放电等离子烧结制备钛铝基合金及致密化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,γ-TiAl基合金作为新一代轻质高温结构材料在全世界范围内引起了学者和科研机构广泛的关注和研究,但是较低的室温断裂韧性和高温蠕变抗性严重阻碍了γ-TiAl基合金的和实际应用。本工作以等离子旋转电极雾化(Plasma Rotating Electrode Processing,PREP)技术制备γ-TiAl基预合金粉末为原料,采用放电等离子烧结(Spark Plasma Sintering,SPS)技术可以快速制备具有细小晶粒且含有少量高温残留β相的TiAl基合金。利用光学显微镜(OM)、X射线衍射(XRD)、扫描电镜(SEM)、差热分析(DSC)、透射电镜(TEM)等分析手段系统的研究了工艺参数对获取高质量预合金粉末的影响,以及放电等离子烧结温度和成型压力对粉末烧结体显微组织、力学性能和粉末体致密化机理的影响,通过以上研究得到如下结论:
     1、对PREP制备的Ti-47A1-2Cr-2Nb-0.2W(at.%)预合金粉末研究结果表明,采用该技术制备的合金粉末平均粒径约为85μm,球形度高,纯度高,平均氧、氮杂质分别为550ppm和40ppm。确定了粉末直径与电极棒转速关系为:d=(12000/n)D-1/2-140.确定了粉末颗粒内部显微组织随着颗粒直径的增加由亚晶组织向等轴胞状枝晶演化规律;粉末主要由大量α2相和少量的γ相组成,随着粒径减小,γ相含量随之减小,α2/γ比例增加,且会生成一定量的β(B2)相。
     2、研究了SPS烧结温度和成形压力对粉末烧结体显微组织和力学性能的影响。发现,在不同成形压力下烧结温度超过1100℃时均可获得致密度高于99.6%的致密体。SPS烧结TiAl基合金过程中,成形压力不会对烧结体显微组织产生影响,成形压力增加会改变烧结初期粉末体密度和后期致密化程度。不同温度烧结试验表明合金粉末在900℃时,粉末烧结体以γ相为主,含少量α2相;当烧结温度超过1200℃时,组织内存在少量高温残留B2相,α2相、β相和γ相存在如下晶体学关系:(0001)α2//{111}∥{110}β,<1120>α2//<110>γ//<111>β;1300℃烧结样品中有形变诱导α2→γ相变以及形变孪晶产生。粉末烧结体显微组织主要取决于烧结温度,1100℃时为双态组织、1200℃时为近层片组织、1250℃为全层片组织。SPS烧结合金在1100℃具有最高的压缩断裂强度、压缩延伸率和拉伸断裂强度,分别为2367MPa.600MPa和2.25%。室温拉伸性能测试表明,合金断裂方式为脆性断裂,高温(800℃时)拉伸时强度和延伸率分别为435MPa和45%。
     3、系统研究了SPS制备TiAl基合金过程的致密化机理。发现,在SPS制备TiAl基合金过程中致密化可分为三个不同阶段,即初期粉末颗粒重排阶段、中期电火花放电烧结颈形成阶段和高温塑性变形致密化阶段。同一烧结温度下烧结中期小尺寸粉末颗粒相互粘结,随着烧结温度的升高,大尺寸颗粒发生大幅度塑性变形从而完成致密化。相同烧结温度下增加成形压力会增加第一阶段致密化程度和第三阶段致密化速率,通过分析确定了烧结过程的致密化方程:第一阶段:p1=(2.65±0.4)0.01Pt,(1     4、通过SPS烧结制备了TiA1-Nb(5-10at.%)复合材料。分析了不同Nb添加量和烧结温度对复合材料显微组织和室温断裂韧性的影响。研究表明,添加Nb元素粉末可以提高材料致密度,在1150℃时致密度可达99.2%。通过改变烧结温度和Nb粉添加量可以生成具有多相组织的复合材料,并有效提高复合材料的室温断裂韧性,最高室温断裂韧性为28.7MPa·m1/2。
Currently, gamma titanium aluminides based alloys, with their low density, high specific strength and stiffness, high corrosion and oxidation resistance at high temperature, make them one of the most prospering high temperature structure materials to replace heavier nickel-based superalloys in the applications of aerospace and automotive components such as nozzles, divergent flaps, compressor blades, etc., which attracts a lot of researches'and research institutions'attention. In this paper, a novel powder metallurgy technique, namely spark plasma sintering, was successfully used to prepare refined-grain TiAl alloys with a little amount of high-temperature retained β phase particles through prealloyed TiAl-based powders produce by plasma rotating electrode processing (PREP); the process of PREP, sintering and densification mechanisms and microstructure and mechanical properties of as-SPSed bulk samples were investigated systematically. The following results had been obtained:
     1) Prealloyed Ti-47Al-2Cr-2Nb-0.2W powders produced by PREP were at narrow size distribution with mean particle size d50being85μm; The average contents of impurities O and N were550ppm and40ppm, respectively, and the content of O was increasing with decline of the particle size, but remained less than1000ppm, while N stayed unchanged; The sphericity started reducing when the mean particle size surpassed150μm, and the surface became rough as well. Regress analysis showed that the relation between diameter of electrode bar and rotating speed was: d=(12000/n) D-1/2-140. Further investigation indicated that inner microstructure of the particle had changed from sub-microcrystalline to equiaxed cellular crystalline as the particle sized increased; The main phase of the particle was a2with minor y phase, and the content of y declined with particle size decreasing, resulting in a2/y ratio increasing, and B2phase was observed at the same time, which was mainly because of the higher cooling rate during the PERP; Dendritic segregation appeared between dendritic arms, resulting from the difference of distribution modulus at the interface between solid-liquid during cooling process.
