应用激光诱导荧光法研究直喷汽油机缸内混合气形成过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以激光诱导荧光法(PLIF)为代表的内燃机缸内燃烧过程可视化研究是近年来车用发动机研发工作中的重要内容,目前我国在这一领域与国外先进水平相比还有明显差距,而新一代缸内直喷汽油机(GDI)的自主研发迫切需要建立先进可视化试验平台。本文即围绕这一目标开展研究工作。
     首先,搭建了内燃机激光测试可视化平台,包括可以工作于GDI模式的光学发动机、定容燃烧弹、激光片光系统、同步装置、燃油供给装置等,可以实现对发动机喷雾和缸内混合气状态进行包括PLIF在内的多种光学测量。完成了PLIF定量研究的标定和校正方法,并对标定的具体计算过程进行了部分改进。
     其次,开发了设计PLIF试验用多组分替代燃油的普遍方法,可以同时满足试验燃料与真实汽油的挥发特性相似性要求和试验用示踪剂与所代表组分同步挥发的要求,并实际设计了一种五组分替代燃油以配合轻中重三种示踪剂。通过变参数分析计算比较了多组分燃油不同配比方案的优劣,研究了温度、组分比例对同步挥发特性的影响,以及设计过程中改进气液平衡计算(VLE)收敛性的优化方法。基于理论计算和试验结果的综合分析从原理上提出了快速设计时筛选组分的优选原则。
     第三,用PLIF方法定量研究了多种GDI两段喷射策略下缸内的混合气浓度分布,对火花塞附近混合气浓度的不均匀性和循环变动进行了分析。采用优化的五组分燃油方案对缸内混合气分布进行了研究。重点研究了燃油轻、中、重三种不同组分在不同喷射策略下火花点火时刻的分布差异,基于获得的图像结果采用定量方法研究了火花塞附近混合气浓度的循环变动,对测试结果序列相对于平均结果的误差进行了评估,结果表明芳烃类荧光剂对误差的影响相对较大。
     最后,采用KIVA-3V程序(源代码),在与可视化结果对比的基础上,研究了不同转速、不同油量、不同二次喷射比例和喷射时刻等条件下混合气的状态和适宜的点火提前角范围。
Optical diagnostics such as Laser-induced Fluorescence (PLIF) is now an important role in vehicle engine research. At present, the backwardness of domestic engine optical diagnostics researches compared to foreign advanced level is obvious. It is necessary to build advanced optical diagnostics systems and carry on researches in this field. As the development of gasoline direct injection (GDI) engine goes on, greater attention has been paid to in-cylinder mixture formation, especially to those researches basing on multi-component fuel. Improving the ability of PLIF method and taking a deeper step into the research of GDI in-cylinder mixture formation will be significant. This research worked in the field of GDI in-cylinder PLIF diagnostics.
     In this work, an internal-combustion-engine based laser diagnostic system, including an optical engine which can works in GDI mode, a combustion vessel, laser sheet optics, synchronization modules and fueling systems, has been built to realize PLIF researches on spray and in-cylinder mixture distribution. Calibration and correction methods were developed basing on the system, with some improvements in the calculation.
     A method of designing a multi-component fuel for planar laser-induced fluorescence (PLIF) experiments was developed based on thermal gravity (TG) analysis and vapor-liquid equilibrium (VLE) calculation. The goal is to create a fuel whose volatility is similar to real gasoline and that has good coevaporation ratios (near 1.0) with tracers. Acetone, toluene, and trimethylbenzene were chosen as the tracers for light, medium, and heavy fractions, and a five-component test fuel was developed. This test fuel was used to study the influence of components and temperature on coevaporation ratios. The saturate vapor pressure and the activity coefficient of the tracer and components in a fraction group affect the coevaporation optimization substantially, indicating that these values should be a primary consideration in tracer selection.
     PLIF was used to study different strategies and cycle-to-cycle variation in GDI in-cylinder mixture distribution. The five-component fuel was applied to an in-cylinder gasoline direct injection fuel mixture distribution measurement using PLIF. The differences between the light, medium, and heavy fraction groups were studied under different strategies. Cycle-to-cycle variation analysis was also applied.
     Finally, simulation works on mixture distribution were carried out basing on KIVA-3V. The best ignition timing and available ignition ranges under different rotation speeds, air-fuel ratios, injection times and fueling percentages of second injection are analyzed.
