汽车线束等效模型分析及其在电磁兼容仿真中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在汽车向电子化、智能化方向发展的趋势要求下,车载电子设备不断的增加,而线束作为各种电子设备的连接纽带,在汽车的电器网络中扮演着十分重要的角色,可以说没有线束网络就没有汽车电气系统,汽车的电子化、智能化也就不可能实现。另一方面,车内电子设备增加的同时也恶化了汽车内部的电磁环境,线束的增多则使车内的电磁兼容问题更加严重。因此,为保证汽车的安全性和可靠性,建立适用于汽车电磁兼容仿真的线束模型成为具有重要理论意义和工程价值的研究课题。本论文在国家自然科学基金项目“汽车电磁兼容预测与电磁干扰抑制关键技术研究”(No.50877081)及重庆市自然科学基金重点项目“汽车电气系统电磁兼容性研究”(No.CSTC,2006BA6015)的资助下,重点研究了汽车线束在电磁兼容研究中的建模仿真方法,并对建模方法进行了实验验证。在研究过程中,综合运用了电磁场、电路及电磁兼容技术和测试方法的基本理论,实现了用“路”的方法对线束的等效、用“场”的方法对线束等效模型电磁辐射敏感度及电磁辐射发射的仿真分析。其主要工作如下:
     ①从Maxwell基本方程组出发,详细系统的推导出了多导体传输线方程,解释了电容矩阵元素的物理意义;讨论了多导体传输线的单位长度电感、电容矩阵的解析解和数值解,为汽车线束多导体传输线方程的电感矩阵和电容矩阵的计算奠定了基础。
     ②提出了描述多导体传输线电磁特性的等效波阻抗的定义,推导出了计算公式;根据导线终端负载与等效波阻抗的相对大小关系对导线进行了分组,使得线束最多等效为4根等效导线,简化了线束建模的复杂度。研究了导线终端的差模负载、共模负载、激励源的等效处理方法,完成了线束等效模型的理论基础研究,建立了线束等效模型。实现了用“路”的方法建立线束的等效模型,为线束电磁兼容性的高效计算创造了条件。
     ③推导了外界入射波在导线上产生感应电流的计算公式,分析得到了导线上产生感应电流的外界入射波的耦合方式;仿真验证了有限元方法计算导线感应电流的有效性;讨论了导线终端负载、终端结构及周围绝缘介质对感应电流的影响;以9根导线组成的线束为例,详细叙述了建立线束电磁辐射敏感度等效模型的全过程。该算例的仿真结果说明线束等效模型在保证等效前后计算精度不变的前提下明显节约了计算资源。实现了“场”的方法对线束等效模型的仿真分析。设计并搭建了由7根导线组成的线束电磁辐射敏感度的实验平台,在半电波暗室中实现了测试,与仿真结果对比说明了等效模型的正确性。
     ④由天线辐射原理建立了导线辐射发射的简单模型,验证了有限元法计算导线周围电场强度、磁场强度和辐射总功率的有效性;讨论了导线终端负载、终端结构及周围绝缘介质对电磁辐射发射的影响;以12根导线组成的线束为例,阐述了建立线束电磁辐射发射等效模型的过程,验证了在导线终端负载与线束等效波阻抗相同的情况下,该导线分组的灵活性。该算例的仿真结果说明,在保证计算精度不变的前提下,等效模型提高了计算速度并降低了对计算资源的要求;由7根导线组成的线束电磁辐射发射实验说明了等效模型的正确性。
     ⑤在深入分析汽车点火系统传导电磁干扰的基础上,得出了点火系统的辐射电磁干扰主要来源于点火线圈初级侧电流,并通过初级侧线缆的天线效应对外产生辐射的结论,由此建立了点火系统电磁辐射发射的等效模型;介绍了利用汽车CAD数据在HFSS软件中建立电磁兼容预测的有限元整车车体模型的方法,并通过了实验验证;仿真分析了汽车点火系统的电磁辐射发射在车内线束上产生感应电流,说明了线束等效模型可用于分析研究汽车电磁兼容性问题。
     ⑥根据汽车底盘的大小设计了复杂的线束网络,建立了线束网络的等效模型;仿真结果表明线束等效模型可以用于结构复杂的线束网络中,并且在保持计算精度不变的情况下,大大降低了计算时间、计算机内存。
With the development of the electronic and intelligent technology, auto electronic equipments are increasing rapidly. For the electronic devices in the automotive electrical network varying, the wiring harness plays an important role. Without it, there are no electronic and intelligent autos. Meanwhile, the increase of electronic equipments worsens the auto electromagnetic environment. Especially with the wiring harness growing in number, the automotive electromagnetic compatibility (EMC) becomes more serious. Therefore, in order to ensure vehicle safety and reliability, setting up automotive wiring harness model for EMC simulation become significant whether in theoretical field or in engineering research field.