     2) Influences of sintering temperature and pressure on microstructure and mechanical properties during SPS had been studied. During SPS, we found that relative density of SPSed TiAl bulk samples was more than99.6%when the sintering temperature was higher than1500℃; further investigation revealed that increasing the pressure could enhance the relative density of the loose density and decrease the solidification time at initial stage of SPS, but had little impact on the microstructure. The process of α2→γ phase transformation completed when sintering temperature closed to900℃, and the main phase in the bulk was y, with minor a2phase. When the sintering temperature was higher than1200℃, a small amount of B2phased were also discovered, which was caused by higher cooling rate during SPS. Microstructure of the SPSed bulk samples primarily depended on sintering temperature, with duplex phase at1100℃, near lamellar at1200℃and full lamellar at1250℃. The highest compressive fracture strength2367MPa, elongation2.25%and tensile fracture strength600MPa were achieved at1100℃sintering temperature. The highest Vickers hardness at the same temperature was516Hv. The tensile test results demonstrated that the fracture mode of the SPSed TiAl bulk was brittle mode, and superplastic behavior appeared when testing temperature was at800℃, with tensile strength435MPa and elongation45%, respectively.
     3) Identification of the microstructure mechanisms during SPSed TiAl densification had been studied systematically. Through sintering at three different pressures and six different sintering temperatures for5min, it was found that a SPS circle for TiAl bulk material was consist of four stages:initial pressure of machine, formation of sintering necklace, the growth of necklace and high-temperature creep stage. Formed pressure had no influence on the densification. Densification took place between900℃and1200℃via plastic deformation of the powders. TEM observation showed that the repartition of the plastic deformation was correlated to the dendritic microstructure, and that dynamic recrystallization mechanisms occurred. At1250℃, a2phase, y phase and retained P phase followed the crystalline oriental relationship as below:(0001)a2//{111}γ//{110}β,<1120>α2//<110>γ//<111>β And at above1250℃, deformation induced phase transformation and deformation twins occurred.
     4) A TiAl-Nb composite had been synthesized by SPS from pre-alloyed TiAl powders and elemental Nb powders at the molar ratio of90:10and95:5, and the as-prepared samples were mainly constituted of y phase, O phase, niobium solid solution(Nbss) phase and B2phase. The fracture toughness was about28.7MPa-m-1/2. The ductile phase played an important role in absorbing the fracture energy in front of the cracks and B2phase could branch the propagation of the cracks. It was discovered that sintering temperature could be decreased by adding Nb powders and relative density99.2%was obtained at1150℃. The microhardness of each phase of the composite was tested.
引文
[1]张永刚,韩雅芳,陈国良.金属间化合物结构材料[M],北京:国防工业出版社,2001
    [2]黄伯云钛铝基金属间化合物[M],长沙:中南工业大学出版社,1999
    [3]Dimiduk D M. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials[J]. Materials Science and Engineering A,1999,263(2):281-288
    [4]Thomas M, Raviart J L, Popoff F. Cast and PM processing development in gamma aluminides[J]. Intermetallics,2005,13(9):944-951
    [5]Yong Wang, J.N. Wang, Jie Yang, etal. Control of a fine-grained microstructure for cast high-Cr TiAl alloys. Materials Science and Engineering A [J],2005,392:235-239.
    [6]仲增慵.金属间化合物[M],北京:机械工业出版社,1992
    [7]C T. Liu. Recent advances in ordered intermetallics [J]. Materials Chemistry and Physics,1995,42(2):77-86
    [8]D.M. Dimiduk, P.L. Martin, Y.W..Kim Microstructure development in gamma alloy mill products by thermomechanical processing. Materials Science and Engineering A [J],1998,243:66-76
    [9]S.C. Huang, D.S. Shih. Microstructure property relationships in Titanium Aluminides and alloys[C]. TMS. PA. Warrendale,1991.105-122
    [10]Appel F, Wagner R. Microstructure and deformation of two-phase y-titanium aluminides. Materials Science and Engineering A [J],1998, R22:187-268
    [11]R.M. Imayev, V.M. Imayev, M. Oehring, etal. Alloy design concepts for refined gamma titanium aliminide based alloys. Intermetallics [J],2007,15: 451-460
    [12]McCullough C, Valencia JJ, Levi CQ etal. Phase equilibria and solidification in Ti-Al alloys. Acta Materialia [J],1989,37:1321-1336
    [13]P.X Fu, X.H. Kang, Y.C. Ma, etal. Centrifugal casting of TiAl exhaust valves. Intermetallics [J],2008,16:130-138
    [14]X.F. Ding, J.P. Lin, L.Q. Zhang, etal. Microstructure development during directional solidification of Ti-45Al-8Nb alloy. Journal of Alloys and Compounds [J],2011,509(9):4041-4046.
    [15]Y.L. Liu, L.M. Liu, S.Q. Wang, etal. First-principles study of shear deformation in TiAl and Ti3Al. Intermetallics [J],2007,15:428-435
    [16]Y.Y. Chen, B.H. Li, F.T. Kong. Microstructural refinement and mechanical properties of Y-bearing TiAl alloys. Journal of Alloys and Compounds [J], 2008,457:265-269
    [17]刘咏,黄伯云,贺跃辉等.元素粉末冶金方法制备TiAl基合金[J].粉末冶金材料科学与工程,1999,4(3):189-194
    [18]Yuyong Chen, Fantao Kong, Jiecai Han, etal. Influence of yttrium on microstructure, mechanical properties and deformability of Ti-43A1-9V alloy. Intermetallics [J],2005,13:263-266
    [19]Z.G. Liu, L.H. Chai, Y.Y. Chen, etal. Microstructure evolution in rapidly solidified Y added TiAl ribbons. Intermetallics [J],2011,19:160-164.
    [20]LIU Zhi-guang, CHEN Yu-yong, CHAI Li-hua, etal. Production and characterization of TiAl ribbons with Y additions. Transactions of Nonferrous Metals Society of China [J],2006,16:711-714.
    [21]Y. Wu, K. Hagihara, Y. Umakshi. Improvement of cyclic oxidation resistance of Y-containing TiAl-based alloys with equiaxial gamma microstructures. Intermetallics [J],2005,13:879-884.
