Tau蛋白磷酸化对抗细胞凋亡及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Tau蛋白磷酸化对抗细胞凋亡及其机制的研究
     神经原纤维缠结(neurofibrillary tangles, NFTs)是阿尔茨海默病(Alzheimer’s disease, AD)和tau相关疾病患者脑中典型的病理学特征之一,NFTs的主要成分是异常过度磷酸化的微管相关蛋白tau。AD和tau相关疾病患者脑内大多数含有NFTs的神经元尽管长期持续处在促凋亡的环境中却不发生凋亡而是进行慢性的退行性变性死亡,目前对此现象的机制仍不清楚。本研究在两种细胞株鼠成神经瘤(mouse Neuroblastoma 2a, N2a)细胞和人胚肾(Human Embryonic Kidney 293, HEK293)细胞、大鼠和tau转基因小鼠中探讨神经细胞逃逸凋亡及其机制。结果显示:(1)细胞中过度表达微管相关蛋白tau显著抵抗凋亡诱导剂诱导的细胞凋亡,并且同时伴随有微管相关蛋白tau的过度磷酸化和糖原合酶激酶-3(glycogen synthase kinase 3, GSK-3)的酶活性升高;(2)在过度表达微管相关蛋白tau的细胞中过度表达GSK-3不仅完全抑制了GSK-3的促凋亡作用,并且使细胞抵抗凋亡诱导剂诱导的细胞凋亡;(3)细胞、大鼠和tau转基因小鼠中过度磷酸化的微管相关蛋白tau与caspase-3活性片段和(或)浓缩/碎裂的细胞核不存在共定位,去磷酸化的tau蛋白与caspase-3活性片段和(或)浓缩/碎裂的细胞核存在共定位;(4)与微管相关蛋白tau过度磷酸化相伴随的是β-catenin的磷酸化水平降低、β-catenin的水平升高和细胞核转位增加;(5)采用siRNA方法降低β-catenin的水平显著降低微管相关蛋白tau的抗凋亡作用;β-catenin的过度表达抗凋亡诱导剂诱导的细胞凋亡。综上所述,本实验独创地提出了微管相关蛋白tau过度磷酸化的抗凋亡作用:tau蛋白过度磷酸化抑制GSK-3β对β-catenin的磷酸化、升高β-catenin的水平和促进β-catenin的细胞核转位从而使细胞抵抗凋亡。本研究结果显示微管相关蛋白tau过度磷酸化使细胞逃逸灭绝性的凋亡性死亡,为揭示AD和tau相关疾病患者脑中神经退行性变性的本质提供了实验证据。
     第二部分在N2a细胞中过度表达dishevelled-1蛋白抑制渥曼青霉素诱导的细胞骨架蛋白的过度磷酸化
     神经原纤维缠结(neurofibrillary tangles, NFTs)是阿尔茨海默病(Alzheimer’s disease, AD)的特征性病理学特征之一,NFTs主要是由成对的螺旋丝(paired helical filaments, PHF)组成,而构成PHF的主要蛋白组分是过度磷酸化的微管相关蛋白tau。另外,异常过度磷酸化的神经细丝也是NFTs的组成成分。研究显示Wnt信号途径在AD的发病中起着重要的作用,并且过度表达dishevelled-1 (DVL-1)蛋白可以模拟Wnt信号。目前,DVL-1蛋白对神经细丝磷酸化的影响以及对神经细胞中微管相关蛋白tau磷酸化的影响尚未见报道。在本实验中,为了探讨DVL-1蛋白对阿尔茨海默病样骨架蛋白磷酸化的影响,首先,用渥曼青霉素处理鼠成神经瘤细胞2a (mouse Neuroblastoma 2a,N2a)建立细胞骨架蛋白异常过度磷酸化的细胞模型;然后,在N2a细胞中转染携带DVL-1基因的真核表达质粒过度表达DVL-1蛋白,用渥曼青霉素处理细胞后,采用免疫印迹和免疫荧光技术检测神经细丝和微管相关蛋白tau的磷酸化。结果显示:神经细丝在SMI31位点和tau蛋白在PHF-1位点的磷酸化在渥曼青霉素处理后1 h和3 h增强,6 h恢复至正常水平;神经细丝和微管相关蛋白tau磷酸化的高峰分别在渥曼青霉素处理后1 h和3 h;过度表达DVL-1蛋白显著抑制渥曼青霉素诱导的神经细丝在SMI31和SMI32位点和微管相关蛋白tau在PHF-1 (Ser-396/404)、M4 (Thr-231/Ser-235)和Tau-1 (Ser-198/199/202)位点的过度磷酸化。综上所述,我们的研究发现:在N2a细胞中过度表达DVL-1蛋白能够显著抑制渥曼青霉素诱导的神经细丝和微管相关蛋白tau的过度磷酸化。
     第三部分DVL-1 cDNA重组质粒在N2a细胞中的瞬时表达
     目的将鼠dishevelled-1 (DVL-1) cDNA重组质粒转染到培养的鼠成神经瘤细胞N2a (mouse Neuroblastoma 2a),建立瞬时表达系统,为研究Wnt信号途径在阿尔茨海默病(Alzheimer’s disease, AD)发病中的作用提供实验基础。方法用常规分子生物学方法扩增和纯化DVL-1 cDNA重组质粒,用紫外分光技术检测纯化质粒的纯度;用脂质体介导法将重组质粒转染入培养的鼠成神经瘤细胞N2a,用免疫印迹和免疫荧光方法从蛋白质水平检测转染和表达效果。结果质粒酶切电泳结果显示:鼠DVL-1 cDNA重组质粒PCS2+MT-MDVL1扩增和纯化成功,纯度达到要求;免疫印迹和免疫荧光结果显示鼠DVL-1 cDNA重组质粒在鼠成神经瘤细胞N2a中获得表达,基因转染和表达率为57.6%。结论成功将鼠DVL-1 cDNA重组质粒转染到培养的鼠成神经瘤细胞N2a中,并获得瞬时表达。
Part 1 Phosphorylation of tau antagonizes apoptosis and the underlying mechanisms
     Hyperphosphorylated tau is the major protein subunit of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD) and related tauopathies. It is not understood, however, why the NFTs-containing neurons seen in the AD brains do not die of apoptosis but rather degeneration even though they are constantly awash in a proapoptotic environment. Here, we show that cells overexpressing tau exhibit marked resistance to apoptosis induced by various apoptotic stimuli, which also causes correlated tau hyperphosphorylation and glycogen synthase kinase-3 (GSK-3) activation. GSK-3 overexpression did not potentiate apoptotic stimulus-induced cell apoptosis in the presence of high levels of tau. The resistance of neuronal cells bearing hyperphosphorylated tau to apoptosis was also evident by the inverse staining pattern of PHF-1-positive tau and activated caspase-3 or fragmented nuclei in cells and the brains of rats or tau-transgenic mice. Tau hyperphosphorylation was accompanied by decreases inβ-catenin phosphorylation and increases in nuclear translocation ofβ-catenin. Reduced levels ofβ-catenin antagonized tau’s anti-apoptotic effect, while overexpressingβ-catenin conferred resistance to apoptosis. These results reveal a novel anti-apoptotic function of tau hyperphosphorylation, which likely inhibits competitively phosphorylation ofβ-catenin by GSK-3βand hence facilitates the function ofβ-catenin. Our findings suggest that tau phosphorylation may lead the neurons to escape from an acute apoptotic death, implying the essence of neurodegeneration seen in the AD brains and related tauopathies.