引文
[1] Weaver C E. Quantitative, laser-based fuel distribution and combustion measurements in port and direct fuel injected spark-ignition engines [Ph.D Thesis]. University of Michigan, 2001.
    [2] Li Tie. Characterization of Spray and Mixture Formation Processes of DI Gasoline Engines [Ph.D Thesis]. Kinki University, 2004.
    [3]朱德忠.热物理测量技术.北京:清华大学出版社, 1990.
    [4] Eckbreth A C. Laser Diagnostics for Combustion Temperature and Species. London: Taylor & Francis Ltd, 1996.
    [5] Styren J P. Multicomponent liquid and vapor fuel distribution measurements in the cylinder of a port-injected, spark- ignition engine [Ph.D Thesis]. University of Illinois at Urbana-Champaign, 1999.
    [6] Espey C, Dec J E, Litzinger T A, et al. Quantitative 2-D Fuel Vapor Concentration Imaging in a Firing D.I. Diesel Engine Using Planar Laser-Induced Rayleigh Scattering. SAE 940682, 1994.
    [7] Kadota T, Zhao F, Miyoshi K. Rayleigh Scattering Measurements of Transient Fuel Vapor Concentration in a Motored Spark Ignition Engine. SAE 900481, 1990.
    [8] Zhao Fu-Quan, Taketomi M, Nishida K, et al. Quantitative Imaging of the Fuel Concentration in a SI Engine with Laser Rayleigh Scattering. SAE 932641, 1993.
    [9] Zhao Fu-Quan, Kadota T, Takemoto T. Temporal and Cyclic Fluctuation of Fuel Vapor Concentration in a Spark Ignition Engine. SAE 912346, 1991.
    [10] Andersson O, Collin R, Egnell R, et al. Laser-Rayleigh Imaging of DME Sprays in an Optically Accessible DI Diesel Truck Engine. SAE 2001-01-0915, 2001.
    [11] Idicheria C A, Pickett L M. Quantitative Mixing Measurements in a Vaporizing Diesel Spray by Rayleigh Imaging. SAE 2007-01-0647, 2007.
    [12] Alger T, Hall M, Matthews R D. Effects of Swirl and Tumble on In-Cylinder Fuel Distribution in a Central Injected DISI Engine. SAE 2000-01-0533, 2000.
    [13] Davy M H, Williams P A, Anderson R W. Effects of fuel composition on mixture formation in a firing direct-injection spark-ignition (DISI) engine: an experimental study using mie-scattering and planar laser-induced fluorescence (PLIF) techniques. SAE 2000-01-1904, 2000.
    [14] Davy M H, Williams P A, Anderson R W. Effects of Injection Timing on Liquid-Phase Fuel Distributions in a Centrally-Injected Four-Valve Direct-Injection Spark-Ignition Engine. SAE 982699, 1998.
    [15] Arnold A, Dinkelacker F, Heitzmann T, et al. DI Diesel Engine Combustion Visualized by Combined Laser Techniques. 24th Int. Symp. on Combustion, Combustion Institute, 1992
    [16] Fan Li, Han Zhiyu, Parrish S E, et al. Comparison of Computed Spray in a Direct-Injection Spark-Ignited Engine with Planar Images. SAE 972883, 1997.
    [17] Ipp W, Wensing M, Wagner V, et al. Fuel Distribution and Mixture Formation Inside a Direct Injection SI Engine Investigated by 2D Mie and LIEF Techniques. SAE 1999-01-3659, 1999.
    [18] Zeng Wei, Xu Min, Zhang Ming, et al. Characterization of Methanol and Ethanol Sprays from Different DI Injectors by Using Mie-scattering and Laser Induced Fluorescence at Potential Engine Cold-start Conditions. SAE 2010-01-0602, 2010.
    [19] Woo Y, Lee Y, Kim Y, et al. Effects of Spray Characteristics with Different Geometries on the Performance of a DI Diesel Engine. SAE 2008-01-2468, 2008.
    [20] Serras-Pereira J, Aleiferis P G, Richardson D, et al. Spray Development, Flow Interactions and Wall Impingement in a Direct-Injection Spark-Ignition Engine. SAE 2007-01-2712, 2007.
    [21] Gruefeld G, Knapp M, Beushausen V, et al. In-Cylinder Measurements and Analysis on Fundamental Cold Start and Warm-up Phenomena of SI Engines. SAE 952394, 1995.