    [22]F.T. Kong, Y.Y. Chen, B.H. Li. Influence of yttrium on the high temperature deformability of TiAl alloys. Materials Science and Engineering A [J],2009, 499:53-57
    [23]Y. Wu, K. Hagihara, Y. Umakoshi. Influence of Y-addition on the oxidation behavior of Al-rich y-TiAl alloys. Intermetallics [J],2004,12:519-532
    [24]Valery Imayev, Timur Khismatullin, Tatjana Oleneva, etal. Grain Refinement in Cast Ti-46A1-8Nb AND Ti-46A1-8Ta Alloys via Massive Transformation. Advanced Engineering Materials [J],2008,10(2):1095-1100
    [25]Jie Yang, J.N. Wang, Qiangfei Xia, etal. Effect of cooling rate on the grain refinement of TiAl-based alloys by rapid heat treatment. Materials Letters [J], 2000,46:193-197
    [26]J.Liu, Q.D.Luan, X.GWang, etal. Microstructural and high temperature deformation characterization of Ti-45A1-3Nb-(Cr,Mn,Mo,Sc)alloy. Materials Science and Engineering A [J],2010,527:7658-7662
    [27]B.H. Li, Y.Y. Chen, Z.Q. Hou, etal. Microstructure and mechanical properties of as-cast Ti-43 A1-9V-0.3Y alloy. Journal of Alloys and Compounds [J],2009, 437:123-126
    [28]R. Cao, L. Li., J.H. Chen, et al. Study on compression deformation, damage and fracture behavior of TiAl alloys Part 11. Fracture behavior. Materials Science and Engineering A [J],2010,527(10-11):2468-2477
    [29]D. Peter, J. Pfetzing, M.F. X, etal. Microstructural anisotropy, uniaxial and biaxial creep behavior of Ti-45Al-5Nb-0.2B-0.2C. Materials Science and Engineering A [J],2009, (510-511):368-372
    [30]S.Heshmati-Manesh, M. Nili Ahmadabadi, H. Ghasemiarmaki, etal. Effect of initial microstructure and further thermomechanical processing on microstructural evolution in a Ti-47A1-2Cr alloy. Journal of alloys and Compounds [J],2007,436:200-203
    [31]L. Zhao, J. Beddoes, D. Morphy, etal. Microstructure and mechanical properties of a PM TiAl-W alloy processed by hot isostatic pressing. Materials Science and Engineering A [J],1995, (192-193):957-964
    [32]Jacek Chraponski. The effect of lamellar separation on the properties of a Ti-46Al-2Nb-2Cr intermetallic alloy. Materials Characterization [J],2006,56: 414-420
    [33]Jianglei Fan, Xinzhong Li, Yanqing Su, etal. Dependency of microhardness on solidification processing parameters and microstructure characteristics in the directionally solidified. Journal of alloys and Compounds [J],2010,504: 60-64
    [34]C.J. Zhang, D.M. Xu, H.Z. Fu, etal. To eliminate the composition transient zone in directional solidification of TiAl alloys. Journal of Crystal Growth [J], 2008,310:3604-3609
    [35]Xiang Zan, Yang Wang, Yuanming Xia, etal. Strain rate effect on the tensile behavior of Duplex Ti-46.5A1-2Nb-2Cr intermetallics at elevated temperatures. Materials Science and Engineering A [J],2008,498:296-301
    [36]E. Hamzah, M. Kanniah, M. Harun. Effect of chromium addition on microstructure and creep strength of as-cast Ti-48A1 alloy. Materials Science and Engineering A [J],2008, (483-484):555-559
    [37]Hanliang Zhu, D.Y. Seo, K. Maruyama, etal. Effect of microstructure on creep deformation of 45XD TiAl alloy at low and high stresses. Materials Science and Engineering A [J],2008, (483-484):533-536
    [38]G.H. Cao, B. Kloden, E. Rybacki, etal. High strain torsion of a TiAl-based alloy. Materials Science and Engineering A [J],2008, (483-484):512-516
    [39]S. Gebhard, F. Pyczak, M. Goken. Micro structural and micromechanical characterization of TiAl alloys using atomic force microscopy and nanoindentation. Materials Science and Engineering A [J],2009,523:235-241
    [40]S. Oswald, R. Hermann, B. Schmidt. SIMS measurement of oxygen content in y-TiAl single crystals and polycrystalline alloys with Nb addition. Materials Science and Engineering A [J],2009,516:54-57
    [41]J.P. Lin, X.J. Xu, Y.L. Wang, etal. High temperature deformation behaviors of a high Nb containing TiAl alloy. Intermetallics [J],2007,15:668-674
    [42]J. Zollinger, J. Lapin, D. Daloz, etal. Influence of oxygen on solidification behaviour of cast TiAl-based alloys. Intermetallics [J],2007,15:1343-1350
    [43]B.A. Simkin, B.C. Ng, M.A. Crimp, etal. Crack opening doe to deformation twin shear at grain boundaries in near-y TiAl. Intermetallics [J],2007,15: 55-60
    [44]S.W. Kim, K.S. Kumar, M.H. Oh, etal. Crack propagation behavior in TiAl-Nb single and Bi-PST crystals. Intermetallics [J],2007,15:9
    [45]Ping Wang, D. Veeraraghavan, Vijay K. Observation of twinning the α2 phase in a quenched Ti-46.54 at.% Al alloy. Scripta Materialia [J],1996,34: 1601-1604
    [46]M.H. Yoo. Dislocation mechanisms for deformation twinning in the L1o structure. Scripta Materialia [J],1998,39:569-575
    [47]C. Derder, R. Bonnet, J.M. Penisson etal. Evidence of stress-induced α2→γ transaction in a Ti-30at%Al alloy. Scripta Materialia [J],1998,38:757-762