     Part 2 Overexpression of dishevelled-1 attenuates wortmannin-induced hyperphosphorylation of cytoskeletal proteins in N2a cell
     Neurofibrillary tangles (NFTs) are one of the hallmark lesions of Alzheimer’s disease (AD) and NFTs are made up of paired helical filaments (PHF), whose main component is the abnormally hyperphosphorylated microtubule-associated protein tau. In addition to tau, abnormally hyperphosphorylated neurofilament is also the protein component of NFTs. Studies have shown that Wnt signaling pathways play important roles in AD and overexpression of dishevelled-1 (DVL-1) mimics the Wnt signal. There is no report about the role of DVL-1 in neurofilament phosphorylation, and the role of DVL-1 in tau phosphorylation in neuronal cells is also not known. To investigate the effect of DVL-1 on Alzheimer-like hyperphosphorylation of cytoskeletal proteins, we used wortmannin to produce a cell model with hyperphosphorylation of cytoskeletal proteins in mouse Neuroblastoma 2a (N2a) cell. Then, cultured N2a cells were transiently transfected with DVL-1 expression plasmid using LipofectamineTM 2000 and were treated with wortmannin. Western blot and immunofluorescence microscopy were used to measure the phosphorylation of neurofilament and tau. Level of phosphorylated neurofilament at SMI31 epitope and phosphorylated tau determined by PHF-1 was increased at 1 h and 3 h and back to normal at 6 h after wortmannin 1μM treatment. The highest level of phosphorylated neurofilament and phosphorylated tau was seen at 1 h and 3 h after wortmannin treatment, respectively. When DVL-1 protein was overexpressed, the hyperphosphorylation of neurofilament at SMI31 and SMI32 epitopes and tau at PHF-1 (Ser-396/404), M4 (Thr-231/Ser-235), and Tau-1 (Ser-198/199/202) epitopes was attenuated. Taken together, our findings suggests that overexpression of mouse DVL-1 protein inhibits wortmannin-induced hyperphosphorylation of neurofilament and tau in N2a cells.
     Part 3 Transient Expression of Mouse DVL-1 cDNA Recombinant Plasmid in Cultured Mouse Neuroblastoma 2a Cell
     Objective To establish a transient expression system of mouse DVL-1 cDNA recombinant plasmid in cultured wild-type mouse Neuroblastoma 2a (N2a) cell for the further use in studying the role of Wnt signaling in Alzheimer’s disease (AD). Methods After being amplified and purified, the recombinant plasmid was transfected into cultured N2a cell by LipofectamineTM 2000. The transfection and expression were examined by Western blot and immunofluorescence microscopy. Results A successful amplification and purification of the recombinant plasmid PCS2+MT-MDVL1 was evaluated by Cla I digestion, and the successful transfection and expression of the fusion protein DVL-1-c-Myc in N2a cells was determined by Western blot and immunofluorescence microscopy using anti-c-Myc tag antibody. The transfection efficiency was 57.6% evaluated by immunofluorescence. Conclusion A transient expression system of the fusion protein DVL-1-c-Myc was established in the present study, which can serve as a tool in studying the role of Wnt signaling in AD.
引文
1. Smith MA. Alzheimer’s disease. Int Rev Neurobiol. 1998; 42: 1–54.
    2. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986; 261 (13): 6084–6089.
    3. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986; 83 (13): 4913–4917.
    4. Ihara Y, Nukina N, Miura R, Ogawara M. Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer's disease. J Biochem (Tokyo). 1986; 99 (6): 1807–1810.
    5. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science. 1991; 251 (4994): 675–678.
    6. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000; 407 (6805): 802–809.
    7. Dickson DW. Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J Clin Invest. 2004; 114 (1): 23–27.
    8. Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol. 1997; 56 (9): 965-973.
    9. Perry G, Nunomura A, Smith MA. A suicide note from Alzheimer’s disease neurons? Nat Med. 1998; 4 (8): 897–898.
    10. Perry G, Zhu X, Smith MA. Do neurons have a choice in death? Am J Pathol. 2001; 158 (1): 1–2.
    11. Braak E, Braak H, Mandelkow EM. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol(Berl). 1994; 87 (6): 554–567.
    12. Coleman PD, Yao PJ. Synaptic slaughter in Alzheimer's disease. Neurobiol Aging. 2003; 24 (8):1023–1027.
    13. Raina AK, Hochman A, Ickes H, Zhu X, Ogawa O, Cash AD, Shimohama S, Perry G, Smith MA. Apoptotic promoters and inhibitors in Alzheimer's disease: Who wins out? Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27 (2): 251–254.
    14. Raina AK, Zhu X, Shimohama S, Perry G, Smith MA. Tipping the apoptotic balance in Alzheimer's disease: the abortosis concept. Cell Biochem Biophys. 2003; 39 (3): 249–255.