     This thesis, supported by the National Natural Science Foundation of China,“Automotive EMC forecast and key technologies for electromagnetic interference suppression”(No.50877081) and Chongqing Natural Science Foundation of China,“Electromagnetic Compatibility for Automotive Electrical System”(No.CSTC, 2006BA6015), focuses on the emulation methods of automotive wiring harness and experimental verification.
     In the course of this research, the thesis uses the electromagnetic theory, circuit theory, and EMC technology theory and testing method. The aspects concerned are as follows:
     ①Deduce Multi-conductor transmission line equation from Maxwell fundamental equations in details and explains the physical meaning of capacitance matrix elements, and discuss the analytical and numerical methods of multi-conductor transmission line unit length inductance and capacitance matrix. These are the foundations for calculating the automotive wiring harness multi-conductor transmission line inductance matrix and capacitance matrix.
     ②Propose the principle of equivalent impedance defined the electromagnetic characteristics of the multi-conductor transmission line. Then, the equivalent impedance formula is deduced. According to the size of the terminal impedance and the equivalent impedance, the wiring harness can be classified in different groups. This approach greatly simplifies the wiring harness modeling by making the multi-conductor transmission lines reduce to four groups mostly. The equivalent methods of calculating differential-mode load, the common-mode load and the source are obtained. Establish the equivalent model by the circuit for the wiring harness efficient simulation.
     ③The induced current by the plane incident wave is calculated from the electromagnetic wave theory. Analyze the coupling modes which can produce the induced current. Verify the effectiveness of the finite element method (FEM) in calculating the induced current. Discuss the terminal load, terminal structures and the dielectric effect in the induce current. Taking the wiring harness consisting of nine conductors for example, the whole process of establishing the equivalent model for electromagnetic radiation (EMR) sensitivity is described in details. The emulation results show that the wiring harness equivalent model can save computing resources under accuracy condition. The experiment which is carried out in the semi-anechoic chamber validates the correctness of the equivalent model for EMR sensitivity emulation.
     ④Establish the simple wire radiation emission model based on the antenna theory. Verify the effectiveness of the FEM to calculate the electric field strength, the magnetic field strength, and the total power of radiation around the wire. Discuss the terminal load, terminal structures and the dielectric effect in the EMR emission. Taking the wiring harness consisting of 12 conductors for example, the whole process of establishing the equivalent model for EMR emission is described in details. The example proves that the conductor can be classified flexibly if its terminal load is equal to the equivalent impedance, and it also illustrates that the wiring harness equivalent model can save computing resources under accuracy condition. The experiment validates the correctness of the equivalent model for EMR emission emulation.
     ⑤Based on the analysis of the ignition system conducted electromagnetic interference (EMI), it is drawn conclusion that the radiated EMI of the ignition system is come from the current flowing through ignition coil primary side which acts as an antenna in this situation. Thereby, the EMR emission model of the ignition system is established. The process of building the vehicle body FEM model in HFSS software for EMC forecast is introduced. The experiment certificates the model. The induced current in the vehicle wiring harness generated by ignition system EMR emission is simulated using the equivalent model, and it shows that the equivalent model can be used in automotive wiring harness for EMC analysis.
     ⑥Establish a harness network according to the size of the chassis. The harness network equivalent model is built by the wiring harness equivalent model. The emulation results show that the equivalent model can be used to the complex structure harness network. Under the accuracy condition, it can reduce the computation time, computer memory greatly.
引文
[1]徐立.我国汽车电磁兼容技术发展状况[J].安全与电磁兼容,2003,1:35-36.
    [2]杨继深编著.电磁兼容技术之产品研发与认证[M].北京:电子工业出版社,2004.
    [3] Dipak L. Sengupta, Valdis V. Liepa著,沈远茂,刘素玲,石丹等译.应用电磁学与电磁兼容[M].北京:机械工业出版社,2009.