    [22] Grünefeld G, Beushausen V, Andresen P, et al. Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: Spray flame and four-cylinder in-line engine. Applied Physics B: Lasers and Optics, 1994, 58(4): 333-342.
    [23] Hentschel W, Homburg A, Ohmstede G, et al. Investigation of Spray Formation of DI Gasoline Hollow-Cone Injectors Inside a Pressure Chamber and a Glass Ring Engine by Multiple Optical Techniques. SAE 1999-01-3660, 1999.
    [24] Miles P, Dilligan M. Quantitative In-Cylinder Fluid Composition Measurements Using Broadband Spontaneous Raman Scattering. SAE 960828, 1996.
    [25] Egermann J, G(o|¨)ttler A, Leipertz A. Application of Spontaneous Raman Scattering for Studying the Diesel Mixture Formation Process Under Near-Wall Conditions. SAE 2001-01-3496, 2001.
    [26] Aronsson U, Chartier C, Andersson (O|¨), et al. Analysis of the Correlation Between Engine-Out Particulates and LocalΦin the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy. SAE 2009-01-1357, 2009.
    [27] Chraplyvy A R. Nonintrusive measurements of vapor concentrations inside sprays. Applied Optics, 1981, 20(15): 2620-2624.
    [28] Billings T P, Drallmeier J A. A Detailed Assessment of the Infrared Extinction Technique for Hydrocarbon Vapor Measurements in a Controlled Two-Phase Flow. Atomization and Sprays, 1994, 33(1): 99-121.
    [29] Suzuki M, Nishida K, Hiroyasu H. Simultaneous Concentration Measurement of Vapor and Liquid in an Evaporating Diesel Spray. SAE 930863, 1993.
    [30] Zhang Yuyin, Yoshizaki T, Nishida K. Imaging of Droplets and Vapor Distributions in a Diesel Fuel Spray by Means of a Laser Absorption-Scattering Technique. Applied Optics, 2000, 39(33): 6221-6229.
    [31] Li Tie, Zhang Yuyin, Nishida K, et al. Characterization of Mixture Formation Processes in DI Gasoline Engine Sprays with Split Injection Strategy via Laser Absorption and Scattering Technique, SAE 2003-01-3161, 2003.
    [32] Li Tie, Yamakawa M, Takaki D, et al. Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions. SAE 2003-01-1811.
    [33] Yamakawa M, Takaki D, Li Tie, et al. Quantitative Measurement of Liquid and Vapor Phase Concentration Distributions in a D.I. Gasoline Spray by the Laser Absorption Scattering (LAS) Technique. SAE 2002-01-1644, 2002.
    [34] Schulz C, Sick V. Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progress in Energy and Combustion Science, 2005, 31(1): 75-121.
    [35] Kohse-H(o|¨)inghaus K, Jeffries J B. Applied combustion diagnostics. London: Taylor & Francis, 2002.
    [36] Zhao Hua, Ladommatos N. Engine Combustion Instrumentation and Diagnostics. Warrendale: Society of Automotive Engineers, 2001.
    [37] Williams B, Ewart P, Stone R, et al. Multi-Component Quantitative PLIF: Robust Engineering Measurements of Cycle Variation in a Firing Spray-Guided Gasoline Direct Injection Engine. SAE 2008-01-1073, 2008.
    [38] Suck G, Jakobs J, Nicklitzsch S, et al. NO Laser-Induced Fluorescence Imaging in the Combustion Chamber of a Spray-Guided Direct-Injection Gasoline Engine. SAE 2004-01-1918, 2004.
    [39] Verbiezen K, Klein-Douwel R J H, van Vliet A P, et al. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Proceedings of the Combustion Institute, 2007, 31(1): 765-773.
    [40] Collin R, Nygren J, Richter M, et al. Simultaneous OH- and formaldehyde-LIF measurements in an HCCI engine. SAE 2003-01-3218, 2003.
    [41] Collin R, Nygren J, Richter M, et al. The Effect of Fuel Volatility on HCCI Using Simultaneous Formaldehyde and OH PLIF. SAE 2004-01-2948, 2004.
    [42] Hildingsson L, Persson H, Johansson B, et al. Optical Diagnostics of HCCI and Low-Temperature Diesel Using Simultaneous 2-D PLIF of OH and Formaldehyde. SAE 2004-01-2949, 2004.