    15. Perry G, Nunomura A, Lucassen P, Lassmann H, Smith MA. Apoptosis and Alzheimer's disease. Science. 1998; 282 (5392): 1268–1269.
    16. Drubin DG, Kirschner MW. Tau protein function in living cells. J Cell Biol. 1986; 103 (6 Pt 2): 2739-2746.
    17. Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci. 2001; 24: 1121–1159.
    18. Duff K, Planel E. Untangling memory deficits. Nat Med. 2005; 11 (8): 826-827.
    19. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005; 309 (5733): 476-481.
    20. Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T. The levels of cdk5 and p35 proteins and tau phosphorylation are reduced during neuronal apoptosis. Biochem Biophys Res Commun. 2001; 280 (4): 998-1002.
    21. Amadoro G, Serafino AL, Barbato C, Ciotti MT, Sacco A, Calissano P, Canu N. Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons. Cell Death Differ. 2004; 11 (2): 217-230.
    22. Lesort M, Blanchard C, Yardin C, Esclaire F, Hugon J. Cultured neurons expressing phosphorylated tau are more resistant to apoptosis induced by NMDA or serum deprivation. Brain Res Mol Brain Res. 1997; 45 (1): 127-132.
    23. Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci. 2005; 25 (22): 5446–5454.
    24. Alonso Adel C, Li B, Grundke-Iqbal I, Iqbal K. Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci U S A. 2006; 103 (23): 8864-8869.
    25. Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol (Berl). 1996; 92 (3): 232–241.
    26. Baum L, Seger R, Woodgett JR, Kawabata S, Maruyama K, Koyama M, Silver J, Saitoh T. Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement. Brain Res Mol Brain Res. 1995; 34 (1): 1–17.
    27. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol. 1997; 56 (1): 70–78.
    28. Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol. 1999; 9 (4): 207–210.
    29. Hinoi T, Yamamoto H, Kishida M, Takada S, Kishida S, Kikuchi A. Complex formation of adenomatous polyposis coli gene product and axin facilitates glycogen synthase kinase-3 beta-dependent phosphorylation of beta-catenin and down-regulates beta-catenin. J Biol Chem. 2000; 275 (44): 34399–34406.
    30. Cooper JK, Schilling G, Peters MF, Herring WJ, Sharp AH, Kaminsky Z, Masone J,Khan FA, Delanoy M, Borchelt DR, Dawson VL, Dawson TM, Ross CA. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet. 1998; 7 (5): 783–790.
    31. Ropeleski MJ, Riehm J, Baer KA, Musch MW, Chang EB. Anti-apoptotic effects of L-glutamine-mediated transcriptional modulation of the heat shock protein 72 during heat shock. Gastroenterology. 2005; 129 (1): 170–184.
    32. Marques CA, Keil U, Bonert A, Steiner B, Haass C, Muller WE, Eckert A. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J Biol Chem. 2003; 278 (30): 28294–28302.
    33. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001; 3 (3): 245–252.
    34. Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K, Wang JZ. Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem. 2004; 279 (48): 50078–50088.
    35. Alonso Adel C, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem. 2004; 279 (33): 34873–34881.
    36. Tatebayashi Y, Miyasaka T, Chui DH, Akagi T, Mishima K, Iwasaki K, Fujiwara M, Tanemura K, Murayama M, Ishiguro K, Planel E, Sato S, Hashikawa T, Takashima A. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA. 2002; 99 (21): 13896–13901.
    37. Yuan J, Zhang J, Wong BW, Si X, Wong J, Yang D, Luo H. Inhibition of glycogen synthase kinase 3beta suppresses coxsackievirus-induced cytopathic effect and apoptosis via stabilization of beta-catenin. Cell Death Differ. 2005; 12 (8): 1097–1106.
    38. Jiang H, Guo W, Liang X, Rao Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell. 2005; 120 (1): 123–135.
    39. Raff MC, Whitmore AV, Finn JT. Axonal self-destruction and neurodegeneration. Science. 2002; 296 (5569): 868-871.
    40. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci. 2002; 22 (21): 9340–9351.
    41. Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol. 2006; 168 (5): 1598–1607.
    42. Rametti A, Esclaire F, Yardin C, Terro F. Linking alterations in tau phosphorylation and cleavage during neuronal apoptosis. J Biol Chem. 2004; 279 (52): 54518–54528.
    43. Fath T, Eidenmuller J, Brandt R. Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease. J Neurosci. 2002; 22 (22): 9733–9741.
    44. Khatoon S, Grundke-Iqbal I, Iqbal K. Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett. 1994; 351 (1): 80–84.
    45. Bijur GN, De Sarno P, Jope RS. Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J Biol Chem. 2000; 275 (11): 7583–7590.
    46. Wang H, MacNaughton WK. Overexpressed beta-catenin blocks nitric oxide-induced apoptosis in colonic cancer cells. Cancer Res. 2005; 65 (19): 8604–8607.
    47. Zhang Z, Hartmann H, Do VM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Sommer B, van de Wetering M, Clevers H, Saftig P, De Strooper B, He X, Yankner BA. Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature. 1998; 395 (6703): 698–702.
    48. Chen YZ. APP induces neuronal apoptosis through APP-BP1-mediated downregulation of beta-catenin. Apoptosis. 2004; 9 (4): 415–422.
    49. De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev. 2000; 33 (1): 1–12.
    50. Wang JZ, Gong CX, Zaidi T, Grundke-Iqbal I, Iqbal K. Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J Biol Chem. 1995; 270 (9): 4854–4860.
    51. Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA. 1997; 94 (1): 298–303.
    52. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005; 307 (5713): 1282–1288.
    53. Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomura A, Smith MA. Tau phosphorylation in Alzheimer's disease: pathogen or protector? Trends Mol Med. 2005; 11 (4): 164–169.
    1. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology. 1992; 42 (3 Pt 1): 631-639.
    2. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986; 261 (13): 6084–6089.
    3. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986; 83 (13): 4913–4917.
    4. Ihara Y, Nukina N, Miura R, Ogawara M. J Biochem (Tokyo). 1986; 99 (6): 1807–1810.
    5. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science. 1991; 251 (4994): 675–678.