    [48]C.J. Boehlert, D.M. Dimiduk, K.J. Hemker. The phase evolution, mechanical behavior, and micro structural instability of a full-lamellar Ti-46Al (at.%) alloy. Scripta Materialia [J],2002,46:259-267
    [49]Zh.G. Jiang, B. Chen, K. Liu, etal. Effects of boron on phase transformation of high Nb containing TiAl-based alloy. Intermetallics [J],2007,15:738-743
    [50]Birgit Skrotzki, Mahinur Unal, Gunther Eggeler. On the role of mechanical twinning in creep of a near-γ TiAl-alloy with duplex microstructure. Scripta Materialia [J],1998,39:1023-1029
    [51]G.H. Cao, G.J. Shen, Z.G. Liu, etal. Transmission electron microscopic investigation of the γ→α phase transformation in a Ti-45Al-5Nb alloy. Scripta Materialia [J],2004,51:417-421
    [52]T. Kumagai, E. Abe, T. Kimura, etal. The γ→α2 phase transformation in y-based TiAl alloy. Scripta Materialia [J],1995,34:235-242
    [53]Y.G. Zhang, F.D. Tichelaar, F.W. Schapink, etal. An evidence of stress-induced α2→γ transformation in a γ-TiAl-based alloy. Scripta Materialia [J],1995, 32:981-985
    [54]C.L. Chen, W. Lu, Y.Y. Cui, etal. Deformation-induced γ→α2 phase transformation in TiAl alloy compressed at room temperature. Intermetallics [J],2007,15:722-726
    [55]J.G Wang, L.C. Wang, G.L. Chen etal. Deformation-induced γ→α2 phase transformation in a hot-forged Ti-45A1-10Nb alloy. Materials Science and Engineering A [J],1997, (239-240):287-292
    [56]J.G Wang, GL. Chen L.C. Zhang, etal. Study on the stress-induced γ→α2 transformation in a hot-deformed Ti-45A1-10Nb alloy by high-resolution transmission electron microscopy. Materials Letters [J],1997,31:179-183
    [57]C.L. Chen, W. Lu, Dai Sun, etal. Deformation-induced α2→γ phase transformation in TiAl alloys. Materials Characterization [J],2010,61: 1029-1034
    [58]C.L. Chen, W. Lu. Deformation-induced γ→DIα2 phase transformation occurring in the twin-intersection region of TiAl alloys. Journal of Materials Research [J],2007,22(9):2416-2422
    [59]J.X. Zhang, H.Q. Ye. Deformation-induced γ→α2 phase transformation in a Ti-48Al-2Cr alloy. Journal of Materials Research [J],2000,15(10):2145-2150
    [60]刘雪梅,张久兴,宋晓艳等.放电等离子烧结中颈部形成机理探讨.功能材料[J],2004,35(增刊):3037-3040
    [61]宋晓艳,刘雪梅,张久兴.放电等离子烧结中显微组织演变的自调节机制.中国体视学与图像分析[J].2004,9(3):140-146
    [62]刘雪梅,张久兴,宋晓艳.单质导电材料SPS过程中颈部形成机理.中国有色金属学报[J].2006,16(3):422-427
    [63]Devesh Tiwari, Bikramjit Basu, Koushik Biswas. Simulation of thermal and electric field evolution during spark plasma sintering. Ceramics International [J],2009,35:699-708
    [64]Cao Wang, Laifei Cheng, Zhe Zhao. FEM analysis of the temperature and stress distribution in spark sintering:Modelling and experimental validation. Computational Materials Science [J],2010,49:351-362
    [65]J.R. Groza, R.J. Dowding. Nanoparticulate materials densification. NanoStructured Materials [J],1996,7(7):749-768
    [66]K. Madhav Reddy, Nitish Kumar, Bikramjit Basu. Inhibition of grain growth during the final stage of multi-stage spark plasma sintering of oxide ceramics. Scripta Materialia [J],2010,63:585-588
    [67]Mrinalini Mulukutla, Ashish Singh, Sandip P. Harmkar. Spark plasma sintering for multi-scale surface engineering of materials. Journal of Materials [J],2010,62(6):65-71
    [68]Xiaoyan Song, Xuemei Liu, Jiuxing, Zhang. Neck formation and self-adjusting of neck growth of conducting powder in spark plasma sintering. Journal of American Ceramic Society [J],2006,89(2):494-500
    [69]Mamoru Omori. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Materials Science and Engineering A [J],2000, 287:183-188
    [70]M.A. Morris, M. Leboeuf. Analysis of thermal and athermal deformation mechanisms during creep of γ-TiAl alloy. Materials Science and Engineering A [J],1997, (239-240):429-437
    [71]X. Lu, X.B. He, et al. Microstructure and mechanical properties of a spark plasma sintered Ti-45A1-8.5Nb-0.2W-0.2B-0.1Y alloy. Intermetallics [J],2009, 17:840-846
    [72]Guy Molenat, Marc Thomas, Jean Galy, etal. Application of spark plasma sintering to titanium aluminide alloys. Advanced Engineering Materials [J], 2007,9(8):667-669
    [73]张久兴,岳明,宋晓艳等.放电等离子烧结技术与新材料研究.功能材料[J],2004增刊,35:94-105
    [74]冯海波,周玉,贾德昌.放电等离子烧结技术的原理及应用.材料科学与工艺[J],2003,11(3):327-331
    [75]G. Molenat, L. Durand, J. Galy, etal. Temperature control in spark plasma sintering:An FEM approach. Journal of Metallurgy [J],2010,10:1-9
    [76]肖树龙,于宏宝,韩杰才等.机械合金化与放电等离子烧结制备Ti-45Al-5.5(Cr, Nb, B, Ta)合金.中国有色金属学报[J],2010,20(s1):309-314
    [77]Zheng Ming Sun, Qian Wang, Hitoshi Hashimoto, etal. Synthesis and consolidation of TiAl by MA-PDS process from sponge-Ti and chip-Al. Intermetallics [J],2003,11:63-69