    [43] Einecke S, Schulz C, Sick V, et al. Two-Dimensional Temperature Measurements in an SI Engine Using Two-Line Tracer LIF. SAE 982468, 1998.
    [44] Fujikawa T, Fukui K, Hattori Y, et al. 2-D Temperature Measurements of Unburned Gas Mixture in an Engine by Two-Line Excitation LIF Technique. SAE 2006-01-3336, 2006.
    [45] Coz J L, Hermant L. Quantification of Fuel Concentrations and Estimation of Liquid/Vapor Ratios in Direct Injection Sprays by Laser-Induced Fluorescence. SAE 2001-01-0916, 2001.
    [46] Styron J P, Kelly-Zion P L, Lee C, et al. Multicomponent Liquid and Vapor Fuel Distribution Measurements in the Cylinder of a Port-Injected, Spark-Ignition Engine. SAE 2000-01-0243, 2000.
    [47] Rogler P, Grzeszik R, Arndt S, et al. 3D analysis of vapor and liquid phase of GDI injectors using laser induced exciplex fluorescence tomography in a high pressure/high temperature spray chamber. SAE 2007-01-1827, 2007.
    [48] Diwakar R, Fansler T D, French D T, et al. Liquid and Vapor Fuel Distributions from an Air-Assist Injector - An Experimental and Computational Study. SAE 920422, 1992.
    [49] Matsuoka H, Yamashita H, Hayashi T, et al. Effects of Fuel Properties on Diesel Spray Behavior under High Temperature and High Pressure Conditions. SAE 2009-01-0834, 2009.
    [50] Wieske P, Wissel S, Grünefeld G, et al. Experimental Investigation of the Origin of Cyclic Fluctuations in a DISI Engine by Means of Advanced Laser Induced Exciplex Fluorescence Measurements. SAE 2006-01-3378, 2006.
    [51] Honda T, Kawamoto M, Katashiba H, et al. A Study of Mixture Formation and Combustion for Spray Guided DISI. SAE 2004-01-0046, 2004.
    [52] Gervais D, Gastaldi P. A Comparison of Two Quantitative Laser Induced Fluorescence Techniques Applied to a New Air Guided Direct Injection SI Combustion Chamber. SAE 2002-01-0750, 2002.
    [53] Skogsberg M, Dahlander P, Lindgren R, et al. Effects of Injector Parameters on Mixture Formation for Multi-Hole Nozzles in A Spray-Guided Gasoline DI Engine. SAE 2005-01-0097, 2005.
    [54] Li Yufeng, Zhao Hua, Brouzos N, et al. Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector. SAE 2006-01-0206, 2006.
    [55]汪洋,苏万华,史绍熙.用激光诱导荧光法(LIF)研究燃油喷雾的撞壁混合过程(1)-测试原理、平面撞壁.燃烧科学与技术, 1996, 2(4): 329-341.
    [56]汪洋,苏万华,史绍熙.用激光诱导荧光法(LIF)研究燃油喷雾的撞壁混合过程(2)-曲面撞壁、OSK、半壁射流.燃烧科学与技术, 1996, 2(4): 342-348.
    [57]汪洋,谢辉,苏万华,等.激光诱导荧光法研究柴油机新概念燃烧中的喷雾混合过程.燃烧科学与技术, 2002, 8(4): 338-341.
    [58]雷卫,苏万华.一种新的HCCI柴油机燃油喷雾特性的PLIF法测试装置.汽车工程, 2004, 26(4): 405-409.
    [59]孙田,苏万华,郭红松.应用激光诱导荧光法研究超高压喷雾气液相浓度场分布特性.内燃机学报, 2007, 25(2): 97-104.
    [60]孙田,苏万华,郭红松.复合激光诱导荧光定量标定技术及其对喷雾特性研究的应用Ⅰ:燃油喷雾当量比定量标定方法.内燃机学报, 2010, 28(1): 1-9.
    [61]孙田,苏万华,郭红松.复合激光诱导荧光定量标定技术及其对喷雾特性研究的应用Ⅱ:喷射参数和环境参数对喷雾特性的定量分析.内燃机学报, 2010, 28(1): 10-19.
    [62]郭红松,苏万华,孙田.利用PLIEF技术研究超高压燃油喷雾雾化和混合过程.燃烧科学与技术, 2007, 13(6): 525-531.
