and the copepod C. siuicus were investigated in Jiaozhou Bay annually inview of their fatty acid compositions. We aimed at elucidating the trophicrelationships between seston and the copepod by depicting the spatial and temporalvariations of their fatty acid compositions. Total fatty acid and Chl a correlatedsignificantly with each other, indicating that phytoplankton was an important sestoncomponents. But it seemed that other particles such as organic detritus, ciliates andbacteria might also contribute a surprising proportion. Principal component analysiswas carried out in this study to ordinate the seston according to stations and months.The results showed that diatom contributed a larger proportion to the northeast ofJiaozhou Bay (AS) than in the middle (C3) and out of the bay (D7). In view of lipidnutrients, seston in the northeast of Jiaozhou Bay showed higher food quality than theother areas. In July 2008, station AS and C3 were different from other cases by higherpercentage of dinoflagellates markers and lipid nutrients. C. siuicus showed atime-delayed response to the spring algae bloom. The essential fatty acids 20:Sc}3 and22:603 were found to occupy a proportion over 50% in C. siuicus, which wassignificantly higher than the polar copepods. 16:1c}7, 18:4c}3 and themonounsaturates 20:1 and 22:1 in C. siuicus verified the herbivorous feeding of thiscopepod. But the comparatively low levels of these fatty acids compared to their polarcounterparts allowed the conclusion to be drawn that besides phytoplankton, C.siuicus might feed on a wider range of particles including organic detritus, eggs,bacteria, small copepods and ciliates, etc.
     Fatty acid compositions of seston and C. siuicus were analyzed in the southernYellow Sea in December 2006, March, May and August 2007. Total fatty acid, diatommarkers, dinoflagellates markers, PUFA and∑c}3 fatty acid of seston exhibited similar temporal and spatial distributions in the southern Yellow Sea. Phytoplanktonprospered in spring, followed by the increase of these markers in March and May,indicating higher lipid nutrients in this season. The center of the research area showedconsistent low levels of there fatty acid markers all the year around, indicating acomparatively low levels of phytoplankton and lipid nutritional value. Compared toJiaozhou Bay, C. siuicus in the southern Yellow Sea showed comparatively low levelsof PUFA and c}}3 (especially 20:Sc}}3 and 22:6c}}3) and high levels of 20:1 and 22:1,indicating a more herbivorous feeding in this region. The egg production rates offemale C. siuicus showed positively correlations with 16:1c}7,∑16 and 20:Sc}3.Thepresence of these diatom markers suggested the important roles diatom played in thereproduction of C. siuicus.
     Fatty acid composition of seston in June 2009 displayed a similar spatialdistribution pattern with the cruises conducted in 2006 and 2007. C04 and B18 weredistinguished from other stations by the obvious phytoplankton markers and higherlipid nutritional values. Female and copepodid of C. siuicus showed a typicalherbivorous feeding. But the significantly higher content of 20:1+22:1 in copepodidindicated that copepodid seemed to feed on phytoplankton at a higher level. Besides,copepodid of C. siuicus might feed preferentially on dinoflagellates in view of thefatty acid 18:4c}3.Euphausia pacifica has a higher content of 18:403 than 16:107,indicating a preferential feeding on dinoflagellates. Sagitta was characteristic of highcontent of 22:6c}}3, indicating a higher trophic level in zooplankton. Hyperiidea in thepresent stu勿showed high contents of 16:1c}7, 18:4c}3 and 20:1+22:1,we inferredthat this Amphipoda mainly fed on herbivorous copepod. Stomolophus meleagrisexhibited a distinct feature of feeding on detritus. Generally, C. siuicus, Euphausiapacifica and Hyperiidea might have higher lipid nutritional values for the predators.Principal component analysis was also employed in predators in higher trophic levels.Benthic species such as Phili}te sp., Charybdis japo}tica and Cra}tgo}t affi}tisdistributed away from other species by their obvious fatty acid features of detritus,which might be derived from the direct ingestion of detritus or the feeding on benthic organisms. Pseudosciaeua polyactis, Astrocouger myriaster, Setipiuua taty andCollichthys uiveatus which showed higher contents of phytoplankton grouped together,markers andlipid nutritional values for upper predators could be these speciesshowed higher absorption and transformation rates of dietary fatty acids and fed onherbivorous organisms directly or indirectly.