    [4] Andersen P. An overview of automotive EMC standards[C]. IEEE International Symposium on Electromagnetic Compatibility, 2006, 3(8): 14-18.
    [5]肖军.汽车电子产业已成为新经济的增长点[J].天津汽车,2005.
    [6]徐立.汽车电子发展状况与对策[J].信息技术与标准化,2006,(8):17-19.
    [7] http://wenku.baidu.com/view/6be96f29647d27284b735166.html[EB/OL].徐立.汽车电磁兼容标准与试验.
    [8] Burgeet Richard R, Massoll Richard E and Van Uum Bondald R. Relationship between spark plugs and engine-radiated electromagnetic interference[J]. IEEE Trans on Electromagnetic Compatibility, 1974, 16(3): 160-172.
    [9]李旭,俞集辉,汪泉弟等.基于CAD技术实现汽车电磁兼容的建模和仿真[J].重庆大学学报(自然科学版),2007,30(12):21-24.
    [10] http://wenku.baidu.com/view/439ae328cfc789eb172dc898.html[EB/OL].徐立.汽车电磁兼容技术.
    [11]马喜来.汽车电磁兼容性预估计的研究[D].吉林大学博士学位论文,2008,6.
    [12]吴定超.汽车电磁兼容仿真预测技术的研究[D].吉林大学博士学位论文,2009,6.
    [13] Michel Mardiguian. Controlling Radiated Emissions by Design[M]. New York, Van Nostrand Reinhold, 1992.
    [14]待焯,周伟.汽车电系电磁干扰源[J].武汉汽车工业大学学报,1999,21(4):4-7
    [15]杨克俊.电磁兼容原理与设计技术[M].北京:人民邮电出版社,2004.
    [16]余召锋,于颖,徐鸣谦等.国内外汽车电磁兼容研究发展状况[J].客车技术与研究,2007,2:8-10.
    [17] Ruddle A R. GEMCAR: guidelines for EMC modelling for automotive requirements [C]. GEMCAR Workshop held at EMC Zurich, Switzerland, Tutorials, 2003, 2: 225-2330
    [18]李旭.汽车点火系统电磁干扰的仿真与实验研究[D].重庆大学博士学位论文,2008, 6.
    [19]高攸纲.电磁兼容总论[M].北京:北京邮电大学出版社,2001.
    [20]金华标.船用电子设备电磁兼容技术研究[D].武汉理工大学博士学位论文,2010,5.
    [21] Kenn Atkinson. Graphical EMI Modeling Spreadsheet[C], Proceedings of the 1990 IEEEInternational Symposium on Electromagnetic Compafibilify, Washington, USA, August 1990, 175-179.
    [22] Joe LoVetri, Andrew S. Podgorski. Evaluation of HardSys: A Simple EMI Expert System[C]. Proceedings of the 1990 IEEE International Symposium on Electromagnetic Compafibilify, Washington, USA, August 1990, 228-232.
    [23] Ranganathan S, Beetner D G, Wiese R. An expert system architecture to detect system-level automotive EMC problems[C]. IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, Minnesota, 2002, 2(8): 976-981.
    [24] Todd Hubing. EMC Expert Systems for Evaluating Automotive Designs[C]. IEEE International Symposium on Electromagnetic Compatibility, Portland, Oregon, 2006, (8): 14-18.
    [25] T. Hubing, J. Drewniak, T. Van Doren, et al. An expert system approach to EMC Modeling[C]. Proceedings of the 1996 IEEE International Symposium on Electromagnetic Compafibilify, Santa Clara, CA, August 1996, 200-203.
    [26] S.Frei. where we stand today for automobile EMC simulation[C]. IEEE International Symposium on Electromagnetic Compatibility, 2008.
    [27] S.Frei, R. G. Jobava, D. Topchishvili. Complex Approaches for the Calculation of EMC Problems of Large Systems[C]. IEEE International Symposium on Electromagnetic Compatibility, 2004, 3(8): 826-831.
    [28] S. Frei R. lobaw D. Karkashadzc, A Ghmnjian, E.Yavolovsksia. Calculation of low frequency EMC problems in large systems with a quasi-static approach [C]. IEEE International Symposium on Electromagnetic Compatibility, Santa Clara, CA, 2004, 3(8): 798-803.
    [29] Neumayer R, Stelzer A. Continuous simulation of system-level automobile EMC problems[C]. IEEE International Symposium on Electromagnetic Compatibility, 2003, 1(8): 409-413.
