激光切割质量同轴视觉检测与控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光切割是目前工业上最先进和最重要的材料裁切方法之一,对激光切割质量的实时检测与控制是该领域的前沿课题。本文通过同轴视觉传感系统同时获得切割前沿和切割火花簇射视觉图像,成功地提取了产生切割缺陷(过烧、挂渣)和切割面粗糙度变化时图像特征信号的变化规律,首次实现了以无切割缺陷并且在一定工艺条件下获得最高切割质量(最低切割面粗糙度)为目标的切割速度自寻优控制。
     在工艺实验的基础上,建立了切割面分层理论模型,实验研究和模型分析表明:切割面近下缘处是切割质量的最薄弱环节,此处粗糙度最高,切割前沿在下缘处的温度是决定下缘质量的主要因素。提出以近下缘粗糙度作为切割质量评价和检测的主要指标较合理。通过切割前沿视觉图像,无法获得切割面粗糙度的信息,但可以作为识别切割缺陷的判据。实验证明,过烧缺陷的特征是图像中切割前沿上缘和下缘波动发生向上跳变,而挂渣缺陷的图像特征是仅有下缘波动发生向上跳变。从侧面研究了切割过程中的火花簇射行为,发现了火花簇射视觉图像特征与切割速度以及切割面近下缘粗糙度之间有良好的对应关系:在一定工艺条件下,随着切割速度的变化,火花簇射喷射长度以具有极大值的倒U形曲线形式变化,最大的火花簇射喷射长度(即火花簇射视觉图像不同亮度带像素数的极大值)对应于最低的切割面近下缘粗糙度,此时的切割速度为该工艺条件下的最佳切割速度。这一发现为切割面质量的在线检测与寻优控制奠定了基础。为适应切割方向和切割位置的变化,论证了切割过程火花簇射主要视觉特征同轴检测的可行性,证明火花簇射的同轴视觉图像中最大火花簇射长度(火花簇射图像不同亮度带最大像素数)与最低的切割面粗糙度的对应关系仍然存在。在此基础上,建立了具有现场实用性的激光切割同轴视觉检测和控制系统及相应的图像处理方法。
     同时利用切割前沿和火花簇射同轴视觉图像上述特征信号的变化规律,进行了激光切割质量的实时检测与自寻优控制。结果表明,系统可以迅速寻找到最佳切割速度,达到无切割缺陷而且该工艺条件下切割面近下缘粗糙度最小。
Laser cutting is one of the most advanced and important technology for metallic materials processing. Process monitoring and control is significant for high-quality laser cutting. By coaxially detecting the images of the cutting front and the sparks jet, the relationship between the detected signals and cutting quality, including cutting defects (burning or dross) and surface roughness, has been obtained. Self-optimizing control aiming to the best roughness on some certain cutting conditions has been realized.
     A laminated model of cutting face for evaluating cutting quality has been built up on the basis of cutting experiments. The experimental results and the theoretical analysis of the model show that, the lower part of the cutting face, adjacent to the bottom edge, has the worst cutting quality due to its worst roughness. The quality of the bottom face is mainly depended on the temperature of the lowest part of cutting front. Therefore, the method with this roughness as the main criterion for quality evaluation and detection is reasonable.
     The vision image of cutting front could not indicate the roughness variation of the bottom edge, but could be used as the criterion identifying cutting defects. The characteristic signal responding to burning occurrence is the jumping standard deviation of both DCF (Distance from Beam Center to Front Edge) and DCB (Distance from Beam Center to Back Edge) of the detected image, while dross occurrence only inducing the jumping standard deviation of DCB.
     The behavior of sparks has also been investigated by side imaging the sparks jet. It is found that the sparks shapes are related to both the cutting speed and the roughness of the bottom face. On the given condition, the sparks jet length, which corresponds to the pixel quantity of different gray scales, shows an inverted U-curve relationship with the cutting speed. The maximum sparks length occurs at the status of the best roughness of the bottom face, which relates to the optimal cutting speed.
     Coaxial detecting the sparks jet has also been tried for application to variouscutting directions and attitudes. It is proved that the maximal sparks length of the coaxial image, which can be determined by the highest pixels of different brightness ranges of the sparks image, still corresponds to the best roughness of cutting face. A system for coaxial visual detection and control in laser cutting, as well as the corresponding image processing method has been built up.