    [78]Zheng Ming Sun, Hitoshi Hashimoto. Fabrication of TiAl alloys by MA-PDS process and the mechanical properties. Intermetallics [J],2003,11:825-834
    [79]W.B. Zhou, B.C. Mei, J.Q. Zhu, etal. Rapid synthesis of Ti2AlC by spark plasma sintering technique. Materials Letters [J],2005,59:131-134
    [80]Hanliang Zhu, D.Y.Seo, K.Maruyama. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys. Journal of Materials [J],2010,62(1): 64-69
    [81]Mrinalini Mulukutla, Ashish Singh, Sandip P. Harimkar. Spark plasma sintering for multi-scale surface engineering of materials. Journal of Materials [J],2010,62(6):65-71
    [82]Chunping Zhang, Kaifeng Zhang. Superplasticity of a y-TiAl alloy and its microstructure and cavity evolution in deformation. Journal of Alloys and Compounds [J],2010,492:236-240
    [83]Y.H. Wang, J.P. Lin, Y.H. He, etal. Microstructure and mechanical properties of Ti-45Al-8.5Nb-(W,B,Y) alloy by SPS-HIP route. Materials Science and Engineering A [J],2008,489:55-61
    [84]Y.H. Wang, J.P. Lin, Y.H. He, etal. Fabrication and SPS microstructures of Ti-45A1-8.5Nb-(W, B, Y) alloying powders. Intermetallics [J],2008,16: 215-224
    [85]ZhengMing Sun, Hitoshi Hashimoto. Fabrication of TiAl alloys by MA-PDS process and the mechanical properties. Intermetallics [J],2003,11:825-834
    [86]K. Matsugi, N. Ishibashi, Hatayma, etal. Microstructure of spark sintered titanium-aluminide compacts. Intermetallics [J],1996,4:457-467
    [87]XIAO Shu-long, TIAN Jing, XU Li-juan, et al. Microstructures and mechanical properties of TiAl alloy prepared by spark plasma sintering. Transactions of Nonferrous Metals Society of China [J],2009,19:1423-1427
    [88]Bingchu Mei, Yoshinari Miyamoto. Investigation of TiAl/Ti2AlC composites prepared by spark plasma sintering. Materials Chemistry and Physics [J],2002, 75:291-295
    [89]X. Lu, X.B. He, B. Zhang, et al. High-temperature oxidation behavior of TiAl-based alloys fabricated by spark plasma sintering. Journal of Alloy and Compounds [J],2009,478:220-225
    [90]Alain Couret, Guy Molenat, Jean Galy, Marc Thomas. Microstructure and mechanical properties of TiAl alloys consolidated by spark plasma sintering. Intermetallics [J],2008,16:1134-1141
    [91]Y.Y. Chen, H.B. Yu, D.L. Zhang, L.H. Chai. Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy. Materials Science and Engineering A [J], 2009,525:166-173.
    [92]F. Yang, F.T. Kong, Y.Y. Chen, S.L. Xiao. Effect of spark plasma sintering temperature on microstructure and mechanical properties of a Ti2AlC/TiAl composite. Journal of Alloy and Compounds [J],2010,496:462-466
    [93]Houria Jabbar, Jean-Philippe Monchoux, Florent Houdellier, et al. Microstructure and mechanical properties of high Nb TiAl alloys elaborated by spark plasma sintering. Intermetallics [J],2010,18:2132-2321
    [94]Houria Jabbar, Alain Couret, Lise Durand, etal. Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering. Journal of Alloys and Compounds [J],2011,509:9826-9835
    [95]H. Jabbar, J.-P. M. Thomacs, A. Couret. Microstructure and deformation mechanisms of a G4 TiAl alloy produced by spark plasma sintering. Acta Materialia [J],2011,59:7574-7585
    [96]Chunping Zhang, Kaifeng Zhang, Guofeng Wang. Superplasticity of fine grained y-TiAl based alloy synthesized by pulse current auxiliary sintering. Materials Letters [J],2009,63:2153-2156
    [97]Chunping Zhang, Kaifeng Zhang, Guofeng Wang. Dependence of heating rate in PCAS on microstructures and high temperature deformation properties of y-TiAl internetalic alloys. Intermetallics [J],2010,18:834-840
    [98]Yaodong Liu, Wei Liu. Mechanical alloying and spark plasma sintering of the intermetallic compound TiAl. Journal of Alloys and Compounds [J],2007,440: 154-157
    [99]H. Clemens, H.F. Chladil, W. Wallgram, etal. In and ex situ investigations of the β-phase in a Nb and Mo containing y-TiAl based alloy. Intermetallics [J], 2008,16:827-833
    [100]A. Ozols, H.R. Sirkin, E.E. Vicente. Segregation in stellite powders produced by the plasma rotating electrode process. Materials Science and Engineering A [J],2009,262:64-69
    [101]陈焕铭,胡本芙,李慧英,等.等离子旋转电极雾化FGH95高温合金粉末 的预热处理.中国有色金属学报[J],2003,13(3):554-559
    [102]陈焕铭,胡本芙,李慧英,等.等离子旋转电极雾化FGH95高温合金粉末颗粒凝固组织特征.金属学报[J],2003,39(1):30-34
    [103]陈焕铭,胡本芙,李慧英,等.等离子旋转电极雾化FGH95高温合金原始粉末颗粒中碳化物的研究.材料工程[J],2003,1:6-9
    [104]陈焕铭,胡本芙,余泉茂,等.等离子旋转电极雾化熔滴的热量传输与凝固行为.中国有色金属学报[J],2002,12(5):883-890
    [105]陈焕铭,胡本芙,李慧英,等.等离子旋转电极雾化熔滴凝固过程中的数值计算.兵器材料科学与工程[J],2005,28(5):21-24
    [106]王琪,李圣刚,吕宏军,等.雾化法制备高品质钛合金粉末技术研究.钛工业进展[J],2010,27(5):16-18
    [107]刘中良,马重芳,孙旋.相变潜热随温度变化对固-液相变过程的影响.太阳能学报[J],2003,24(1):53-57
    [108]陶宇,冯涤,张义文,等.PREP工艺参数对FGH95高温合金粉末特性的影响.钢铁研究学报[J],2003,15(5):46-50
    [109]李圣刚,吕宏军,史金靓,等.TA7 ELI粉末冶金材料力学性能与显微组织.钛工业进展[J],2011,28(2):19-22
    [110]张莹,董毅,张义文,等.等离子旋转电极法所制备的镍基高温合金粉末中异常颗粒的研究.粉末冶金工业[J],2000,10(6):7-13