    [30] Neumayer, F. Haslinger, A. Stelzer, R. Weigel. Equivalent Circuit Models for Coupling Effects Characterized by Scattering Parameter Data[C]. EMC Europe International Symposium on Electromagnetic Compatibility, Sorrento, Italy, 2002, 2: 141-417.
    [31] Neumayer, A. Stelzer, F. Haslinger, R. Weigel. On the Synthesis of Equivalent Circuit Models for Multipart Characterized by Frequency Dependent Parameters[J]. IEEE Trans. Theory and Techniques, 2002, 50(12): 2789-2796.
    [32]王晓明.电磁兼容现状及预测分析[J].电子材料与电子技术,2006,33(2):1-4.
    [33] Kremenetskiy,S.D. Method of estimating the electromagnetic compatibility (EMC)of electronic equipment with different frequency modes of functioning[J]. Telecommunications and Radio Engineering,1993, 48(11): 118-124.
    [34]欧阳丹.汽车电磁兼容的智能预测方法[J].汽车工程师,2009,(4):47-49.
    [35]金楚涵.汽车电磁兼容仿真流程的探讨[J].上海汽车,2009,(3):14-17.
    [36]高锋,陈立东,翟建鹏等.汽车点火系统建模及传导骚扰仿真[J].汽车工程,2008,30(10):893-897.
    [37]孙佳伟.汽车电磁兼容仿真研究[D].同济大学硕士学位论文,2008,3.
    [38]朱学军.电动汽车电力电子装置的电磁兼容性研究[D].同济大学博士学位论文,2008,9.
    [39]黄勇,曾帆,陈全世等.电动汽车共模电流传导特性的研究[J].电工电能新技术,2007, 26(3): 24-28.
    [40]汪泉弟,刘春艳,俞集辉等.汽车火花点火系统电磁干扰的抑制方法[J].重庆大学学报(自然科学版),2007,30(7):46-49.
    [41] Yu Jihui, Li Xu, Li Yongming, et al. Theoretical Calculation of Spark current Level in automotive secondary ignition system[J]. Journal of System Simulation, 2009, 21(2): 568-571.
    [42]汪泉弟,秦传明,郑亚利等.低压永磁直流电机的传导电磁干扰模型,电机与控制学报,2011,15(1):55-59.
    [43]俞集辉,邹志星,李永明等.导线电磁干扰的数值仿真[J].重庆大学学报(自然科学版),2007,30(9):46-50.
    [44]俞集辉,马晓雷,郑亚利.车载天线电磁特性及耦合度的仿真研究[J].系统仿真学报,2008,20(6):1603-1605.
    [45] Baum C.E., Liu T.K., Tesche F.M. On the analysis of general multiconductor transmission line networks[J]. Interaction Note, 1978, 350: 467-547.
    [46] Clayton R. Paul著,闻映红译.电磁兼容导论(第2版)[M].北京:人民邮电出版社,2007.
    [47] G Andrieu, A. Reineix, X. Bunlon, et al. Extension of the“Equivalent Cable Bundle Method”for Modeling Electromagnetic Emissions of Complex Cable Bundles[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(1): 108-118.
    [48] Paletta L, Parmantier J P, Issac F, et al. Susceptibility analysis of wiring in a complex system combining a 3-D solver and a transmission line network simulation[J]. IEEE Transactions on Electromagnetic Compatibility, 2002, 44(2): 309-317.
    [49] Clayton R. Paul. A Comparison of the Contributions of Common-Mode and Differential-Mode Currents in Radiated Emissions[J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1989, 31(2) 2: 189-193.
    [50] G Andrieu, L. Kone, F. Bocquet, et al. Multiconductor Reduction Technique for Modeling Common-Mode Currents on Cable Bundles at High Frequency for AutomotiveApplications[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(1): 175-184.
    [51] X.Ferrieres, J. P. Parmantier, S. Bertuol, et al. Application of a hybrid finite difference/finite volume method to solve an automotive EMC problem[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(4): 624-634.
    [52] Geping Liu, D.J. Pommerenke, J.L. Drewniak, et al. Anticipating vehicle-level EMI using a multi-step approach[C]. 2003 IEEE International Symposium on Electromagnetic Compatibility, 18-22 Aug. 2003, (1): 419-424.