    6. Sternberger NH, Sternberger LA, Ulrich J. Aberrant neurofilamnt phosphorylation in Alzheimer disease. Proc Natl Acad Sci USA. 1985; 82 (12): 4274-4276.
    7. Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I. Hyperphosphorylation and accumulation neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett. 2001; 507 (1): 81–87.
    8. Gong CX, Wang JZ, Iqbal K, Grundke-Iqbal I. Inhibition of protein phosphatase 2A induces phosphorylation and accumulation of neurofilaments in metabolically active rat brain slices. Neurosci Lett. 2003; 340 (2): 107–110.
    9. Wang JZ, Gong CX, Zaidi T, Grundke-Iqbal I, Iqbal K. Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J Biol Chem. 1995; 270 (9): 4854–4860.
    10. Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA. 1997; 94 (1): 298–303.
    11. Sihag RK, Nixon RA. Phosphorylation of the amino-terminal head domain of the middle molecular mass 145-kDa subunit of neurofilaments. Evidence for regulation by second messenger-dependent protein kinases. J Biol Chem. 1990; 265 (7): 4166-4171.
    12. Sihag RK, Nixon RA. Identification of Ser-55 as a major protein kinase A phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport. J Biol Chem. 1991; 266 (28): 18861-18867.
    13. Sihag RK, Nixon RA. In vivo phosphorylation of distinct domains of the 70-kilodalton neurofilament subunit involves different protein kinases. J Biol Chem. 1989; 264 (1): 457-464.
    14. Pei JJ, Sersen E, Iqbal K, Grundke-Iqbal I. Expression of protein phosphatases (PP-1, PP-2A, PP-2B and PTP-1B) and protein kinases (MAP kinase and p34cdc2) in the hippocampus of patients with Alzheimer disease and normal aged individuals. Brain Res. 1994; 655 (1-2): 70-76.
    15. Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol (Berl). 1996; 92(3): 232–241.
    16. Baum L, Seger R, Woodgett JR, Kawabata S, Maruyama K, Koyama M, Silver J, Saitoh T. Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement. Brain Res Mol Brain Res. 1995; 34 (1): 1–17.
    17. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. JNeuropathol Exp Neurol. 1997; 56 (1): 70–78.
    18. Guan RJ, Khatra BS, Cohlberg JA. Phosphorylation of bovine neurofilament proteins by protein kinase FA (glycogen synthase kinase 3). J Biol Chem. 1991; 266 (13): 8262–8267.
    19. Guidato S, Tsai LH, Woodgett J, Miller CC. Differential cellular phosphorylation of neurofilament heavy side-arms by glycogen synthase kinase-3 and cyclin-dependent kinase-5. J Neurochem. 1996; 66 (4): 1698–1706.
    20. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995; 378 (6559): 785-789.
    21. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A. 1998; 95 (19): 11211-11216.
    22. Welsh GI, Foulstone EJ, Young SW, Tavare JM, Proud CG. Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase linase-3 and mitogen-activated protein kinase. Biochem J. 1994; 303 (Pt 1): 15–20.
    23. Liu SJ, Wang JZ. Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin. 2002; 23 (2): 183–187.
    24. Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu H, Wang JZ. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem. 2003; 87 (6): 1333–1344.
    25. Klingensmith J, Nusse R, Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 1994; 8 (1): 118–130.
    26. Yu J, Deng YQ, Yang Y, Zhang JY, Zhang YP, Zhang SH, Wang JZ. Activation of glycogen synthase kinase 3 induces Alzheimer-like hyperphosphorylation ofcytoskeleton protein and cell damage. Prog Biochem Biophys. 2004; 31 (6): 532–537.
    27. De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev. 2000; 33 (1): 1-12.
    28. Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci, 2002; 115 (Pt 21): 3977-3978.
    29. Cook D, Fry MJ, Hughes K, Sumathipala R, Woodgett JR, Dale TC. Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J. 1996; 15 (17): 4526–4536.
    30. Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M, Inestrosa NC. Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res. 2004; 297 (1): 186–196.
    31. Sussman DJ, Klingensmith J, Salinas P, Adams PS, Nusse R, Perrimon N. Isolation and characterization of a mouse homolog of the Drosophila segment polarity gene disheveled. Dev Biol. 1994; 166: 73–86.
    32. Yanagawa S, Van Leeuwen F, Wodarz A, Klingensmith J, Nusse R. The dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev. 1995; 9 (9): 1087–1097.
    1. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996; 272 (5264): 1023-1026.
    2. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998; 14: 59-88.
    3. Millar SE, Willert K, Salinas PC, Roelink H, Nusse R, Sussman DJ, Barsh GS. WNT signaling in the control of hair growth and structure. Dev Biol. 1999; 207 (1): 133-149.
    4. Miyaoka T, Seno T, Ishino H. Increased expression of Wnt-1 in schizophrenic brains. Schizophr Res. 1999; 38 (1): 1-6.
    5. De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev. 2000; 33 (1):1–12.
    6. Mudher A, Chapman S, Richardson J, Asuni A, Gibb G, Pollard C, Killick R, Iqbal T, Raymond L, Varndell I, Sheppard P, Makoff A, Gower E, Soden PE, Lewis P, Murphy M, Golde TE, Rupniak HT, Anderton BH, Lovestone S. Dishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-Jun terminal kinase. J Neurosci. 2001; 21 (14): 4987-4995.
    7. Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K, Stevens KE, Maccaferri G, McBain CJ, Sussman DJ, Wynshaw-Boris A. Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell. 1997; 90 (5): 895-905.
    8.萨姆布鲁克主编。分子克隆实验指南。第2版。北京:科学出版社。1998;51-54,309-313,956。
    9. Sussman DJ, Klingensmith J, Salinas P, Adams PS, Nusse R, Perrimon N. Isolation and characterization of a mouse homolog of the Drosophila segment polarity gene disheveled. Dev Biol. 1994; 166: 73–86.
    10. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol. 1997; 56 (1): 70–78.
    11. Liu SJ, Wang JZ. Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin. 2002; 23 (2): 183–187.
    1. Trojanowski JQ, Lee VM.“Fatal attractions”of proteins. A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann N Y Acad Sci. 2000; 924: 62–67.