     Experiments for coaxial detecting and optimum controlling of laser cutting quality were performed by simultaneously utilizing the images of both cutting front and sparks jet. The results show that the optimal cutting speed for free defect and the best roughness of the bottom edge could be found automatically and quickly.
引文
[1] 奚居雄. 汽车工业中的激光焊接和切割. 光电子技术与信息,1995,8(5):36~38
    [2] 王腾宁. 激光焊接和切割在汽车车身部件制造中的应用. 焊工之友,2002,31(5):55~56
    [3] 阎启. 汽车用冷轧钢板的激光切割. 机械工程材料,2002,26(9):25~26
    [4] 莎燕,剑南. 激光切割用于右座驾驶汽车的制造. 激光与光电子学进展,1997,(6):31~33
    [5] 曹能,冯梅. 激光加工技术在汽车工业中的应用. 宝钢技术,1998,(3):50~53
    [6] 汪声銮. 激光在汽车车身上的应用. 汽车工艺与材料,1994,(5):1~4
    [7] 陈树明. 激光切割技术现状与发展. 锻压机械,2002,(2):3~5
    [8] 王春明,胡伦骥,胡席远,等. 镀锌版的激光剪裁拼焊工艺及接头性能研究. 电焊机,2004,34(9):17~10
    [9] 刘建华,张群莉,胡伦骥. 高硅钢板的 YAG 激光在线拼接新工艺. 激光技术,2004,28(1):16~19
    [10] 崔怀洋,左铁钏. 激光焊接的裁焊板及其在汽车中的应用. 工艺与新技术,2004,33(1):23~27
    [11] Ivarson A, Powell J, Kamalu J, et al. Oxidation dynamics of laser cutting of mild steel and the generation of striations on the cut edge. Journal of Materials Processing Technology,1994,40(3-4):359~374
    [12] Powell J, Menzies I A. Principles and applications of carbon dioxide laser cutting. Inst of Mechanical Engineers,1985:205~213
    [13] Schulz Wolfgang, Kostrylin Vadim, Niessen Markus, et al. Dynamics of ripple formation and melt flow in laser beam cutting. Journal of Physics D: Applied Physics,1999, 32(11):1219~1228
    [14] 汤漾平,杨丰羽,朱国力,等. 激光切割加工工艺参数选取的神经网络方法. 锻压机械,1998,(5):40~41
    [15] 王忠山. 激光加工的智能 CNC 系统的理论与关键技术的研究:[博士学位论文]. 武汉:华中理工大学,1995
    [16] 花银群. 激光切割表面质量比照判别与控制方法. 金属热处理,2001,26(11):25~27
    [17] 陈继民. 大功率 CO2 激光三维智能加工 CAM 的研究:[博士学位论文]. 北京:北京工业大学光学工程系,2001
    [18] Yilbas B S. Study of parameters for CO2 laser cutting process. Materials and manufacturing processes,1998,13(4):517~536
    [19] Zhang Yongqiang, Chen Wuzhu, Zhang Xudong, et al. Synthetic evaluation and neural network prediction of laser cutting quality. Proceedings of SPIE,2004, 5629:237-246
    [20] TRUMPF Company. Criteria for the evaluation of laser cuts.