    [53] S. Sun, G. Liu, D.J. Pommerenke, et al. Anticipating EMI and On-Board Interference in Automotive Platforms[C]. 2004 International Symposium on Electromagnetic Compatibility, 9-13 Aug. 2004, (3): 792-797.
    [54] B.Cannas, A.Fanni, F.Maradei. A Neural Network Approach to Predict the Crosstalk in Non-Uniform Multiconductor Transmission Lines[C]. 2002. IEEE International Symposium on Circuit and Systems, 2002, (1): 573-576.
    [55] B.Cannas, A.Fanni, F.Maradei. Crosstalk Prediction in Twisted Bundles by a Neural Approach[C]. 2002 3rd International Symposium on Electromagnetic Compatibility, 21-24 May, 2002, (1): 638-641.
    [56] S.Salio, F.Canavero, D.Lecointe, W.Tabbara. Crosstalk prediction on wire bundles by Kriging approach[C]. 2000 IEEE International Symposium on Electromagnetic Compatibility, 21-25 Aug, Washington, DC, USA, 2000, (1): 197-202.
    [57] Shishuang Sun, Geping Liu, James L.Drewniak. Hand-Assembled Cable Bundle Modeling for Crosstalk and Commmon-Mode Radiation Prediction[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(3): 708-718.
    [58]进侯,王志杰,许军.导体传输线间的高频耦合干扰模型[J].鱼雷技术,2005,13(3):18-27.
    [59]路宏敏,傅君眉,刘科祥等.互连设备的高频传导干扰分析[J].西安交通大学学报,2000,34(12):10-14.
    [60]路宏敏,傅君眉,朱满座.等短传输线的串扰响应分析[J].西安交通大学学报,2000,34(6):105-107.
    [61]罗映红,陶彩霞等.基于模式理论的传输线高频串扰预测仿真[J].自动化与仪器仪表,2008,135(1):26-30.
    [62]李永明,祝言菊,李旭等.电磁兼容的人工神经网络预测技术分析[J].重庆大学学报,2008,31(11):1313-1316.
    [63]李旭,俞集辉,李永明等.互连导线串扰问题的人工神经网络预测[J].计算物理,2009,26(2):311-316.
    [64]高印寒,马喜来,陈如娜.基于模糊推理的汽车电磁兼容预测技术[J].吉林大学学报(工学版),2006,36(3): 399-403.
    [65]李永明,曾铉,郑亚利等.模糊推理在导线间串扰预测中的应用[J].重庆大学学报,2010,34(6):15-19.
    [66]谢德馨,杨仕友编著.工程电磁场数值分析与综合[M].北京:机械工业出版社,2008.
    [67] http://wenku.baidu.com/view/866fbc49cf84b9d528ea7a7c.html?from=rec&pos=4&weight=14&lastweight=14&count=5[EB/OL].
    [68] http://baike.baidu.com/view/763104.htm[EB/OL].
    [69] http://www.docin.com/p-105837004.html[EB/OL].
    [70]姚蔚利.车辆总线与网络通信技术标准(上)[J].汽车电子,2007,11:11-16.
    [71]梁振光.汽车电磁兼容研究现状[J].安全与电磁兼容,2006,6:89-99.
    [72] Maxam G. L, Hsu H. P, Wood P.W. Radiated ignition noise due to the individual cylinders of an automobile engine[J]. IEEE Trans on Vehicular Technology, 1976, 25(5): 33-38.
    [73] Sphepherd R A. Neq Techniques for Suppression of Automobile Ignition Noise[J]. IEEE Trans on Vehicular Technology, 1976, 25(2): 2-12.
    [74] Chen Chingchi. Predicing Vehicle-Level EMC performance utilizing on-bench component characterization results[C]. IEEE International Symposium on Electromagnetic Compatibility, 1999, 2(8): 765-769.
    [75] BAUM C E . Electromagnetic Topology for the Analysis and Design of Complex Electromagnetic Systems[C]. Fast Electrical and Optical Measurements.Dordrecht,1986: 467-547.
    [76]李圭源,张厚,吴宏超等.基于电磁拓扑理论的系统间电磁兼容分析[J].无线电工程, 2009,39(7):44-46.
    [77]翁凌雯,牛忠霞,周东方等.分析传输线网络的电磁耦合问题[J].微计算机信息,2005,21(9-2):66-67.
    [78]邹志星.汽车布线对汽车电磁兼容的影响研究[D].重庆大学硕士学位论文,2007,6.