    2. Fellous A, Francon J, Lennon AM, Nunez J. Microtubule assembly in vitro. Purification of assembly-promoting factors. Eur J Biochem. 1977; 78 (1): 167–174.
    3. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975; 72 (5): 1858–1862.
    4. Arrasate M, Perez M, Avila J. Tau dephosphorylation at tau-1 site correlates with its association to cell membrane. Neurochem Res. 2000; 25 (1): 43–50.
    5. Garcia de Ancos J, Correas I, Avila J. Differences in microtubule binding and self-association abilities of bovine brain tau isoforms. J Biol Chem. 1993; 268 (11): 7976–7982.
    6. Cleveland DW, Hwo SY, Kirschner MW. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol. 1977; 116 (2): 227–247.
    7. Cleveland DW, Hwo SY, Kirschner MW. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol. 1977; 116 (2): 207–225.
    8. Kosik KS, Crandall JE, Mufson EJ, Neve RL. Tau in situ hybridization in normal and Alzheimer brain: localization in the somatodendritic compartment. Ann Neurol. 1989; 26 (3): 352–361.
    9. Kosik KS, Orecchio LD, Bakalis S, Neve RL. Developmentally regulated expression of specific tau sequences. Neuron. 1989; 2 (4): 1389–1397.
    10. Kosik KS, Kowall NW, McKee A. Along the way to a neurofibrillary tangle: a look at the structure of tau. Ann Med. 1989; 21 (2): 109–112.
    11. Goedert M,Crowther RA. Amyloid plaques, neurofibrillary tangles and theirrelevance for the study of Alzheimer’s disease. Neurobiol Aging. 1989; 10 (5): 405–406; discussion 412-414.
    12. Himmler A, Drechsel D, Kirschner MW, Martin DW Jr. Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol. 1989; 9 (4): 1381–1388.
    13. Himmler A. Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family. Mol Cell Biol. 1989; 9 (4): 1389–1396.
    14. Lee VM, Otvos L Jr, Carden MJ, Hollosi M, Dietzschold B, Lazzarini RA. Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad. Sci U S A. 1988; 85 (6): 1998–2002.
    15. Lee VM, Otvos L Jr, Schmidt ML, Trojanowski JQ. Alzheimer disease tangles share immunological similarities with multiphosphorylation repeats in the two large neurofilament proteins. Proc Natl Acad Sci U S A. 1988; 85 (19): 7384–7388.
    16. Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res. 1986; 387 (3): 271–280.
    17. Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human tau gene. Biochemistry. 1992; 31 (43): 10626–10633.
    18. LaFerla FM, Oddo S. Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med. 2005; 11 (4): 170-176.
    19. Heutink P. Untangling tau-related dementia. Hum Mol Genet. 2000; 9 (6): 979–986.
    20. Georgieff IS, Liem RK, Mellado W, Nunez J, Shelanski ML. High molecular weight tau: preferential localization in the peripheral nervous system. J Cell Sci. 1991; 100 (Pt 1): 55–60.
    21. Brandt R, Lee G. Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundleformation in vitro. J Biol Chem. 1993; 268 (5): 3414–3419.
    22. Bre MH, Karsenti E. Effects of brain microtubule-associated proteins on microtubule dynamics and the nucleating activity of centrosomes. Cell Motil Cytoskeleton. 1990; 15 (2): 88–98.
    23. Panda D, Goode BL, Feinstein SC, Wilson L. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau. Biochemistry. 1995; 34 (35): 11117–11127.
    24. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda T, Hirokawa N. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature. 1994; 369 (6480): 488–491.
    25. Lindwall G, Cole RD. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem. 1984; 259 (8): 5301–5305.
    26. Kosik KS. Tau protein and neurodegeneration. Mol Neurobiol. 1990; 4 (3-4): 171–179.
    27. Kidd M. Alzheimer’s disease– an electron microscopical study. Brain. 1964; 87: 307–320.
    28. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986; 83 (13): 4913–4917.
    29. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986; 261 (13): 6084–6089.
    30. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Iqbal K, Wisniewski HM. Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 1989; 477 (1-2): 90–99.
    31. Braak H, Braak E. Evolution of neuronal changes in the course of Alzheimer’sdisease. J Neural Transm Suppl. 1998; 53: 127–140.
    32. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology. 1992; 42 (3 Pt 1): 631-639.
    33. Hasegawa M, Smith MJ, Goedert M. Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett. 1998; 437: 207–210.
    34. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science. 1998; 282 (5395): 1914–1917.
    35. Mori H, Kondo J, Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science. 1987; 235 (4796): 1641–1644.
    36. Yan SD, Chen X, Schmidt AM, Brett J, Godman G, Zou YS, Scott CW, Caputo C, Frappier T, Smith MA, Perry G, Yen SH, and Stern D. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci U S A. 1994; 91 (16): 7787–7791.
    37. Ledesma MD, Bonay P, Colaco C, Avila J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem. 1994; 269 (34): 21614–21619.
    38. Schweers O, Mandelkow EM, Biernat J, Mandelkow E. Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci U S A. 1995; 92 (18): 8463–8467.
    39. Alonso AD, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K. Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and invitro phosphorylation into the disease-like protein. J Biol Chem. 2001; 276 (41): 37967–37973.
    40. Alonso AC, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med. 1996; 2 (7): 783–787.
    41. Salehi A, Delcroix JD, Mobley WC. Traffic at the intersection of neurotrophic factor signaling and neurodegeneration. Trends Neurosci. 2003; 26 (2): 73–80.
    42. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol. 1998; 143 (3): 777–794.
    43. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002; 156 (6): 1051–1063.
    44. Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I, Geerts H, Mercken M, Sciot R, Van Lommel A, Loos R, Van Leuven F. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol. 1999; 155 (6): 2153–2165.
    45. Duff K, Planel E. Untangling memory deficits. Nat Med. 2005; 11 (8): 826-827.
    46. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005; 309 (5733): 476-481.
    47. Mattson MP. Degenerative and protective signaling mechanisms in the neurofibrillary pathology of AD. Neurobiol Aging. 1995; 16 (3): 447–457.