    [111]国为民,陈生大,冯涤.等离子旋转电极法制取镍基高温合金粉末工艺的研究.航空工程与维修[J],1999,5:44-46
    [112]陈焕铭.快速凝固FGH95合金粉末的非平衡溶质分配.宁夏工程技术[J],2005,4(3):253-255
    [113]游涛,袁小川,苏贵桥.钛合金快速凝固技术及其研究现状.铸造[J],2007,56(6):567-571
    [114]陶宇,Tarek EI Gammal.用等离子旋转电极工艺生产高氮钢.钢铁研究学报[J],2004,16(1):15-20
    [115]于军,葛昌纯,孟璐璐,等.火花等离子体放电制备高温合金细粉新技术.金属学报[J],2008,44(7):892-896
    [116]王智平,张振宇,苏义祥.金属合金粉末的研究与发展.铸造[J],2004,53(6):415-418
    [117]J. Beddoes, L. Zhao, P, Au, etal. The brittle-ductile transition in HIP consolidated near y-TiAl+W and TiAl+Cr powder alloys. Materials Science and Engineering A [J],1995, (192-193):324-332
    [118]R. Gerling, R. Leigeb, F.-P. Schimansky. Porosity and argon concentration in gas atomized y-TiAl powder and hot isostatically pressed compact. Materials Science and Engineering A [J],1998,252:239-257
    [119]L.M. Hsiung, T.G. Nieh. Microstructures and properties of powder metallurgy TiAl alloys. Materials Science and Engineering A [J],2004,364:1-10
    [120]Yong Wang, J.N. Wang, Qianfei, Xia, etal. Micro structure refinement of a TiAl alloy by heat treatment. Materials Science and Engineering A [J],2000,293: 102-106
    [121]Y. Wu, S.K. Hwang. Microstructural refinement and improvement of mechanical properties and oxidation resistance in EPM TiAl-based intermetallics with yttrium addition. Acta Materialia [J],2002,50,1479-1493
    [122]Ulrike Habel, Brian McTiernan. HIP temperature and properties of a gas-atomized y-titanium aluminide alloy. Intermetallics [J],2004,12:63-68
    [123]T. Novoselova, S. Celotto, R. Morgan, etal. Formation of TiAl intermetallics by heat treatment of cold-sprayed precursor deposits. Journal of alloys and compounds [J],2007,436:69-77
    [124]Fang Wenbin, Hu Lianxi, He Wenxiong, etal. Micro structure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering. Materials Science and Engineering A [J],2005,403:186-190
    [125]Y.H. Wang, J.P. Lin, Y.H. He, etal. Microstructural characteristics of Ti-45A1-8.5Nb/TiB2 composites by powder metallurgy. Journal of alloys and compounds [J],2009,468:505-561
    [126]Gerhard Wegmann, Rainer Gerling, Frank-Peter Schimansky. Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders. Acta Materilia [J],2003,51:741-752
    [127]Huizhong Li, Zhou Li, Wei Zhang, etal. High temperature deformability and microstructural evolution of Ti-47A1-2Cr-0.2Mo alloy. Journal of alloys and compounds [J],2010,508:359-363
    [128]H. Jiang, F.A. Garcia-Pastor, D. Hu, etal. Characterization of Microplasticity in TiAl-based alloys. Acta Materilia [J],2009,57:1357-1366
    [129]王尔德,李小强,胡连喜.粉末冶金法制备TiAl基合金.2002,5:287-293
    [130]Boris Preanchat, Fabienne Popoff, Marc Thomas. Characterization of HIPed and extrude powder metallurgy titanium aluminide. Advanced Engineering Materials [J],2002,4(3):133-138
    [131]M. Bououdina, Z. Luklinska, Z.X. Guo. Effect of milling conditions on structural evolution and phase stability of [Ti(H2)+Al+Nb] powder mixtures. Materials Science and Engineering A [J],2008,474:173-180
    [132]M. Charpentier, A. Hazotte, D. Daloz. Lamellar transformation in near-y TiAl alloys-Quantitative analysis of kinetics and microstructure. Materials Science and Engineering A [J],2008,491:321-330
    [133]H.Q. Che, Q.C. Fan. Microsructural evolution during the ignition/quenching of pre-heated Ti/3A1 powders. Journal of alloys and compounds [J],2009,475: 184-190
    [134]Alain Lasalmonie. Intermetallics:Why is it so difficult to introduce them in gas turbine engines? Intermetallics [J],2006,14:1123-1129
    [135]Edward A. Loria. Quo vadis gamma titanium aluminide. Intermetallics [J], 2001,9:997-1001
    [136]Klaus-Dieter Liss, Andreas Stark, Arno Bartels, etal. Directional atomic rearrangements during transformations between the a-and y-phase in titanium aluminides. Advance Engineering Materials [J],2008,10(4):389-392
    [137]Andreas Stark, Arno Bartels, Rainer Gerling, etal. Microstructure and texture formation during hot rolling of niobium-rich y TiAl alloys with different carbon contents. Advance Engineering Materials [J],2006,8(11):1101-1108
    [138]Rainer Gerling, Frank-Peter Schimansky, Gerhard Wegmann. Metal injection moulding using intermetallics y-TiAl alloy powder. Advance Engineering Materials [J],2001,3(6):387-390
    [139]R. Gerling, H. Clemens, F.P. Schimansky. Powder metallurgical processing of intermetallic gamma titanium aluminides. Advance Engineering Materials [J], 2004,6(1-2):23-38
    [140]Fritz Appel, Ulrich Brossmann, Ulrich Christoph. Recent progress in the development of gamma titanium aluminide alloys. Advance Engineering Materials [J],2000,2(11):699-720
    [141]C.T. Liu, J.H. Schneibel, P.J. Maziasz, et al. Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetallics [J], 1996,4(6):429-440.