     This paper aims at demonstrating the trophic relationships in Yellow Sea in a fattyacid approach. In fact, it is more complex to use this technique in moderate regionsthan in polar areas for the more complex and differing environment. To a betterunderstanding of the trophic linkages in moderate marine environment, we adviseother techniques such as stable isotope analysis also be employed.
引文
Ackman RG, Tocher CS and McLachlan J. Marine Phytoplankter Fatty acids. Journal of the Fisheries Research Board of Canada. 1968, 25(8): 1603-1620.
    Alfaro AC. Diet of Littoraria scabra, while vertically migrating on mangrove trees: gut content, fatty acid, and stable isotope analyses. Estuarine Coastal and Shelf Science. 2008, 79(4): 718-726.
    Auel H, Harjes M, da Rocha R, Stübing D and Hagen W. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biology. 2002, 25: 374-383.
    Borobia M, Gearing PL, Simard Y, Gearing JN and Beland P. Blubber fatty acids of finback and humpback whales from the gulf of St. Lawrence. Marine Biology. 1995, 122: 341-353.
    Bremigan MT and Stein RA. Experimental assessment of the influence of zooplankton size and density on gizzard shad recruitment. Transactions of the American Fisheries Society. 1997, 126: 622-637.
    Brett MT and Muller-Navarra DC. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology. 1997, 38: 483-499.
    Budge SM and Parrish CC. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. . Fatty acids. Organic Geochemistry. 1998, 29: 1547-1559.
    Budge SM, Parrish CC and Mckenzie CH. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Marine Chemistry. 2001, 76: 285-303.
    Budge SM, Wooller MJ, Springer AM, Iverson SJ, McRoy CP and Divoky GJ. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia. 2008, 157(1): 117-29.
    Claustre H, Marty JC, Cassiani L and Dagaut J. Fatty acid dynamics in phytoplanktonand microzooplankton communities during a spring bloom in the coastal Ligurian Sea: ecological implications. Marine Microbial Food Webs. 1988/1989, 3(2): 51 66.
    Copeman LA and Parrish CC. Marine lipids in a cold coastal ecosystem: Gilbert Bay, Labrador. Marine Biology. 2003, 143(6): 1213 1227.
    Dahl TM, Lydersen C, Kovacs KM, Falk-Petersen S, Sargent J, Gjertz I and Gulliksen B. Fatty acid composition of the blubber in white whales (Delphinapterus leucas). Polar Biology. 2000, 23: 401-409.
    Dahl TM, Falk-Petersen S, Gabrielsen GW, Sargent JR, Hop H and Millar RM. Lipids and stable isotopes in common eider, black-legged kittiwake and northern fulmar: a trophic study from an Arctic fjord. Marine Ecology Progress Series. 2003, 256: 257-269.
    Dalsgaard J, St John M, Kattner G, Muller-Navarra D and Hagen W. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology. 2003, 46: 225-340.
    Drazen JC, Phleger CF, Guest MC and Nichols PD. Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroid from the North-East Pacific Ocean: Food web implications. Comparative Biochemistry and Physiology, Part B. 2008, 151: 79-87.
    Dwyer KS, Parrish CC and Brown JA. Lipid composition of yellowtail flounder (Limanda ferruginea) in relation to dietary lipid intake. Marine Biology. 2003, 143: 659 - 667.
    Ederington MC, McManus GB and Harvey HR. Trophic transfer on fatty acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod Acartia tonsa. Limnology and Oceanography. 1995, 40(5): 860-867.
    Enright CT, Newkirk GF, Craigie JS and Castell JD. Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. Journal of Experimental Marine Biology and Ecology. 1986, 96: 1-13.
    Fahl K and Kattner G. Lipid content and fatty acid composition of algal communitiesin sea-ice and water from the Weddell Sea (Antarctica). Polar Biology. 1993, 13: 405-409.
    Falk-Petersen S, Dahl TM, Scott CL, Sargent JR, Gulliksen B, Kwasniewski S, Hop H, Millar R-M. Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters. Marine Ecology Progress Series. 2002, 227: 187 194.
    Falk-Petersen S, Hagen W, Kattner G, Clarke A and Sargent J. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Canadian Journal of Fisheries and Aquatic Sciences. 2000, 57: 178-191.