    48. Ihara Y. PHF and PHF-like fibrils– cause or consequence? Neurobiol Aging. 2001; 22 (1): 123–126.
    49. Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol. 1999; 58 (2): 188–197.
    50. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol. 1997; 41 (1): 17–24.
    51. Kril JJ, Patel S, Harding AJ, Halliday GM. Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol (Berl). 2002; 103 (4): 370–376.
    52. Broe M, Shepherd CE, Milward EA, Halliday GM. Relationship between DNA fragmentation, morphological changes and neuronal loss in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol (Berl). 2001; 101 (6): 616–624.
    53. Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci. 2005; 25 (22): 5446–5454.
    54. Alonso Adel C, Li B, Grundke-Iqbal I, Iqbal K. Polymerization of hyperphosphorylated tau into filaments eliminates its inhibitory activity. Proc Natl Acad Sci U S A. 2006; 103 (23): 8864-8869.
    55. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci. 2002; 22 (21): 9340–9351.
    56. Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol. 2006; 168 (5): 1598–1607.
    57. Smith MA, Casadesus G, Joseph JA, Perry G. Amyloid-beta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med. 2002; 33 (9): 1194–1199.
    58. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA.Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001; 60 (8): 759–767.
    59. Mulvihill P, Perry G. Immunoaffinity demonstration that paired helical filaments of Alzheimer disease share epitopes with neurofilaments, MAP2 and tau. Brain Res. 1989; 484 (1-2): 150–156.
    60. Wataya T, Nunomura A, Smith MA, Siedlak SL, Harris PL, Shimohama S, Szweda LI, Kaminski MA, Avila J, Price DL, Cleveland DW, Sayre LM, Perry G. High molecular weight neurofilament proteins are physiological substrates of adduction by the lipid peroxidation product hydroxynonenal. J Biol Chem. 2002; 277 (7): 4644–4648.
    61. Gomez-Ramos A, Diaz-Nido J, Smith MA, Perry G, Avila J. Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res. 2003; 71 (6): 863–870.
    62. Takeda A, Smith MA, Avila J, Nunomura A, Siedlak SL, Zhu X, Perry G, Sayre LM. In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J Neurochem. 2000; 75 (3): 1234–1241.
    63. Calingasan NY, Uchida K, Gibson GE. Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem. 1999; 72 (2): 751–756.
    64. Perez M, Cuadros R, Smith MA, Perry G, Avila J. Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Lett. 2000; 486 (3): 270–274.
    65. Perez M, Hernandez F, Gomez-Ramos A, Smith M, Perry G, Avila J. Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. Eur J Biochem. 2002; 269 (5): 1484–1489.
    66. Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol. 2000; 59 (10): 880–888.
    67. Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA. Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the‘two hit’hypothesis. Mech Ageing Dev. 2001; 123 (1): 39–46.
    68. Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA. Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem. 2001; 76 (2): 435–441.
    69. Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3β. J Neurochem. 2000; 74 (4): 1587–1595.
    70. Miller CC, Ackerley S, Brownlees J, Grierson AJ, Jacobsen NJ, Thornhill P. Axonal transport of neurofilaments in normal and disease states. Cell Mol Life Sci. 2002; 59 (2): 323–330.
    71. Zhu X, Sun Z, Lee HG, Siedlak SL, Perry G, Smith MA. Distribution, levels, and activation of MEK1 in Alzheimer’s disease. J Neurochem. 2003; 86 (1): 136–142.
    72. Zhu X, Raina AK, Perry G, Smith MA. Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol. 2004; 3 (4): 219–226.
    73. Gerst JL, Siedlak SL, Nunomura A, Castellani R, Perry G, Smith MA. Role of oxidative stress in frontotemporal dementia. Dement Geriatr Cogn Disord. 1999; 10 Suppl 1: 85–87.
    74. Odetti P, Garibaldi S, Norese R, Angelini G, Marinelli L, Valentini S, Menini S, Traverso N, Zaccheo D, Siedlak S, Perry G, Smith MA, Tabaton M. Lipoperoxidation is selectively involved in progressive supranuclear palsy. J Neuropathol Exp Neurol. 2000; 59 (5): 393–397.
    75. Ekinci FJ, Shea TB. Phosphorylation of tau alters its association with the plasma membrane. Cell Mol Neurobiol. 2000; 20 (4): 497–508.
    76. Zhou F, Zhu X, Castellani RJ, Stimmelmayr R, Perry G, Smith MA, Drew KL. Hibernation, a model of neuroprotection. Am J Pathol. 2001; 158 (6): 2145–2151.
    77. Arendt T, Stieler J, Strijkstra AM, Hut RA, Rudiger J, Van der Zee EA, Harkany T, Holzer M, Hartig W. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci. 2003; 23 (18): 6972–6981.
    78. Takeda A, Perry G, Abraham NG, Dwyer BE, Kutty RK, Laitinen JT, Petersen RB, Smith MA. Overexpression of heme oxygenase in neuronal cells, the possible interaction with Tau. J Biol Chem. 2000; 275 (8): 5395–5399.
    79. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci. 1999; 19 (6): 1959–1964.
    80. Amadoro G, Serafino AL, Barbato C, Ciotti MT, Sacco A, Calissano P, Canu N. Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons. Cell Death Differ. 2004; 11 (2): 217-230.
    81. Li HL, Wang HH, Liu SJ, Deng YQ, Zhang YJ, Tian Q, Wang XC, Chen XQ, Yang Y, Zhang JY, Wang Q, Xu H, Liao FF, Wang JZ. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer's neurodegeneration. Proc Natl Acad Sci U S A. 2007; 104 (9): 3591-3596.
    82. Rametti A, Esclaire F, Yardin C, Terro F. Linking alterations in tau phosphorylation and cleavage during neuronal apoptosis. J Biol Chem. 2004; 279 (52): 54518–54528.
    83. Elder GA, Friedrich VL Jr, Bosco P, Kang C, Gourov A, Tu PH, Lee VM, Lazzarini RA. Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. J Cell Biol. 1998; 141 (3): 727–739.
    84. Rao MV, Houseweart MK, Williamson TL, Crawford TO, Folmer J, Cleveland DW. Neurofilament-dependent radial growth of motor axons and axonal organizationof neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J Cell Biol. 1998; 143 (1): 171–181.