    [142]J.L. Yu, K.F. Zhang, Z.K. Li, etal. Fracture toughness of a hot-extruded multiphase Nb-10Si-2Fe in situ composite. Scripta Materialia [J],2009,61: 620-623
    [143]Yuyong Chen, Hongzhi Niu, Fantao Kong, etal. Microstructure and fracture toughness of a β phase containing TiAl alloy. Intermetallics [J],2011,19(10): 1405-1410
    [144]B. Dogan, K.-H. Schwalbe. Fracture toughness testing of TiAl base intermetallic alloy. Engineering Fracture Mechanics [J],1997,56(2):155-165
    [145]B. Dogan, D. Schoneich, K.-H. Schwalbe, etal. Fatigue precracking and fracture toughness testing of TiAl intermetallics. Intermetallics [J],1996,4: 61-69
    [146]C.T. Liu, J.H. Schneibel, P.J. Maziasz, etal. Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetallics [J], 1996,4:429-440
    [147]F.A. Guo, V. Ji, M. Francois, Y.G. Zhang. Effect of internal stresses on the fracture toughness of a TiAl-based alloy with duplex microstructures. Acta Materialia [J],2003,51:5349-5358
    [148]C.Y. Nam, D.M. Wee, P. Wang, etal. Microstructure and toughness of nitrogen-doped TiAl alloys. Intermetallics [J],2002,10:113-127
    [149]R. Cao, M.X. Lei, J.H. Chen, etal. Effects of loading rate on damage and fracture behavior of TiAl alloys. Materials Science and Engineering A [J], 2007,465:183-193
    [150]Z.J. Pu, K.H. Wu, J. Shi, etal. Effect of notches and microstructure on the fracture toughness of TiAl-based alloys. Materials Science and Engineering A [J],2005, (192/193):347-355
    [151]M. Yamaguchi, H. Inui, S. Yokoshima, etal. Recent progress in our understanding of deformation and fracture of two-phase and single-phase TiAl alloys. Materials Science and Engineering A [J],1996,213:25-31
    [152]S.J. Eck, A.J. Ardell. Fracture toughness of Ti-46.5Al-2.1Cr-3.0 Nb-0.2W from finite element analysis of miniaturized disk-bend test results. Intermetallics [J],1998,8:471-477
    [153]C.J. Boehlert, B.S. Majumdar, V. Seetharaman, etal. The microstructural evolution in Ti-Al-Nb O+BCC orthorthombic alloys. Metallurgical and Materials Transactions A [J],1999,30:2305-2323
    [154]张久文,陈国清,周文龙,等.热轧态Ti2AlNb合金超塑性变形行为的研究.精密钣金成形技术[J],2007增刊:449-452
    [155]Santirat Nansaarng, Panya Srichands. Synthesis of intermetallic compounds of Ti-A1 and Ti-Al-Nb systems and their properties. Proceeding of the 4th WSEAS international conference [G],2006,8:254-257
    [156]Toshihide Horii, Soshu Kirihara, Yoshinari Miyamoto. Freeform fabrication of Ti-A1 alloys by 3D micro-welding. Intermetallics [J],2008,16:1245-1249
    [157]L.E. Murr, S.M. Gaytan, A. Ceylan, etal. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materilia [J],2012,60(5):2229-2239
    [158]D Srivastava. Microstructural characterization of the y-TiAl alloy samples fabricated by direct laser fabrication rapid prototype technique. Bulletin Materials Science [J],2002,25(7):619-633
    [159]G.Q. Wu, Z. Huang, Z.F. Li, etal. TEM observation of grain refinement of laser surface melted y-TiAl based alloy. Materials Letters [J],2003,57:3810-3814
    [160]G.Q. Wu, G.X. Luo, Z. Huang, etal. Dendritic structural transformation of laser surface remelted y-TiAl based alloy during post-heat treatment. Materials Letters [J],2006,60:406-409
    [161]W.A. Baeslack, H. Zheng, P.L. Threadgill, etal. Characterization of an electron beam diffusion bond in Ti-48Al-2Cr-2Nb titanium aluminide. Materials Characterization [J],1997,39:43-52
    [162]Denis Cormier, Ola Harrysson, Tushar Mahale, etal. Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders. Research Letters in Materials Science [J],2007,10:1-4
    [163]H.P. Qu, P. Li, S.Q. Zhang, etal. The effects of heat treatment on the microstructure and mechanical property of laser melting deposition y-TiAl intermetallic alloys. Materials and Design [J],2010,31:2201-2210
    [164]G.Q. Wu, Z. Huang, J.G. Lin. Variation of structure and properties in laser surface melted titanium aluminide during continuous heating. Materials Letters [J],2002,56:606-609
    [165]Z.G. Liu, L.H. Chai, Y.Y. Chen. Effect of cooling rate and Y element on the microstructure of rapidly solidified TiAl alloys. Journal of alloys and compounds [J],2010,504s:s491-s495
    [166]Huang Jin-song, Huang Lan, Liu Bin, etal. Simulation of hot compression of TiAl alloy. Intermetallics [J],2007,15:700-705
    [167]刘彬,TiAl基合金的制备及其高温变形行为,中南大学博士学位论文[D],2008.