    [63]郭红松,苏万华,毛立伟,等.利用复合激光诱导荧光法对气相柴油喷雾温度场和浓度场的定量标定.燃烧科学与技术, 2010, 16(2): 123-127.
    [64] Maxnch K U, Krammer H, Leipertz A. Investigation of Fuel Evaporation Inside the Intake of a SI Engine Using Laser-induced Exciplex-Fluorescence with a New Seed. SAE 961930, 1996.
    [65] Berckmüller M, Tait N P, Greenhalgh D A. The influence of local fuel concentration on cyclic variability of a lean burn stratified-charge engine. SAE 970826, 1997.
    [66] Berckmüller M, Tait N P, Greenhalgh D A. The time history of the mixture formation process in a lean-burn stratified-charge engine. SAE 961929, 1996.
    [67] Darrow J C. Experiment Study of Mixing of Directly Injected Fuel with Air in an Optically Accessible Engine using Laser Induced Fluorescence [M.S. Thesis]. Michigan State University, 1998.
    [68] Einecke S, Schulz C, Sick V. Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion. Applied Physics B: Lasers and Optics, 2000, 71(5): 717-723.
    [69] Fansler T D, French D T, Drake M C. Fuel distributions in a firing direct-injection spark-ignition engine using laser-induced fluorescence imaging. SAE 950110, 1995.
    [70] Fitzgerald R P, Snyder J A. Effects of LIF Tracers on Combustion in a DI HCCI Engine. SAE 2008-01-2407, 2008.
    [71] Frieden D, Sick V. A two-tracer LIF strategy for quantitative oxygen imaging in engines applied to study the influence of skip- firing on in-cylinder oxygen contents of an SIDI engine. SAE 2003-01-1114, 2003.
    [72] Fujikawa T, Hattori Y, Akihama K, et al. Quantitative 2-D Fuel Distribution Measurements in a Direct-Injection Gasoline Engine Using Laser-Induced Fluorescence Technique. International Symposium COMODIA 98. 1998.
    [73] Fujikawa T, Hattori Y, Akihama K. Quantitative 2-D Fuel Distribution Measurements in An SI Engine Using Laser-Induced Fluorescence With Suitable Combination of Fluorescence Tracer and Excitation Wavelength. SAE 972944, 1997.
    [74] Ghandhi J B, Bracco F V. Fuel distribution effects on the combustion of a direct- injection stratified-charge engine. SAE 950460, 1995.
    [75] Gold M, Li G, Sapsford S, et al. Application of optical techniques to the study of mixture preparation in direct injection gasoline engines and validation of a CFD. SAE 2000-01-0538, 2000.
    [76] Graf N, Gronki J, Schulz C, et al. In-Cylinder Combustion Visualization in an Auto-Igniting Gasoline Engine using Fuel Tracer- and Formaldehyde-LIF Imaging. SAE 2001-01-1924, 2001.
    [77] Han Donghee, Steeper R R. An LIF equivalence ratio imaging technique for multicomponent fuels in an IC engine. Proceedings of the Combustion Institute, 2002, 29(1): 727-734.
    [78] Han Donghee, Steeper R R. Examination of iso-octane/ketone mixtures for quantitative LIF measurements in a DISI engine. SAE 2002-01-0837, 2002.
    [79] Han S, Cheng W K. Design and demonstration of a spark-ignition engine operating in a stratified-EGR mode. SAE 980122, 1998.
    [80] Hultqvist A, Christensen M, Johansson B, et al. The HCCI combustion process in a single cycle~High-Speed fuel tracer LIF and chemiluminescence imaging. SAE 2002-01-0424 , 2002.
    [81] Hwang W, Dec J E, Arberg M S. Fuel Stratification for Low-Load HCCI Combustion: Performance and Fuel-PLIF Measurements. SAE 2007-01-4130, 2007.
    [82] Itoh T, Kakuho A, Hiraya K, et al. A study of mixture formation processes in direct injection stratified charge gasoline engines by quantitative laser-induced fluorescence imaging and the infrared absorption method. International Journal of Engine Research, 2006, 7(5): 423-434.
    [83] Johansson B, Neij H, Alden M, et al. Investigations of the influence of mixture preparation on cyclic variations in a SI-engine, using laser induced fluorescence. SAE 950108, 1995
    [84] Kim K S, Choi M S, Lee C H, et al. In-cylinder fuel distribution measurements using PLIF in an SI engine. SAE 970509, 1997.