    [21] King T G, Powell J. Laser-cut mild steel-factors affecting edge quality. Wear,1985, 109(1-4):135~144
    [22] 闫敏禾,钟敏霖. 高功率激光加工及应用. 天津:天津科学技术出版社,1994. 185~204
    [23] 黄开金,谢长生,邵可然. 激光切割 1Cr18Ni9Ti 不锈钢管材挂渣和飞渣的研究. 应用激光,2001,21(3):159~163
    [24] Murakawa Masao, Miyazawa Hajime, Sakai Sigenori, et al. Prevention of dross attachment in laser cutting. Bulletin of the Japan Society of Precision Engineering,1988,22(1):6~12
    [25] F N Birkett, et al. Prevention of dross attachment during laser cutting. Proceedings of the 2nd International Conference on Lasers in Manufacturing,1985,3:63~66
    [26] Chen Shang-Liang, O’Neil W. The effects of power rippling on CO2 laser cutting. Optics & Laser Technology,1997,29(3):125~134
    [27] Bagger C, Olsen F O. Pulsed mode laser cutting of sheets for tailored blanks. Journal of Materials Processing Technology,2001,115(1):131~135
    [28] Makashev N K, Asmolov E S, Buzykin O G. Some possibility to optimise repetitively-pulsed regime of gas-assisted laser cutting. Proceedings of SPIE - The International Society for Optical Engineering,1999,3688:136~138
    [29] Kaebernick H, Bicleanu D, Brandt M. Theoretical and experimental investigation of pulsed laser cutting. CIRP Annals- Manufacturing Technology,1999,48(1):163~166
    [30] Porawe R. Modeling, monitoring and control in high quality laser cutting. CIRP Annals - Manufacturing Technology,2001,50(1):137~140
    [31] Bharti Arvind, Sivakumar R. Mechanism of material removal in laser fusion cutting. Lasers in engineering,1996,5(2):87~105
    [32] Tonshoff H K, Ostendorf A, Thiessen B. Controlled CO2 laser cutting on the border to beginning of plasma. Proceedings of SPIE - The International Societyfor Optical Engineering,2001,4276: 80~89
    [33] 胡伦骥,王春明,骆红,等. 激光切割的实时监测. 激光应用,1998,18(4):164~166
    [34] Sukhov Yu T, Matiushin I V. Development of information-measuring channels of the monitoring system of quality cut for technological process laser cutting of materials. Proceedings of SPIE – The International Society for Optical Engineering,2001,4157:88~92
    [35] Shenq P, Chryssolouris G. Investigation of acoustic sensing for laser machining processes. Part2: Laser grooving and cutting. Journal of Materials Processing Technology,1994,43(2-4): 145~163
    [36] Konishi Yasuo, Kita Shiqeaki, Ishiqaki Hiroyuki, et al. Development of automatic determination system for optimum CO2 laser cutting condition. Transactions of the Japan Society of Mechanical Engineers, Part C ,1995,61(581):299~303
    [37] 王春明,胡伦骥,胡席远. 国外激光切割实时检测技术的最新进展. 激光技术,2001,25(6):412~417
    [38] Roggero G, Scotti F, Sessa F S, et al. Quality analysis measurement for laser cutting. Virtual and Intelligent Measurement Systems, 2001, IEEE International Workshop on. VIMS 2001,2001,5:41~44
    [39] Alippi C, Bono V, Piuri V, et al. Toward real-time quality analysis measurement of metal laser cutting. Virtual and Intelligent Measurement Systems, 2002. VIMS '02. 2002 IEEE International Symposium,2002,5:39~44
    [40] Hansmann M, Decker I A, Ruge J L. On-line control of the laser cutting process by monitoring the shower of sparks. International Conferenc3e on Power Beam Technology,1987:439~445