    Falk-Peterson S, Sargent JR, Henderson J, Hegseth EN, Hop H and Okolodkov YB. Lipids and fatty acids in ice algae and phytoplankton from the Marginal Ice Zone in the Barents Sea. Polar Biology. 1998, 20: 41-47
    Falk-Petersen S, Sargent JR, Tande KS. Lipid composition of zooplankton in relation to the sub-Arctic food web. Polar Biology. 1987, 8: 115-120.
    Folch J, Lees M and Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biology and Chemistry. 1957, 226: 497-509.
    Fraser AJ, Sargent JR. Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Marine chemistry. 1989, 27: 1-18.
    Frederiksen M, Edwards M, Richardson AJ, Halliday NC and Wanless S. From plankton to top predators: bottom-up control of a marine food web across four trophic levels. Journal of Animal Ecology. 2006, 5(6): 1259-1268.
    Graeve M, Kattner G and Hagen W. Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: Experimental evidence of trophic markers. Journal of Experimental Marine Biology and Ecology. 1994a, 182: 97-110.
    Graeve M, Hagen W, Kattner G. Herbivorous or omnivorous? On the significance of lipid composition as trophic markers in Antarctic copepods. Deep Sea Research. 1994b, 42: 915 924
    Hagen W. 2000. Lipids. In R. Harris, P. Wiebe, J. Lenz, H.R. Skjoldal, and M. Huntley [eds]. ICES Zooplankton Methodology Mannual. Academic. p113-119.
    Hagen W and Kattner G. Lipid metabolism of the Antarctic euphausiid Thysanoessa macrura and its ecological implications. Limnology and Oceanography. 1998, 43: 1894-1901.
    Hagen W, Kattner G and Graeve M.1993. Calanoids acutus and Calanus propinquus, Antarctic copepods with different lipid storage modes via wax esters or triacylglycerols. Marine Ecology Progress Series. 1993, 97: 135-142.
    Hakanson JL. The long and short term feeding condition in field-caught Calanus pacificus, as determined from the lipid content. Limnology and Oceanography. 1984, 29:794-804.
    Head EJH and Harris LR. Chlorophyll and carotenoid transformation and destruction by Calanus spp. grazing on diatoms. Marine Ecology Progress Series. 1992, 186: 229-238.
    Hill AM, Sinars DM and Lodge DM. Invasion of an occupied niche by the crayfish Orconectes rusticus: potential importance of growth and mortality. Oecologia. 1993, 94: 303-306.
    Hitchcock GL. A comparative study of the size-dependent organic composition of marine diatoms and dinoflagellates. Journal of Plankton Research. 1982, 4: 363-377
    Howell KL, Pond DW, Billett DSM and Tyler PA. Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fatty-acid biomarker approach. Marine Ecology Progress Series. 2003, 255: 193-206.
    Huo YZ, Wang SW, Sun S, Li CL, Liu MT. Feeding and egg production of the planktonic copepod Calanus sinicus in spring and autumn in the Yellow Sea, China. Journal of Plankton Research. 2008, 30(6): 723-734.
    Hudson ED, Parrish CC and Helleur RJ. Biogeochemistry of sterols in plankton, settling particles and recent sediments in a cold ocean ecosystem (Trinity Bay, Newfoundland). Marine Chemistry. 2001, 76: 253-270.
    Jeffries HP. Seasonal composition of temperate plankton communities: Fatty acids. Limnology and Oceanography. 1970, 15: 419-426.
    Jónasdóttir SH, Fields D and Pantoja S. Copepod egg production in Long Island Sound, USA, as a function of the chemical composition of seston. Marine Ecology Progress Series. 1995, 119: 87-98.
    Ju SJ and Harvey HR. Lipids as markers of nutritional condition and diet in the Antarctic krill Euphausia superb and Euphausia crystallorophias during austral winter. Deep-Sea Research II. 2004, 51: 2199-2214.
    Kainz M, Arts MT and Mazumder A. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnology and Oceanography. 2004, 49(5): 1784-1793.
    Kakela A, Crane J, Votier S C, Furness R W, Kakela R. Fatty acid signatures as indicators of diet in great skuas Stercorarius skua, Shetland. Marine Ecology Progress Series. 2006, 319: 297 310.
    Kattner G and Brockmann UH. Particulate and dissolved fatty acids in an enclosure containing a unialgal Skeletonama costatum (Greve) Cleve culture. Journal of Experimental Marine Biology and Ecology. 1990, 141: 1-13.