    [85] Koban W, Schulz C. Toluene Laser-Induced Fluorescence (LIF) Under Engine-Related Pressures, Temperatures and Oxygen Mole Fractions. SAE 2005-01-2091, 2005.
    [86] Kuwahara K, Ando H. Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines. Measurement Science and Technology, 2000, 11(6): R95-R111.
    [87] Kr(a|¨)mer H, Einecke S, Schulz C, et al. Simultaneous mapping of the distribution of different fuel volatility classes using tracer-LIF and NIR-tomography in an IC engine. SAE 982467, 1998.
    [88] Lee S, Mcgee J M, Quay B D, et al. A comparison of fuel distribution and combustion during engine cold start for direct- and port-fuel injection systems. SAE 1999-01-1490, 1999.
    [89] Li Yufeng, Zhao Hua, Leach B, et al. Flow optimization and fuel stratification for the stratified fuel spark ignition engine. International Journal of Engine Research, 2004, 5(5): 401-423.
    [90] Ma Xiao, He Xu, Wang Jianxin, et al. Design and Optimization of Multi-component Fuel for Fuel Concentration Measurement by Using Tracer PLIF in SI Engine. SAE 2010-01-0344, 2010,
    [91] Matsubara K, Shima Y, Okumi M, et al. Analysis of Mixture Formation Process in aStoichiometric Direct Injection Gasoline Engine. SAE 2003-01-0066, 2003.
    [92] Mcgee J M. A Comparison of Fuel Distribution and Combustion During Engine Cold Start for Direct and Port Fuel Injection System [M.S. Thesis]. The Pennsylvania State University, 1998.
    [93] Medaerts F, Puechberty D. In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: A comparison between natural gas. SAE 982524, 1998,
    [94] Meyer J, Haug M, Schreiber M, et al. Controlling combustion in a spark ignition engine by quantitative fuel distribution. SAE 950107, 1995.
    [95] Nygren J, Hult J, Richter M, et al. Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine. Proceedings of the Combustion Institute, 2002, 29(1): 679-685.
    [96] Persson H A, Arholm J S, Kristensson E, et al. Study of Fuel Stratification on Spark-Assisted Compression Ignition (SACI) Combustion With Ethanol Using High-Speed Fuel PLIF. SAE 2008-01-2401, 2008.
    [97] Reboux J, Puechberty D, Dionnet F. Study of mixture inhomogeneities and combustion development in a S.I. engine using a new approach to laser induced fluorescence (FARLIF). SAE 961205, 1996.
    [98] Richter M, Axelsson B, Aldén M, et al. Investigation of the fuel distribution and the in-cylinder flow field in a stratified charge engine using laser techniques and comparison with CFD-modeling. SAE 1999-01-3540, 1999.
    [99] Sacadura J C, Robin L, Dionnet F, et al. Experimental investigation of an optical direct injection S.I. engine using fuel-air ration laser induced fluorescence. SAE 2000-01-1794, 2000.
    [100] Salazar V M, Kaiser S A. An Optical Study of Mixture Preparation in a Hydrogen-fueled Engine with Direct Injection Using Different Nozzle Designs. SAE 2009-01-2682, 2009.
    [101] Scholz J, Wiersbinski T, Beushausen V. Planar Fuel-Air-Ratio-LIF with Gasoline for Dynamic Mixture-Formation Investigations. SAE 2007-01-0645, 2007.
    [102] Sercey G D, Heikal M, Gold M, et al. On the use of laser-induced fluorescence for the measurement of in-cylinder air—fuel ratios. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2002, 216(10): 1017-1029.
    [103] Sercey G D, Awcock G, Heikal M. Use of LIF image acquisition and analysis in developing a calibrated technique for in-cylinder investigation of the spatial distribution of air-to-fuel mixing in direct injection gasoline engines. Computers in Industry, 2005, 56(8-9): 1005-1015.
    [104] Smith J D, Sick V. Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane. Proceedings of the Combustion Institute, 2007, 31(1): 747-755.
    [105] Steeper R, Zilwa S D, Fayoux A. Co-Evaporative Tracer-PRF Mixtures for LIF Measurements in Optical HCCI Engines. SAE 2005-01-0111, 2005.
    [106] Swindal J C, Furman P A, Loiodice M E, et al. Fuel distillation effects on the outgassing from a simulated crevice in a SI engine measured by planar laser-induced fluorescence. SAE 970825, 1997.