    [41] Hufflesz G, Bohrer M, Fazeny S, et al. Online a Quality Visualization on Thin Metal Laser Cutting. Lasers and Electro-optics Europe, 1996. CLEO/Europe,1996,9:243~243
    [42] Haferkamp H, Goede M, von Busse A. Quality monitoring and assurance for laser beam cutting using a thermographic process control. Proceedings of SPIE - The International Society for Optical Engineering,1999,3824:383~391
    [43] Tsai C H, Liou C S. Applying an on-line crack detection technique for laser cutting by controlled fracture. International Journal of Advanced Manufacturing Technology,2001,18(10): 724~730
    [44] Jorgensen H, Olsen F O. Process monitoring during CO2 laser cutting. Proceedings of SPIE - The International Society for Optical Engineering,1991,1412:198~208
    [45] Decher Ingo, Heyn Holger, Martinen Dirk, et al. Process monitoring in laser beam cutting on its way to industrial application. SPIE,1997,3097:29~37
    [46] Chen S-L. In-process monitoring of the cutting front of CO2 laser cutting with off-axis optical fibre. International Journal of Advanced Manufacturing Technology,1997,13(10):685~691
    [47] Kaebernick H, Jeromin A, Mathew P. Adaptive control for laser cutting using striation frequency analysis. CIRP Annals - Manufacturing Technology ,1998,47(1):137~140
    [48] 王春明,胡伦骥,胡席远. 激光切割前沿辐射与切割质量关系的初探. 中国机械工程,2001,12(7):821~814
    [49] 王春明. 激光切割实时监测技术的基础研究:[硕士学位论文]. 武汉:华中理工大学材料加工工程,1999
    [50] Fox Mahlen D T, French Paul, Peters Chris, et al. Applications of optical sensing for laser cutting and drilling. Applied Optics,2002,41(24):4988~4995
    [51] Fushimi Takashi, Hideyuki HORISAWA, Shigeru YAMAGUCHI, et al. Fundamental study of laser cutting using a high speed photography. Proceedings of SPIE - The International Society for Optical Engineering,2000,3888:90~95
    [52] Fushimi Takashi, Hiromasa NAKAJIMA, Hideyuki HORISAWA, et al. Fundamental study about molten metal of laser cutting. Proceedings of SPIE - The International Society for Optical Engineering,2000,4088:284~286
    [53] Miyamoto I, Maruo H. The mechanism of laser cutting. Welding in the World,Le Soudage Dans Le Monde,1991,29(9-10):283~294
    [54] 李瑜煜. 基于 BP 神经网络的激光加工模拟参数预测. 广东工业大学学报,2000,17(3):26~30
    [55] 李瑜煜. 人工神经网络在激光加工温度场模拟中应用. 激光杂志,2002,23(4):52~54
    [56] 徐路宁,王霄,张永康. 基于 CMAC 神经网络的激光切割加工工艺参数的选取. 电加工与模具,2002,(2):44~47
    [57] 朱国力,段正澄,龙毅宏,等. 基于神经网络的激光切割加工工艺优化建模及工艺参数自动选取系统的研究,机械工业自动化. 1995,17(4):21~24
    [58] 曹圣民,卢远超. 激光切割参数确定的初探. 电子工艺技术,1996,(3):33~36
    [59] 韩庆大,李沈,王丹民,等. BP 算法神经网络技术在激光加工中的应用. 东北大学学报,1999,20(5):505~507
    [60] 耿昌松,林泳,王旭友,等. YAG 激光焊接参数的人工神经网络模型. 焊接学报,2001,22(6):37~40
    [61] 於自岚,曾丹勇,张永康,等. 基于人工神经网络的激光冲击区表面质量的预报. 材料科学与工程,2000,18(3):15~18
    [62] 於自岚,曾丹勇,张永康,等. 基于人工神经网络的激光冲击区表面质量预报. 应用激光,2000,20(3):107~110
    [63] 於自岚,高传玉,曾丹勇,等. 激光冲击区表面质量的人工神经网络研究. 激光技术,2001,25(1):1~6
    [64] 熊建钢,张伟,胡乾午,等. 基于人工神经网络模型的钛合金 YAG 激光焊接工艺参数优化. 应用激光,2001,21(4):243~246
    [65] 范青武,张连宝,左演声. 基于神经网络的激光淬火性能预报与工艺设计的研究. 材料热处理学报,2002,23(4):43~46
    [66] 李延民,杨海欧,林鑫,等. 激光打孔人工神经网络工艺优化研究. 激光杂志,2002,23(3):27~29
    [67] 李延民,潘清跃,黄卫东,等. 应用人工神经网络于激光加工工艺优化. 金属热处理学报,1998,19(4):14~18