    Kattner G, Gercken G and Eberlein K. Development of lipids during a spring plankton bloom in the northern North Sea .Particulate fatty acids. Marine Chemistry. 1983, 14: 149-162.
    Kattner G, Graeve M and Hagen W. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Marine Biology. 1994, 118: 637-644.
    Kattner G and Hagen W. Polar herbivorous copepods-different pathways in lipid biosynthesis. ICES Journal of Marine Science. 1995, 52: 329-335.
    Kattner G, Hagen W, Graeve M and Albers C. Exceptional lipids and fatty acids in the pteropod Clione limacina (Gastropoda) from both polar oceans. Marine Chemistry. 1998, 61: 219-228.
    Kattner G, Hirche HJ and Krause M. Spatial variability in lipid composition of calanoid copepods from Fram Strait, the Arctic. Marine Biology. 1989, 102: 473 480
    Kharlamenko VI, Kiyashko SI, Imbs AB and Vyshkvartzev DI. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Marine Ecology Progress Series. 2001, 220: 103-117.
    Kharlamenko VI, Zhukova NV, Khotimchenko SV, Svetashev VI, Kamenev GM. Fatty acids as markers of food sources in a shallow water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series. 1995, 120: 231-241.
    Kirsch PE, Iverson SJ, Don Bowen W, Kerr SR and Ackman RG. Dietary effects on the fatty acid signature of whole Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences. 1998, 55: 1378-1386.
    Klein Breteler WCM, Schogt N, Baas M, Schouten S and Kraay GW. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids Marine Biology. 1999, 135: 191-198.
    Koski M, Breteler WK and Schogt N. Effect of food quality on rate of growth and development of the pelagic copepod Pseudocalanus elongatus (Copepoda, Calanoida). Marine Ecology Progress Series. 1998, 170: 169-187.
    Kruse S, Jansen S, Kragefsky S and Bathmann U. Gut content analyses of three dominant Antarctic copepod species during an induced phytoplankton bloom EIFEX (European iron fertilization experiment). Marine Biology. 2009, 30: 301-312.
    Landry MR, Peterson WK and Fagerness VL. Mesozooplankton grazing in the Sorthern California Bight. I. Population abundances and gut pigment contents. Marine Ecology Progress Series. 1994, 115: 55-71.
    Leduc D., Probert P. K. The effect of bacterivorous nematodes on detritus incorporation by macrofaunal detritivores: A study using stable isotope and fattyacid analyses. Journal of experimental marine biology and ecology. 2009, 371(2):130-139.
    Lee RF. Lipid composition of the copepod Calanus hyperboreus from the Arctic Ocean. Changes with depth and season. Marine Biology. 1974, 26:313-318.
    Lee RF, Hagen W and Kattner G. Lipid storage in marine zooplankton. Marine Ecology Progress Series. 2006, 307: 273-306.
    Lee RF, J Hirota and Barnett AM. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Research. 1971a, 18: 1147-1165.
    Lee RF and J. Hirota. Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnology Oceanography. 1973, 18: 227-239
    Lee RF, Nevenzel JC, Paffenh?fer GA. Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Marine Biology. 1971b, 9: 99-108.
    LéveilléJC, Amblard C and Bourdier G. Fatty acids as specific algal markers in a natural lacustrian phytoplankton. Journal of Plankton Research. 1997, 19: 469 490.
    Levine DM and Sulkin SD. Nutritional significance of long-chain polyunsaturated fatty acids to the zoeal development of the brachyuran crab, Eurypanopeus depressus (Smith). Journal of Experimental Marine Biology and Ecology. 1984, 84: 211-223.
    Li CL, Sun S, Wang R, Wang XL. Feeding and respiration rates of a planktonic copepod (Calanus sinicus) oversummering in Yellow Sea Cold Bottom Waters. Marine Biology. 2004, 145: 149-157.
    Lischka S and Hagen W. Seasonal lipid dynamics of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Marine Biology. 2007, 150: 443 454.
    Mackas DL, Bohrer RN. Fluorescence analysis of zooplankton gut contents and aninvestigation of diel feeding patterns. Journal of Experimental Marine Biology and Ecology. 1976. 25: 77-85.
    Maryuama I, Nakamura T, Marsubayashi T, Ando Y and Naeda T. Identification of the Journal of Phycololgy. 1986, 34: 319-326.