    [107] Swindal J C, Dragonetti D P, Hahn R T, et al. In-cylinder charge homogeneity during cold-start studied with fluorescent tracers simulating different fuel distillation temperatures. SAE 950106, 1995.
    [108] Tabata M, Kataoka M, Tanaka T, et al. Measurement of fuel distribution in the piston cavity of direct injection SI engine by using LIF. SAE 2000-01-0240, 2000.
    [109] Tamura M, Sakurai T, Tai H. A Study of Crevice Flow in a Gas Engine using Laser-induced Fluorescence. SAE 2001-01-0913, 2001.
    [110] Wermuth N, Sick V. Absorption and Fluorescence Data of Acetone, 3-Pentanone, Biacetyl, and Toluene at Engine-Specific Combinations of Temperature and Pressure. SAE 2005-01-2090, 2005.
    [111] Williams B, Ewart P, Wang Xiaowei, et al. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF. Combustion and Flame, 2010, 157(10): 1866-1878.
    [112] Zhang Rui, Sick V. Multi-Component Fuel Imaging in a Spray-Guided Spark-Ignition Direct-Injection Engine. SAE 2007-01-1826, 2007.
    [113] Zhang Rui, Wermuth N, Sick V. Impact of Fluorescence Tracers on Combustion Performance in Optical Engine Experiments. SAE 2004-01-2975, 2004.
    [114] Zilwa S D, Steeper R. Predicting NOX Emissions from HCCI Engines Using LIF Imaging. SAE 2006-01-0025, 2006.
    [115] Reboux J, Puechberty D, Dionnet F. A New Approach of Planar Laser Induced Fluorescence Applied to Fuel/Air Ratio Measurement in the Compression Stroke of an Optical S.I. Engine. SAE 941988, 1994.
    [116] Lin M, Sick V. Mixture Evaporative Characteristics Prediction for LIF Measurements Using PSRK (Predictive Soave-Redlich-Kwong) Equation of State. SAE 2002-01-2750, 2002.
    [117] Stevens R E, Ma H, Stone C R, et al. On planar laser-induced fluorescence with multi-component fuel and tracer design for quantitative determination of fuel concentration in internal combustion engines. Proc. IMechE Part D: J. Automobile Engineerin, 2007, 221(D6): 713-724.
    [118] Koban W, Koch J D, Hanson R K. Absorption and fluorescence of toluene vapor at elevated temperatures. Phys. Chem. Chem. Phys., 2004, 6(11): 2940-2945.
    [119] Berlman I B. Handbook of fluorescence spectra of aromatic molecules. 2nd Edition. New York: Academic Press, 1971.
    [120] Cathcart G P, Zavier C. Fundamental Characteristics of an Air-Assisted Direct Injection Combustion System as Applied to 4-Stroke Automotive Gasoline Engines. SAE 2000-01-0256, 2000.
    [121] Drake M C, Haworth D C. Advanced gasoline engine development using optical diagnostics and numerical modeling. Proceedings of the Combustion Institute, 2007, 31(1): 99-124.
    [122] Wang Zhi, Wang Jianxin, Shuai Shijin, et al. Effects of Spark Ignition and Stratified Charge on Gasoline HCCI Combustion with Direct Injection. SAE 2005-01-0137, 2005.
    [123] Alkidas A C, Tahry S H E. Contributors to the Fuel Economy Advantage of DISI Engines Over PFI Engines. SAE 2003-01-3101, 2003.
    [124] Szekely G A, Alkidas A C. Combustion Characteristics of a Spray-Guided Direct-Injection Stratified-Charge Engine with a High-Squish Piston. SAE 2005-01-1937, 2005.
    [125] Iwamoto Y. Development of Gasoline Direct Injection Engine. SAE 970541, 1997.
    [126] Takagi Y. A new era in spark-ignition engines featuring high-pressure direct injection. Symposium (International) on Combustion, 1998, 27(2): 2055-2068.
    [127] Hentschel W. Optical diagnostics for combustion process development of direct-injection gasoline engines. Proceedings of the Combustion Institute, 2000, 28(1): 1119-1135.
    [128] Stevens E, Steeper R. Piston wetting in an optical DISI engine: Fuel films, pool fires, and soot generation. SAE 2001-01-1203, 2001.