    85. Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X, Raina AK, Vinters HV, Tabaton M, Johnson AB, Paula-Barbosa M, Avila J, Jones PK, Castellani RJ, Smith MA, Perry G. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol. 2003; 162 (5): 1623–1627.
    86. Liao J, Ku NO, Omary MB. Stress, apoptosis, and mitosis induce phosphorylation of human keratin 8 at Ser-73 in tissues and cultured cells. J Biol Chem. 1997; 272 (28): 17565–17573.
    87. Stumptner C, Omary MB, Fickert P, Denk H, Zatloukal K. Hepatocyte cytokeratins are hyperphosphorylated at multiple sites in human alcoholic hepatitis and in a mallory body mouse model. Am J Pathol. 2000; 156 (1): 77–90.
    88. Steinert PM, Roop DR. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988; 57: 593–625.
    89. Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994; 63: 345–382.
    90. Omary MB, Ku NO, Liao J, Price D. Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell Biochem. 1998; 31: 105–140.
    91. Omary MB, Ku NO. Intermediate filament proteins of the liver: emerging disease association and functions. Hepatology. 1997; 25 (5): 1043–1048.
    92. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 2004; 431: 805–810.
    93. Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E. Clogging of axons by tau, inhibition of axonal transport and starvation of synapses. Neurobiol Aging. 2003; 24 (8): 1079–1085.
    94. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D,Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P. Association of missense and 50-splice site mutations in tau with the inherited dementia FTDP-17. Nature. 1998; 393 (6686): 702–705.
    95. Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest. 2004; 114 (1): 121–130.
    96. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW. Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta. 2005; 1739 (2-3): 216–223.
    97. Smith MA, Nunomura A, Lee HG, Zhu X, Moreira PI, Avila J, Perry G. Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol Aging. 2005; 26 (5): 579–580.
    98. Odetti P, Angelini G, Dapino D, Zaccheo D, Garibaldi S, Dagna-Bricarelli F, Piombo G, Perry G, Smith M, Traverso N, Tabaton M. Early glycoxidation damage in brains from Down’s syndrome. Biochim Biophys Res Commun. 1998; 243 (3): 849–851.
    99. Nunomura A, Chiba S, Lippa CF, Cras P, Kalaria RN, Takeda A, Honda K, Smith MA, Perry G. Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol Dis. 2004; 17 (1): 108–113.
    1. Aitken A, Howell S, Jones D, Madrazo J, Patel Y. 14-3-3 alpha and delta are the phosphorylated forms of raf-activating 14-3-3 beta and zeta. In vivo stoichiometric phosphorylation in brain at a Ser-Pro-Glu-Lys MOTIF. J Biol Chem. 1995; 270 (11): 5706-5709.
    2. Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell. 1999; 4 (2): 153-166.
    3. Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H, Liddington R. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature. 1995; 376 (6536): 191-194.
    4. Yaffe MB. How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 2002; 513 (1): 53-57.
    5. Chaudhri M, Scarabel M, Aitken A. Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochem Biophys Res Commun. 2003; 300 (3): 679-685.
    6. Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F. Crystal structure of the 14-3-3zeta: serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell. 2001; 105 (2): 257-267.
    7. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell. 1997; 91 (7): 961-971.
    8. Henriksson ML, Francis MS, Peden A, Aili M, Stefansson K, Palmer R, Aitken A, Hallberg B. A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo. Eur J Biochem. 2002; 269 (20): 4921-4929.
    9. Braselmann S, McCormick F. Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J. 1995; 14 (19): 4839-4848.
    10.陈晓钎,乌维宁,于常海。14-3-3:保护性信号转导调节蛋白。生理科学进展。2004;5(3):247-250。
    11. Subramanian RR, Masters SC, Zhang H, Fu H. Functional conservation of 14-3-3 isoforms in inhibiting bad-induced apoptosis. Exp Cell Res. 2001; 271 (1): 142-151.
    12. Smith MA. Alzheimer’s disease. Int Rev Neurobiol. 1998; 42: 1–54.
    13. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986; 261 (13): 6084–6089.
    14. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986; 83 (13): 4913–4917.
    15. Ihara Y, Nukina N, Miura R, Ogawara M. Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer's disease. J Biochem (Tokyo). 1986; 99 (6): 1807–1810.
    16. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science. 1991; 251 (4994): 675–678.
    17. Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992; 256: 184-185.
    18. Wilson CA, Doms RW, Lee VM. Intracellular APP processing and A beta production in Alzheimer disease. J Neuropathol Exp Neurol. 1999; 58: 787-794.
    19. Klein WL, Krafft GA, Finch CE. Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 2001; 24: 219-224.
    20. Cao X, Sudhof TC. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science. 2001; 293: 115-120.
    21. Rosenberg RN. The molecular and genetic basis of AD: the end of the beginning: the 2000 Wartenberg lecture. Neurology. 2000; 54 (11): 2045-2054.
    22. Xia W, Zhang J, Perez R, Koo EH, Selkoe DJ. Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer disease. Proc Natl Acad Sci U S A. 1997; 94 (15): 8208-8213.
    23. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St George Hyslop P, Selkoe DJ. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med. 1997; 3 (1): 67-72.
    24. Ray WJ, Ashall F, Goate AM. Molecular pathogenesis of sporadic and familial forms of Alzheimer's disease. Mol Med Today. 1998; 4 (4): 151-157.
    25. Myers A, Holmans P, Marshall H, Kwon J, Meyer D, Ramic D, Shears S, Booth J, DeVrieze FW, Crook R, Hamshere M, Abraham R, Tunstall N, Rice F, Carty S, Lillystone S, Kehoe P, Rudrasingham V, Jones L, Lovestone S, Perez-Tur J, Williams J, Owen MJ, Hardy J, Goate AM. Susceptibility locus for Alzheimer's disease on chromosome 10. Science. 2000; 290 (5500): 2304-2305.
    26. Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Baker M, Adamson J, Ronald J, Blangero J, Hutton M, Younkin SG. Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer's disease pedigrees. Science. 2000; 290 (5500): 2303-2304.