    Meier-Augenstein W. Applied gas chromatography coupled to isotope ratio mass spectrometry. Journal of Chromatography A. 1999, 842: 351-371.
    Moreno VJ, Moreno JEA and Brenner PR. Fatty acid metabolism in the calanoid copepod Paracalanus parvus: I. Polyunsaturated fatty acids. Lipids. 1979, 14: 313-317.
    Morris RJ. Studies of a spring phytoplankton bloom in an enclosed experimental ecosystem. II. Changes in the component fatty acids and sterols. Journal of Experimental Marine Biology and Ecology. 1984, 75: 59-70.
    Mourente G, Lubián LM and Odriozola JM. Total fatty acid composition as a taxonomic index of some marine microalgae used as food in marine aquaculture. Hydrobiologia. 1990, 203: 147-154.
    Müller-Navarra DC. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch. Hydrobiology. 1995, 132: 297-307.
    Müller-Navarra DC, Brett MT, Liston AM and Goldman CR. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature. 2000, 403: 74-77.
    Murphy DE and Abrajano TA. Carbon isotope-compositions of fatty acids in mussels from Newfoundland estuaries. Estuarine, Coastal and Shelf Science. 1994, 39: 261-272.
    Nakagawa Y, Y. Endo and H. Sugisaki. Feeding rhythm and vertical migration of the euphausiid Euphausia pacifica in coastal waters of north-eastern Japan during fall. Journal of Plankton Research. 2003, 25: 633-644.
    Napolitano GE, 1999. Fatty acids as trophic and chemical markers in freshwaterecosystem [M]. In Arts MT & BC Wainman (Eds). Lipids in freshwater ecosystem, Springer-Verlag, New York, 319pp.
    Ohman MD. Omnivory by Euphausia pacifica: the role of copepod prey. Marine Ecology Progress Series. 1984, 19: 125-131.
    Pakhomov EA, Perissinotto R. Trophodynamics of the hyperiid amphipod Themisto gaudichaudi in the South Georgia region during late austral summer. Marine Ecology Progress Series. 1996, 134:91-100.
    Parrish CC. 1999. Determination of total lipid, lipid classes, and fatty acids in aquatic samples [A]. Arts MT, Wainman BC. Lipids in Freshwater Ecosystems (C). New York: Springer-Verlag, pp5-20.
    Perissinotto R, Pakhomov EA. Feeding association of the copepod Rhincalanus gigas with the tunicate salp Salpa thompsoni in the southern ocean. Marine biology. 1997, 127(3): 479-483.
    Petursdottir H., Gislason A., Falk-petersen S., Hop H., Svavarsson J. Trophic interactions of the pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid and stable isotope analyses. Deep sea research part II: topical studies in oceanography. 2008, 55(1-2): 83-93.
    Phleger CF, Nelson MM, Mooney BD and Nichols PD. Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area. Comparative Biochemistry and Physiology. 2002, 131B: 733-747.
    Pilati A and Wurtsbaugh WA. Importance of zooplankton for the persistence of a deep chlorophyll layer: a limnocorral experiment. Limnology and Oceanography. 2003, 48: 249-260.
    Pu XM, Sun S, Yang B, Zhang GT and Zhang F. Life history strategies of Calanus sinicus in the southern Yellow Sea in summer. Journal of Plankton Research. 2004, 26: 1059-1068.
    Renaud SM, Parry DL and Thinh LV. Microalgae for use in tropical aquaculture I: Gross chemical and fatty acid composition of twelve species of microalgae fromthe Northern Territory, Australia. Journal of Applied Phycology. 1994, 6: 337-345.
    Reuss N and Poulsen LK. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Marine Biology. 2002, 141:423-434
    Rossi S, Sabatés A, Latasa M and Reyes E. Lipid biomarkers and trophic linkages between phytoplankton, zooplankton and anchovy (Engraulis encrasicolus) larvae in the NW Mediterranean. Journal of Plankton Research. 2006, 28 (6): 551-562.
    Rossi S, Youngbluth MJ, Jacoby CA, Pagès F, GarroféX. Fatty acid trophic markers and trophic links among seston, crustacean zooplankton and the siphonophore Nanomia cara in Georges Basin and Oceanographer Canyon (NW Atlantic). Scientia Marina. 2008, 72(2): 403-416.