    [79]贾晋.汽车点火系统电磁干扰预测方法的研究[D].重庆大学硕士学位论文,2010,5.
    [80]俞集辉,郑亚利,邹志星.车内导线串扰和辐射仿真研究[J].系统仿真学报,2008,20(17):4737-4739.
    [81]齐磊.变电站瞬态电磁场对二次电缆的电磁耦合机理研究[D].华北电力大学博士学位论文,2006,5.
    [82]冯慈璋主编.电磁场(第二版)[M].北京:高等教育出版社,1997.
    [83] Clayton R. Paul. Frequency Response of Multiconductor Transmission Lines Illuminated by an Electromagnetic Field[J]. IEEE Transactions on Electromagnetic Compatibility, 1976,18(4): 183-190.
    [84] Joseph C. Clements, Clayton R. Paul and Arlon Taylor Adams. Computation of the Capacitance Matrix for Systems of Dielectric-Coated Cylindrical Conductors[J]. IEEE Transactions on Electromagnetic Compatibility, 1975, 17(4): 238-248.
    [85] Frederick M. Tesche, Michel V.lanoz and Torbi?rn Karlesson,吕英华,王旭莹译. EMC分析方法与计算模型[M].北京:北京邮电大学出版社,2009.
    [86]彭迎,阮江军,张宇等.脉冲变压器特快速暂态电压分布计算[J].中国电机工程学报,2005,25(11):140-145.
    [87]倪光正,杨仕友,邓婕等编著.工程电磁场数值计算[M].北京:机械工业出版社,2010.
    [88]周守昌主编.电路原理(下册)[M].北京:高等教育出版社,1999.
    [89]杨保初,刘晓波,戴玉松编著.高电压技术[M].重庆:重庆大学出版社,2001.
    [90]周守昌主编.电路原理(上册)[M].北京:高等教育出版社,1999.
    [91]谢拥军等编著. HFSS原理与工程应用[M].北京:科学出版社,2009.
    [92]李明洋编著. HFSS电磁仿真设计应用详解[M].北京:人民邮电出版社,2010.
    [93]曹善勇编著. Ansoft HFSS磁场分析与应用实例[M].北京:水利水电出版社,2010.
    [94]谢拥军等编著. Ansofut HFSS基础及应用[M].西安:电子科技大学出版社,2007.
    [95] Guillaume Andirieu. Elaboration et Application d’une Méthode de Faisceau Equivalent pour I’Etude des Couplages Electromagnétiques sur Réseaux de Cablages Automobiles[D]. L’Universitédes Sciences et Technologies de Lille, Microondes et microtechnologies, 2006.
    [96] GB/14023-2006《车辆、机动船和火花点火发动机驱动装置无线电干扰特性的测试方法及允许值》[S].
    [97] Constantine A. Balanis. Antenna Theory: Analysis and Design (3rd Edition) [M]. Hoboken: John Wiley & Sons, Inc., 2005.
    [98] Topchishvili D., Jobava, R., Bogdanov, F., Chikhradze B. Frei S, A hybrid MTL/MoM approach for investigation of radiation problems in EMC[C]. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 2004. DIPED 2004. Proceedings of the 9th International Seminar/Workshop on 11-14 Oct. 2004: 65-68.
    [99]路宏敏编著.工程电磁兼容[M].西安:西安电子科技大学出版社,2003.
    [100] Stephen H. Hall, Howard L.Heck著,张徐亮等译.高级信号完整性技术[M].北京:电子工业出版社,2011.
    [101] Ansoft Corporation. Ansoft HFSS Field Calculator Cookbook[Z]. 2000.
    [102] Jia Jin, Wang Quandi, Yu Jihui, et al. Wideband Equivalent Circuit Model and Parameter Computation of Automotive Ignition Coil Based on Finite Element Analysis[J]. Applied Computational Electromagnetics Society Journal, 2010, 25(7): 612-619.
    [103] Fujiwara O, Amemiya Y. Calculation of ignition noise level caused by plug gap breakdown[J]. IEEE Transactions on Electromagnetic Compatibility, 1982, 24(2): 26-32.
    [104]郑亚利,俞集辉,汪泉弟等.面向点火系统电磁兼容预测的火花塞动态电路模型[J].电工技术学报,2011,26(2):8-13.
    [105]黄怡然,孙悦,尹成群.基于混沌理论的蓄电池内阻检测的研究[J].系统仿真学报,2009,33(5):415-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700