    [68] 宋向阳,韩申生,徐至展,等. 利用人工神经网络进行激光等离子体诊断. 光学学报,1996,16(4):500~503
    [69] 王大承. 人工神经网络在激光表面强化控制上的应用. 激光技术,2003,27(4):317~320
    [70] 胡守仁等. 神经网络导论. 长沙:国防科技大学出版社,1993:1~50
    [71] Di Pietro P, Yao Y L. Investigation into characterizing and optimizing laser cutting quality - a review. International Journal of Machine Tools & Manufacture,1994,34(2):225~243
    [72] Vicanek M, Sirnon G, Urbassek H M, et al. Hydrodynamical instability of melt flow in laser cutting. J. Phys. D: Appl. Phys,1987,14(1):140~145
    [73] Di Pietro,P et al. A New technique to characterize and predict laser cut striations. International Journal of Machine Tools & Manufacture ,1995,35(7):993~1002
    [74] Lopota V, Gorniy S, Turichn G. Investigation of furrow appearance during laser cutting with assisting gas. Proceedings of SPIE - The International Society for Optical Engineering,1999,3822:170~174
    [75] Chen Kai, Yao Y Lawrence, Modi Yijay. Numerical simulation of oxidation effects in the laser cutting process. International Journal of Advanced Manufacturing Technology,1999,15(11):835~842
    [76] Ledenev V I, Karasev V A, Yakunin V P. On cyclical mechanism of kerfformation under gas assisted laser cutting of metals. Proceedings of SPIE - The International Society for Optical Engineering,1999,3688: 157~162
    [77] 李力钧. 现代激光加工及其装备. 北京:北京理工大学出版社,1993:6~21
    [78] John Powell. CO2 laser cutting. London; New York: Springer-Verlag ,1993:16~22
    [79] 尤咏瑜,陈昌锡,刘宇虹,等. CO2 激光切割机精密聚焦系统的分析和研究. 上海工程技术大学学报,1998,12(1):1~5
    [80] 王伟平,吕百达,张大勇. 不同空间分布激光束通过聚焦光学系统传输特性的比较. 激光杂志,2003,24(1):36~38
    [81] 余先伦. 采用简单光学系统对高斯光束束腰. 重庆三峡学院学报,2004,20(1):126~128
    [82] 李倩,洪延姬,曹正蕊,等. 粗糙度与激光强度分布对光船聚焦特性的影响. 装备指挥学院学报,2004,15(4):94~97
    [83] 季小玲,陶向阳,吕百达. 高功率激光束的远场特性研究. 激光技术,2004,28(3):251~254
    [84] 刘金环. 高斯光束的光学变换. 光学精密工程,1994,2(3):15:21
    [85] 高晓云,杨福明. 激光热解制粉反应器的光路参数优化计算. 北京化工学院学报,1992,19(4):64~71
    [86] 刘强,段正澄,周祖德,等. 激光束聚焦特性与切割质量关系德研究. 华中理工大学学报,1992,20:55~60
    [87] 张华,潘际銮,廖宝剑. 焊接温度场的实时检测及熔透闭环控制. 焊接学报,1998,19(3):176~183
    [88] 苏勇. 焊接温度场的图像比色检测系统:[博士学位论文]. 北京:清华大学机械系,1993
    [89] 张华. 焊接温度场实时检测及其应用:[博士学位论文]. 北京:清华大学机械系,1997
    [90] 黄开金,谢长生. 三维激光切割的发展现状. 激光技术,1998,22(6):352~356
    [91] 黄开金,谢长生. 激光切割的研究现状及展望. 激光与电子学进展,1998,(4):1~8
    [92] Sheng Paul, Cai Li-Hong. Model-based path planning for laser cutting of curved trajectories. International Journal of Machine Tools & Manufacture ,1996,36(6):739~754
    [93] 朱国力,谢耀辉,杜润生,等. 基于激光测距的三维激光切割加工法矢获取系统. 中国机械工程,2001,12(2):205~208
    [94] 陈继民,左铁钏. 激光切割中入射角对切割质量的影响. 中国激光,2001,28(11):1037~1040
    [95] 张永强,吴艳华,陈武柱,等. 激光束姿态对三维激光切割质量的影响. 中国激光,2006,33(1):124~127
    [96] 张永强,陈武柱,张旭东. 基于 PC 的开放式多功能激光加工数控系统. 应用激光,2004,24(6):368~370
    [97] 张永强,陈武柱,张旭东. 多轴激光加工机床控制参数评估和调节技术. 中国机械工程,2005,24(16):2219~2221
    [98] 戴晓华,王文,王威,等. 开放式数控系统研究综述. 组合机床与自动化组合加工技术,2000,(11):5~7
    [99] 游有鹏,董伟杰,张晓峰,等. 开放式数控系统——新一代 NC 的主流. 航空制造技术,1999,(5):35~37
    [100] 胡俊,王宇晗,吴祖育,等. 数控技术的现状和发展趋势. 机械工程师,2002,(3):5~7
    [101] 傅桂龙,程筱胜. 基于 PC 的开放式数控系统实现方法. 机械设计与制造工程,2002,29(1):45~46
    [102] 周祖德,魏仁选,陈幼平. 开放式数控系统的现状、趋势与对策. 中国机械工程,1999,(10):1090~1093
    [103] 张永强. 开放式多功能激光加工数控系统实用性研究:[硕士学位论文]. 北京:清华大学机械系,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700