    Roth JD and Hobson KA. Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: implications for dietary reconstruction. Canadian Journal of Zoology. 2000, 78: 848-852.
    Sargent JR. Marine wax esters. Science Progress. 1978, 65: 437-458.
    Sargent JR and Falk-Petersen S. Ecological investigations on the zooplankton community in Balsfjorden, Northern Norway: lipids and fatty acids in Meganyctiphanes norvegica, Thysanoessa raschi and T. inermis during midwinter. Marine Biology. 1981, 62: 131-137.
    Sargent JR. and Falk-Petersen S. The lipid biochemistry of calanoid copepods. Hydrobiologia. 1988, 167/168: 101-114.
    Sargent JR, Gatten RR, Henderson RJ. Lipid biochemistry of zooplankton from high latitudes. Oceanis. 1981, 7: 623 632. -65.Blackie
    Academic and professional, London. Sargent JR and Whittle KJ. 1981. Lipids and hydrocarbons in the marine food web. In: Longhurst AR (eds) Analysis of marine ecosystems. Academic Press, London, pp491-533.
    Scott AP, Middleton C. Unicellular algae as a food for turbot (Scophthalmus maximus L.) larvae: the importance of dietary long-chain polyunsaturated fatty acids [J]. Aquaculture. 1979, 18: 227-240.
    Scott CL, Kwasniewski S, Falk-Petersen S and Sargent JR. Species differences, origins and functions of fatty alcohols and fatty acids in the wax esters and phospholipids of Calanus hyperboreus, C.glacialis and C.finmarchicus from Arctic waters. Marine Ecology Progress Series. 2002, 235: 127-134.
    Scribe P, Fillaux J, Laureillard J, Denant V and Saliot A. Fatty acids as biomarkers of planktonic inputs in the stratified estuary of the Krka River, Adriatic Sea: relation- ship with pigment. Marine Chemistry. 1991, 32: 299-312.
    Shin Paul KS, Yip KM, Xu WZ, Wong WH and Cheung SG. Fatty acid as markers to demonstrating trophic relationships among diatoms, rotifers and green-lipped mussels. Journal of experimental marine biology and ecology. 2008, 357(1): 75-84.
    Skerratt JH, Nichols PD, McMeekin TA and Burton H. Seasonal and inter-annual changes in planktonic biomass and community structure in eastern Antarctica using signature lipids. Marine Chemsitry. 1995, 51(2): 93-113.
    Spector AA. Essentiality of fatty acids. Lipids. 1999, 34(supplement): S1-S3.
    St John MA and Lund T. Lipid biomarkers: linking the utilization of frontal plankton biomass to enhanced condition of juvenile North Sea cod. Marine Ecology Progress Series. 1996, 131: 75-85.
    Stübing D and Hagen W. Fatty acid biomarker ratios - suitable trophic indicators in Antarctic euphausiids? Polar Biology. 2003, 26: 774-782.
    Stübing D, Hagen W, Schmidt K. On the use of lipid biomarkers in marine food web analyses: an experimental case study on the Antarctic krill, Euphausia superba. Limnology and Oceanography, 2003. 48: 1685 1700.
    Sugisaki H., Terazaki M., Wada E. and Nemoto T. Feeding habits of a pelagic amphipod, Themisto japonica. Marine Biology. 1991, 109: 241-244.
    Suh H-L, Toda T, Terazaki M. Diet of calyptopes of the euphausiid Euphausia pacifica in the Yellow Sea. Marine Biology. 1991, 111: 45-48.
    Sun S. Over-summering strategy of Calanus sinicus. 2005. GLOBEC Int Newsl: 11:34.
    Tande KS and Henderson RJ. Lipid composition of copepodite stages and adult females of Calanus glacialis in Arctic waters of the Barents Sea. Polar Biology. 1988, 8: 333-339.
    T?be K, Meyer B and Fuentes V. Detection of zooplankton items in the stomach and gut content of larval krill, Euphausia superba, using a molecular approach. Polar Biology. 2010, 33: 407-414.
    Tolosa I, Vescovali I, Leblond N, Marty JC, Mora S and Prieur E. 2004. Distribution of pigment and fatty acid markers in particulate matter from the frontal structure of the Alboran Sea (SW Mediterranean Sea). Marine Chemistry. 2004, 88: 103-125.