    [129] Drake M C, Fansler T D, Solomon A S, et al. Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct- injection engine. SAE 2003-01-0547, 2003.
    [130] Ortmann R, Arndt S, Raimann J, et al. Methods and analysis of fuel injection, mixture preparation and charge stratification in different direct-injected SI engines. SAE 2001-01-0970, 2001.
    [131] Stojkovic B D, Fansler T D, Drake M C, et al. High-speed imaging of OH* and soot temperature and concentration in a stratified-charge direct-injection gasoline engine. Proceedings of the Combustion Institute, 2005, 30(2): 2657-2665.
    [132] Fansler T D, Stojkovic B, Drake M C, et al. Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy. Applied Physics B: Lasers and Optics, 2002, 75(4): 577-590.
    [133] Vanderwege B A, Han Z, Iyer C O, et al. Development and Analysis of a Spray-Guided DISI Combustion System Concept. SAE 2003-01-3105, 2003.
    [134] Iyer C O, Han Zhiyu, Yi Jianwen. CFD Modeling of a Vortex Induced Stratification Combustion (VISC) System. SAE 2004-01-0550, 2004.
    [135] Schwarz C, Schünemann E, Durst B, et al. Potentials of the Spray-Guided BMW DI Combustion System. SAE 2006-01-1265, 2006.
    [136] Fajardo C, Sick V. Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution. Proceedings of the Combustion Institute, 2007, 31(2): 3023~3031.
    [137] Hentschel W, Block B, Hovestadt T, et al. Optical Diagnostics and CFD-Simulations to Support the Combustion Process Development of the Volkswagen FSI Direct-Injection Gasoline Engine. SAE 2001-01-3648, 2001.
    [138] Han Zhiyu, Reitz R D, Yang Jialin, et al. Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine. SAE 970625, 1997.
    [139] Han Zhiyu, Yi Jianwen, Trigui N. Stratified Mixture Formation and Piston Surface Wetting in a DISI Engine. SAE 2002-01-2655, 2002.
    [140] Stanton D W, Rutland C J. Modeling Fuel Film Formation and Wall Interaction in Diesel Engines. SAE 960628, 1996.
    [141]王燕军,王建昕,帅石金.两段喷射直喷式汽油机(TSGDI)点火特性的试验研究与模拟计算.汽车工程, 2006, 28(7): 626-629.
    [142] Wang Yanjun, Wang Jianxin, Shuai Shijin, et al. Study of Injection Strategies of Two-stage Gasoline Direct Injection (TSGDI) Combustion System. SAE 2005-01-0107, 2005.
    [143]白云龙,王志,王建昕.分层当量比混合气抑制缸内直喷汽油机爆震的试验研究.内燃机学报, 2009, 27(6): 534-539.
    [144]安新亮,何旭,王丽雯,等.应用高速纹影法对汽油机燃烧过程的研究.内燃机工程, 2007, 28(2): 1-5.
    [145]王丽雯,何旭,王建昕,等.用双色法研究汽油机燃烧火焰的温度分布.燃烧科学与技术, 2007, 13(4): 293-298.
    [146]何旭,马骁,吴复甲,等.生物柴油碳烟特性的可视化研究.内燃机工程, 2009, 30(2): 1-5.
    [147]黄真理,李玉梁,余常昭. PLIF技术测量浓度场及其二维数字校正.力学学报, 1994, 26(5): 616-624.
    [148] Sirignano W A. Fuel droplet vaporization and spray combustion theory. Progress in Energy and Combustion Science, 1983, 9(4): 291-322.
    [149] Fedenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 1975, 21(6): 1086-1092.
    [150] Reid R, Prausnitz J, Poling B. The Properties of Gases and Liquids. New York: McGraw-Hill, 1987.
    [151] Anthony A. KIVA-3V: A block-structured KIVA program for engines with vertical or canted valves. New Mexico: Los Alamos, 1997:1-67.
    [152]解茂昭.内燃机计算燃烧学.大连:大连理工大学出版社, 1995:57-58.
    [153] Borman G, Johnson J. Unsteady vaporization history and trajectories of fuel drops injected into swirling air. SAE 620271, 1962.
    [154]王燕军.基于两次喷射的汽油缸内直喷式燃烧系统的研究[Ph.D Thesis].北京:清华大学, 2004.
    [155] O’Rourke P, Amsden A. The TAB method for numerical calculation of spray droplet breakup. SAE 872089, 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700