    27. Takashima A, Honda T, Yasutake K, Michel G, Murayama O, Murayama M, Ishiguro K, Yamaguchi H. Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25-35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res. 1998; 31 (4): 317-323.
    28. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J.Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett. 1999; 453 (3): 260-264.
    29. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St George Hyslop P, Selkoe DJ. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med. 1997; 3 (1): 67-72.
    30. Duft K. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature. 1996; 383 (6602): 710-713.
    31. Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C, Yunis W, Xu S, Eckman C, Younkin S, Price D, et al. Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron. 1995; 15 (5): 1203-1218.
    32. Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol. 1997; 56 (9): 965-973.
    33. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O'Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998; 4 (1): 97-100.
    34. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 1995; 373 (6514): 523-527.
    35. Joachim CL, Morris JH, Selkoe DJ. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer's disease. Am J Pathol. 1989; 135 (2): 309-319.
    36. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000; 6 (8): 916-919.
    37. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature. 2000; 408 (6815): 982-985.
    38. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999; 400 (6740): 173-177.
    39. McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M, French JE, Lambermon MH, Darabie AA, Brown ME, Janus C, Chishti MA, Horne P, Westaway D, Fraser PE, Mount HT, Przybylski M, St George-Hyslop P. Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4-10 and inhibit cytotoxicity and fibrillogenesis. Nat Med. 2002; 8 (11): 1263-1269.
    40. Gray EG, Paula-Barbosa M, Roher A. Alzheimer's disease: paired helical filaments and cytomembranes. Neuropathol Appl Neurobiol. 1987; 13 (2): 91-110.
    41. Lovestone S, Reynolds CH. The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience. 78 (2):309-324.
    42.徐雅飞,张永杰,王建枝。多肽脯氨酰顺反异构酶与阿尔茨海默病。生命的化学。2004;24(4):332–334。
    43. Mena R, Edwards PC, Harrington CR, Mukaetova-Ladinska EB, Wischik CM. Staging the pathological assembly of truncated tau protein into paired helical filaments in Alzheimer's disease. Acta Neuropathol. 1996; 91 (6): 633-641.
    44. Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow EM. Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry. 1999; 38 (12): 3549-3558.
    45. Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Smith A, Barnetson L, Smith AD. Relative roles of plaques and tangles in the dementia of Alzheimer's disease: correlations using three sets of neuropathological criteria. Dementia. 1995; 6 (1): 21-31.
    46. Rizzu P, Joosse M, Ravid R, Hoogeveen A, Kamphorst W, van Swieten JC, Willemsen R, Heutink P. Mutation-dependent aggregation of tau protein and its selective depletion from the soluble fraction in brain of P301L FTDP-17 patients. Hum Mol Genet. 2000; 9 (20): 3075-3082.
    47. Arrasate M, Perez M, Armas-Portela R, Avila J. Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations. FEBS Lett. 1999; 446 (1): 199-202.
    48. Perez M, Lim F, Arrasate M, Avila J. The FTDP-17-linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules. J Neurochem. 2000; 74 (6): 2583-2589.
    49. Goedert M, Jakes R, Crowther RA. Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments. FEBS Lett. 1999; 450 (3): 306-311.
    50. Nacharaju P, Lewis J, Easson C, Yen S, Hackett J, Hutton M, Yen SH. Acceleratedfilament formation from tau protein with specific FTDP-17 missense mutations. FEBS Lett. 1999; 447 (2-3): 195-199.
    51. Hasegawa M, Smith MJ, Goedert M. Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett. 1998; 437 (3): 207-210.
    52. Dayanandan R, Van Slegtenhorst M, Mack TG, Ko L, Yen SH, Leroy K, Brion JP, Anderton BH, Hutton M, Lovestone S. Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett. 1999; 446 (2-3): 228-232.
    53. D'Souza I, Poorkaj P, Hong M, Nochlin D, Lee VM, Bird TD, Schellenberg GD. Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci U S A. 1999; 96 (10): 5598-5603.
    54. Grover A, Houlden H, Baker M, Adamson J, Lewis J, Prihar G, Pickering-Brown S, Duff K, Hutton M. 5' splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J Biol Chem. 1999; 274 (21): 15134-15143.
    55. Hasegawa M, Smith MJ, Iijima M, Tabira T, Goedert M. FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett. 1999; 443 (2): 93-96.
    56. Yen SH, Hutton M, DeTure M, Ko LW, Nacharaju P. Fibrillogenesis of tau: insights from tau missense mutations in FTDP-17. Brain Pathol. 1999; 9 (4): 695-705.
    57. Lu M, Kosik KS. Competition for microtubule-binding with dual expression of tau missense and splice isoforms. Mol Biol Cell. 2001; 12: 171-184.
    58. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001; 293 (5534): 1487-1491.
    59. Fountoulakis M, Cairns N, Lubec G. Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with Alzheimer's disease and Down syndrome. J Neural Transm Suppl. 1999; 57: 323 -335.
    60. Layfield R, Fergusson J, Aitken A, Lowe J, Landon M, Mayer RJ. Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins. Neurosci Lett. 1996; 209 (1) : 57-60.
    61. Hashiguchi M, Sobue K, Paudel HK. 14-3-3zeta is an effector of tau protein phosphorylation. J Biol Chem. 2000; 275 (33): 25247-25254.
    62. Agarwal-Mawal A, Qureshi HY, Cafferty PW, Yuan Z, Han D, Lin R, Paudel HK. 14-3-3 connects glycogen synthase kinase-3 beta to tau within a brain microtubule-associated tau phosphorylation complex. J Biol Chem. 2003, 278 (15): 12722-12728.
    63. Yuan Z, Agarwal-Mawal A, Paudel HK. 14-3-3 binds to and mediates phosphorylation of microtubule-associated tau protein by Ser9-phosphorylated glycogen synthase kinase 3beta in the brain. J Biol Chem. 2004; 279 (25): 26105-26114.
    64. Huang Z, Myers K, Khatra B, Vijayaraghavan S. Protein 14-3-3zeta binds to protein phosphatase PP1gamma2 in bovine epididymal spermatozoa. Biol Reprod. 2004; 71 (1): 177–184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700