    Troedsson C, Frischer ME, Nejstgaard JC and Thomspson EM. Molecular quantification of differential ingestion and particle trapping rates by the appendicularian Oikopleura dioica as a function of prey size and shape. Limnology and Oceanography. 2007, 52: 416-427.
    Troedsson C, Simonelli P, N?gele V, Nejstgaard JC and Frischer ME. Quantification of copepod gut content by differential length amplification quantitative PCR (dla-qPCR). Marine Biology. 2009, 156: 253-259.
    Veloza AJ, Chu F-LE and Tang KW. Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Marine Biology. 2006, 148: 779-788.
    Viso AC and Marty JC. Fatty acids from 28 marine microalgae. Phytochemistry. 1993, 37(6): 1521-1533.
    Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL and Gelin F. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry. 1998, 29: 1163-1179
    Volkman JK, Jeffrey SW, Nichols PD, Rogers GI and Garland CD. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology. 1989, 128: 219-240.
    Wang R. and Conover RJ. Dynamics of gut pigment in the copepod Temora longicornis and the determination of in situ grazing rates. Limnology and Oceanography. 1986, 31: 867-877.
    Yamashita Y, D. Kitagawa and T. Aoyama. A field study of the predation of the hyperiid amphipod Parathemisto japonica on larval of Japanese sand eel Ammodytes persanatus. Bulletin of the Japanese Society of Fisheries Oceanography. 1985, 51: 1599-1607.
    Zhang GT, Sun S, Zhang F. Seasonal variation of reproduction rates and body size of Calanus sinicus in the southern Yellow Sea, China. Journal of Plankton Research. 2005, 27: 135-143.
    Zhang GT, Li CL, Sun S, Zhang HY, Sun J, Ning XR. Feeding habit of Calanus sinicus (Crustacea: Copepoda) during spring and autumn in the Bohai Sea studied with herbivore index. Scientia Marina. 2006, 70(3): 381-388.
    Zhukova NV and Aizdaicher NA. Fatty acid composition of 15 species of marine microalgae. Phytochemistry. 1995, 39(2): 351-356.
    蔡德陵,李红燕,唐启升,孙耀.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果.中国科学C辑生命科学.2005, 35(2): 123一130.
    陈小英.中华哲水蚤与汤氏长足水蚤的消化道超微结构观察工.前肠和后肠.热带海洋.1988a, 2: 9-15.
    陈小英.中华哲水蚤与汤氏长足水蚤的消化道超微结构观察II.中肠.热带海洋, 1988b. 7(4): 69-80.
    崔淑芬.大业湾颗粒有机物的来源.海洋通报.1999, 18(2): 44-51.
    董正之.黄海太平洋褶柔鱼资源现状与开发.海洋科学.1996, 6: 34-38.
    高天翔,杜宁,张义龙,薛莹,李文涛.大头鲜(Gadus }nacrocephalus Tilesius)摄食食性的初步研究.海洋湖沼通报.2003, 4: 74-78
    霍兀子.中国科学院海洋研究所博士论文:黄海浮游动物功能群的研究.2008.青岛.
    姜卫民.细纹狮子鱼的食性及食物消耗量初探.中国水产科学.1996, 3(3): 8-15.
    李超伦.中国科学院海洋研究所博士论文:海洋挠足类摄食生态及其对浮游植物的摄食压力.2001,青岛.
    李超伦,孙松,土荣.中华哲水蚤对自然饵料的摄食选择性实验研究.海洋与湖沼.2007, 38(6): 529一535.
    李超伦,土荣,张芳,土新刚.黄东海浮游挠足类摄食研究II.摄食率及摄食压力.海洋与湖沼.2002,增刊:111一119
    李春颖,仇雪梅.海洋微藻脂肪酸组成的研究进展.生物技术通报.2008, 4: 63一65.
    李荷芳,周汉秋.海洋微藻脂肪酸组成的比较研究.海洋与湖沼,1999, 30(1):34-40
    李忠义,郭旭鹏,金显仕,庄志猛,苏永全,张风琴.长江口及其临近水域春季蛇鲍的食性.2006, 30(5): 654-661.
    林金美,林加涵.黄海浮游甲藻的生态研究.生态学报.1997, 17(3): 252-257.
    林兀烧,曹文清,郑爱榕,李文权,陈清花.几种饵料浮游动物脂肪酸组成分析及营养效果评价.台湾海峡.2001, 20 (Supplement): 164-168.