    [168]于宏宝,细晶TiAl基合金的制备及组织和性能研究,哈尔滨工业大学博士学位论文[D],2008
    [169]杨广宇,合金元素对Ti-Al-Nb-W基合金组织基变形行为的影响,中南大学硕士学位论文[D],2011
    [170]王辉,TiAl基合金热变形行为及高温力学性能研究,中南大学硕士学位论文[D],2011
    [171]李洲.TiAl基合金高温变形行为及相关基础研究[D].长沙:中南大学.2010
    [172]Fritz Appel, Jonathan David Heaton Paul, Michael Oehring. Gamma Titanium Aluminide Alloys [M], Germany:WILEY-VCH Verlag GmbH & Co. KGaA, 2011
    [173]Christoph Leyens, Manfred Peters. Titanium and Titanium Alloys [M], Germany:WILEY-VCH Verlag GmbH & Co. KGaA,2003
    [174]John D.K. Rivard, Adrian S. Sabau, etal. Modeling and processing of liquid-phase-sintered y-TiAl during high-density infrared processing. Metallurgical and Materials Transactions A [J],2006,37:1289-1299
    [175]John H. Moll. Utilization of gas-atomized titanium and titanium-aluminide powder. Journal of Materials [J],2000,5:32-34
    [176]M. Yoshihara, S. Taniguchi, Y.C. Zhu. Effect of ion implantation on the oxidation resistance of TiAl. Metallurgical and Materials Transactions A [J], 2003,34:2253-2261
    [177]L. Levin, A. Tokar, A. Berner. Microstructural characterization of y-TiAl based alloy by electron probe x-ray microanalysis and electron backscatter diffraction. Journal of Materials Science [J],2000,35:3923-3929
    [178]D. Hu, A.J. Huang, X. Wu. On the massive phase transformation regime in TiAl alloys:The alloying effect on massive/lamellar competition. Intermetallics [J],2007,15:327-332
    [179]J.B. Yang, W.S. Hwang. The preparation of TiAl-based intermetallics from elemental powders through a two-step pressureless. Journal of Materials Engineering and Performance [J],1998,7(3):385-392
    [180]M.M. Keller, P.E. Jones, W.J. Poter. The development of low-cost TiAl automotive valves. Journal of Materials [J],1997,5:42-44
    [181]M.L. Weaver, C.W. Calhoun. Microstructure, texture, and mechanical properties of continuously cast gamma TiAl. Journal of Materials Science[J], 2002,37:2483-2490
    [182]GW. Qin, K. Oikawa, Z.M. Sun, etal. Discontinuous coarsening of the lamellar structure of γ-TiAl-based intermetallic alloys and its control. Metallurgical and Materials Transactions A [J],2001,32:1927-1938
    [183]J. Hebeisen, P. Tylus, D. Zick, etal. Hot isostatic of nanostructured y-TiAl powders. Metals and Materials [J],1996,2(2):71-74
    [184]G. Cam, G. Ipekoglu, M. Kocak. Investigation into the microstructure and mechanical properties of diffusion bonded TiAl alloys. Journal of Materials Science [J],2006,41:5273-5282
    [185]Somchai Thongtem, Chatdanai Boonruang, Titipun Thongtem, etal. Nitridation of γ-TiAl alloys by direct metal-gas reaction at 1000-1300 K. Surface and Interface Analysis [J],2005,37:765-769
    [186]C. Lang, M. Schutze. The initial stages in the oxidation of TiAl. Materials and Corrosion [J],1997,48:13-22
    [187]S. Dymek, M. Wrobel, M. Blicharski. Influence of tungsten on microstructure of mechanically alloyed y-TiAl. Journal of Microscopy [J],2006,223: 292-294
    [188]Rainer Gerling, Frank-Peter Schimansky, Gerhard Wegmann. Metal injection moulding using intermetallic y-TiAl alloy powder. Advanced Engineering Materials [J],2001,3(6):387-390
    [189]D. Srivastava, I.T.H. Chang, M.H. Loretto. The optimization of processing parameters and characterization of microstructure of direct laser fabricated TiAl alloy components. Materials and Design [J],2000,21:425-433
    [190]A. Hishinuma, K. Fukai, T. Sawai, etal. Ductilization of TiAl intermetallic alloys by neutron-irradiation. Intermetallics [J],1996,4:179-184
    [191]A. Rostamian, A. Jacot. A numerical model for the description of the lamellar and massive phase transformation in TiAl alloys. Intermetallics [J],2008,16: 1227-1236
    [192]S. Bystrzanowski, A. Bartels, H. Clemens, etal. Characteristics of the tensile flow behavior of Ti-46Al-9Nb sheet material-Analysis of thermally activated processes of plastic deformation. Intermetallics [J],2008,16:717-726
    [193]U. Hecht, V. Witusiewicz, A. Drevermann, etal. Grain refinement by low boron additions in nibium-rich TiAl-based alloys. Intermetallics [J],2008,16: 969-978
    [194]R. Gerling, F.P. Schimansky, A. Stark, etal. Microstructure and mechanical properties of Ti45A15Nb+(0-0.5C) sheets. Intermetallics [J],2008,16: 689-697
    [195]GL. Chen, X.J. Xu, Z.K. Teng, etal. Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics [J],2007,15: 625-631
    [196]I. Agote, J. Coleto, M. Gutierrez, etal. Microstructure and mechanical properties of gamma TiAl based alloys produced by combustion synthesis+ compaction route. Intermetallics [J],2008,16:1310-1316
    [197]Limei Cha, Christina Scheu, Helmut Clemens, etal. Nanometer-scaled lamellar microstructures in Ti-45A1-7.5Nb-(0-0.5C) alloys and their influence on hardness. Intermetallics [J],2008,16:868-875
    [198]Bo Wu, Matvei Zinkevich, Fritz Aldinger, etal. Prediction of the ordering behaviours of the orthorhombic phase based on TiAlNb alloys by combining thermodynamic model with ab initio calculation. Intermetallics [J],2008,16: 42-51
    [199]Z.W. Huang, D.G Zhu. Thermal stability of Ti-44Al-8Nb-lB alloy. Intermetallics [J],2008,16:156-167
    [200]Joaquim Barbosa, C. Silva Ribeiro, A. Caetano Monterio. Influence of superheating on cast of y-TiAl. Intermetallics [J],2007,15:945-955
    [201]A.L. Gloanec, M. Jouiad, D. Bertheau, M. Grange, etal. Low-cycle fatigue and deformation substructures in an engineering TiAl alloy. Intermetallics [J], 2008,16:520-531
    [202]A. Huang, D. Hu, Xinhua Wu, etal. The influence of interrupted cooling on the massive transformation in Ti46A18Nb. Intermetallics [J],2007,15:1147-1155
    [203]Wei Lu, Chunlin Chen, Yanjun Xi, etal. The oxidation behavior of Ti-46.5Al-5Nb at 900℃. Intermetallics [J],2007,15:989-998
    [204]W.F. Cui, C.M. Liu, V. Bauer, etal. Thermomechanical fatigue behaviours of a third generation y-TiAl based alloy. Intermetallics [J],2007,15:675-678
    [205]李书江.高铌TiAl合金微合金化及蠕变性能的研究[D].北京:北京科技大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700