    刘军,胡兵,李惠,陈爱敬,黄峰,李玉增.长江水系中5种野生鱼类肌肉脂肪酸的研究.大连水产学院学报.2008, 23(6): 489-492.
    刘光兴,崔建丽,黄瑛.几种单胞藻对火腿许水蚤脂肪酸组成的影响.厦门大学学报(自然科学版).2006, 45 (Supplement2): 250-255.
    刘光兴,徐东晖,邱旭春,黄瑛,崔建丽,朱丽岩.火腿许水蚤对牙坪仔稚鱼成活、生长及脂肪酸组成的影响.中国海洋大学学报.2007, 37(2): 259-265.
    刘青,曲晗,张硕,魏杰.强壮箭虫摄食生态的实验研究.水产学报.2006, 30(6):767一772.
    吕淑果.中国科学院海洋研究所博士论文:胶州湾悬浮颗粒物中脂肪酸的时空分布及其在初级生产者到初级消费者食物传递中的作用.2007.青岛.
    吕淑果,韩博平,孙松,土旭晨.藻华发生过程中胶州湾水体颗粒有机物脂肪酸的组成与动态.生态学报.2009, 5: 2391-2399.
    马喜平,凡守军.水母类在海洋食物网中的作用.海洋科学.1998, 22(2): 38-42.
    苏纪兰,袁耀初,姜景忠.建国以来我国物理海洋学的进展.地球物理学报.1994 37(Supp.l): 85一95.
    孙松,张永山,吴玉霖,张光涛,张芳,蒲新民.胶州湾初级生产力周年变化.海洋与湖沼. 2005, 36(6): 481-486.
    万瑞景,魏皓,孙珊,赵宪勇.山东半岛南部产卵场鳃鱼的产卵生态工.鳃鱼鱼卵与仔稚幼鱼的数量与分布特征.动物学报.2008, 54(5): 785-797.
    土俊.黄海春季浮游植物的调查研究.海洋水产研究.2001, 22(1): 56-61.
    土俊.黄海秋、冬季浮游植物的调查研究.海洋水产研究.2003, 24(1): 15-23.
    土娜.华东师范大学硕士论文.脂肪酸等生物标志物在海洋食物网研究中的应用一以长江口毗邻海域为例.2008.上海.
    土世伟.中国科学院海洋研究所博士论文:黄海中华哲水蚤繁殖、种群补充与生活史研究.2009.青岛.
    吴玉霖,孙松,张永山.环境长期变化对胶州湾浮游植物群落结构的影响.海洋与湖沼.2005, 36(6): 487-498.
    许河峰.基十脂肪酸组成的海洋微藻化学计量学分类研究.海洋通报.2003, 22(3): 69-72.
    徐继林,严小军.脂类分析在海洋微藻化学分类学上的研究进展.海洋通报. 2004, 23(2): 65一72.
    薛莹,金显仕,张波,梁振林.黄海中部小黄鱼摄食习性的体长变化与昼夜变化.中国水产科学.2004, 11(5): 420-425.
    薛莹,金显仕,张波,梁振林.南黄海二种石首鱼类的食性.水产学报.2005, 29(2): 178-187.
    杨纪明.渤海无脊椎动物的食性和营养级研究.现代渔业信息.2001a, 16(9): 8一16.
    杨纪明.渤海鱼类的食性和营养级研究.现代渔业信息.2oolb,16}10}: 10-19.
    杨纪明.渤海中华哲水蚤摄食的初步研究.海洋与湖}i i . 1997, 28(4): 376-382.
    杨纪明李军.渤海强壮箭虫摄食的初步研究.海洋科学.1995, 6: 38-42
    于颧吴莹,张经.特定化合物同位素分析技术在海洋食物网研究中的应用.质谱学报.2006, 27(2): 122-128.
    张波唐启升.东、黄海六种鳗的食性.水产学报.2004, 27(4): 307-314.
    张芳孙松.中华哲水蚤生态学研究进展.海洋科学.2001, 25(11): 16-19
    章炜,徐继林,严小军,周成旭,马斌.利用脂肪酸组成对26种(株)海洋微藻聚类分析研究.宁波大学学报(理工版).2006, 19(4): 445-450.
    郑小衍,郑重.挠足类大领齿缘与摄食机制关系的研究.海洋与湖沼.1989, 20:308一313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700