柔性机织复合材料撕裂和顶破损伤机制的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织结构柔性复合材料在柔性防弹/防刺防护材料、轻结构建筑、油料运输管等领域有较大的应用潜力。相比于刚性纺织结构复合材料,柔性复合材料在服役过程中不可避免地涉及撕裂和顶破加载情况。研究柔性复合材料撕裂和顶破行为有十分重要的实际意义。本课题以机织物和柔性复合材料为研究对象,采用实验研究和有限元分析两种方法比较机织物和柔性复合材料的撕裂和顶破性能差异,从细观结构层面揭示撕裂和顶破损伤机制。
     实验研究主要得到机织柔性复合材料撕裂和顶破过程的载荷-位移曲线以及破坏形态。其中,撕裂性能测试采用美国材料与试验协会ASTM D885-07中推荐的梯形试验方法;顶破性能测试采用圆形试样。撕裂和顶破测试速度均为100mm/min。通过比较分析机织物和柔性复合材料撕裂和顶破性能之间的差异,考察破坏模式的细观结构机制。
     有限元分析数值仿真基于柔性机织复合材料细观结构,建立机织物和柔性复合材料细观结构几何模型,结合纤维束和基体力学性质参数,计算撕裂和顶破动态过程,揭示破坏区域的应力分布和纤维束断裂、滑移,提出细观结构参数对撕裂和顶破的影响。
     研究主要结论是:
     (1)织物撕裂:影响机织物梯形撕裂性能主要因素包括:经、纬纱拉伸性质、摩擦系数、织物经纬密和紧度参数。撕裂三角区受上述因素影响,导致三角区有不同形态、大小和应力分布,使织物在撕裂过程中纱线间滑移性质、撕裂断口形态和撕裂强度存在显著差异。
     (2)柔性复合材料撕裂:柔性复合材料撕裂强力与机织物撕裂强力差异不大,由于受集体对纤维束的固结作用,柔性复合材料的撕裂轨迹沿直线扩展,撕裂破坏区域明显小于机织物的损伤区域。织物涂层增加了纱线与纱线之间的连接点,限制了经纬纱之间的滑动,减少了撕裂三角区的大小,但由于涂层本身也贡献撕裂强力,使柔性复合材料撕裂强力与机织物撕裂强力无明显差异。
     (3)织物顶破:影响机织物顶破性能主要因素有:织物的经纬密度、纱线拉伸性能和纱线间摩擦系数等。织物的顶破过程可以分为以下三个阶段:(Ⅰ)开始阶段:刺锥开始接触织物,与刺锥直接接触的纱线开始伸直;(Ⅱ)中间阶段:随着刺锥的逐步深入,部分纱线断裂,织物挠度逐渐变大;(Ⅲ)与刺锥直接接触的纱线脱离机织物表面,直至断裂。纱线断裂的不同时性导致顶破载荷-位移曲线上的波动。
     (4)柔性复合材料顶破:柔性复合材料顶破强力远大于机织物顶破强力,顶破损伤面积也比机织物要小。织物涂层阻止经纬纱之间的滑动,防止刺锥尖端与纱线的直接接触,均匀集中应力。虽然涂层本身的承载能力远远小于增强机织物,但涂覆涂层显著提高了柔性复合材料的顶破性能。
     实验测试结果证实有限元数值仿真的准确性,基于该仿真模型可以在揭示撕裂和顶破的细观尺度破坏机理的同时,形成撕裂和顶破设计方案。该设计方案所包括的基本参数是织物规格、纤维束力学性质和涂层基体性质。在工程实际应用中,将可以根据相应强度要求,合理选择细观结构参数、纤维材料和涂层基体材料。
Textile structural flexible composites have a great potential for use in applications such as bullet-proof/stab-resistant materials, lightweight architectures and oil pipeline structures. During their use, the flexible composites are likely to suffer from tear and stab damages as compared to rigid textile structural composites. The aim of studying tearing and stab failure behaviors of flexible composites is to aid in designing of a flexible composite with high tear and stab resistance. This paper will report the tearing and stab behaviors of woven fabrics and flexible composites in experimental and numerical simulations. Numerical simulations were developed based on the microstructure parameters of woven fabrics and flexible composites to show the tear and stab failure mechanisms on mesoscale.
     From the experiments, tearing and puncture load-displacement curves, failure processes and failure morphologies were obtained. The trapezoid tearing tests were carried out according to American Society for Testing and Materials (ASTM) D885-07standards. The circle-shaped sample was adopted in the puncture test while the movement velocity of the jaw for both tearing and puncture tests was100mm/min. The tearing and puncture strength as well as damage morphologies obtained from experiments of two kinds of specimens were compared. The differences in tearing and stab performances between woven fabrics and flexible composites revealed the influence of structural parameters.
     In finite element analysis (FEA), microstructure geometrical models of both woven fabrics and flexible composites were constructed based on microstructural parameters of two specimens in ABAQUS/CAE. The mechanical parameters of yarns and coating resin were incorporated into the finite element (FE) model to calculate dynamic tear and stab failure processes. The stress distribution as well as the failure and slippages of fiber tows at local damage area could be visually displayed in the FE results. This will be helpful in analyzing the influence of microstructural parameters on the tear and stab performances.
     The main conclusions are as follows:
     (1) Tear behaviors of woven fabrics:We found out that the main factors influencing the tear performance of woven fabrics are:tensile properties of warp and weft yarns, frictional coefficient, warp and weft density as well as fabric compactness parameters. The shape, size and stress distribution of tearing delta region were dramatically influenced by factors mentioned above. The slippage characteristics between yarns, damage morphologies of tearing region and tearing strength differ from each specimen during the tearing process.
     (2) Tear behaviors of flexible composites:There was no much difference in tearing strength between flexible composites and woven fabrics. It was obvious that the tearing damage area of the woven fabric is greater than that of the flexible composite. In addition, the fracture of weft yarns in the woven fabric was irregular while the pre-slit was propagated along a straight line strictly in the flexible composite. Coating resin increases the connection points between yarns and this prevents relative slipping between yams which leads to a smaller tearing triangular zone. However, the coating resin itself also contributes to tearing strength of flexible composite. The two contrary effects offset each other resulting in slight difference of tearing strength between woven fabrics and flexible composites.
     (3) Stab behaviors of woven fabrics:Warp and weft density, tensile properties of yarns as well as frictional coefficient between the yarns are the major factors that affect stab behaviors of woven fabrics. The stab damage process of woven fabrics can be divided into three stages:(Ⅰ) initial stage:the steel penetrator comes in contact with the fabric. The yarns which are directly in contact with the penetrator will bear the tensile load and will be stretched more.(Ⅱ) intermediate stage:with the increase of the penetration depth, some yarns reach the breaking strength and fail. Meanwhile, the deflection of the fabric gradually increases.(Ⅲ) final stage:the yarns which are directly in contact with the penetrator will break and slip from the penetrator surface. The un-simultaneous breakages of the yarns leads to the fluctuation of the stab load-deflection curves.
     (4) Stab behaviors of flexible composites:The stab strength of the flexible composite is significantly higher than that of the woven fabric and also, the stab damage area of the flexible composite is much smaller than that of the woven fabric. The significant improvement of the stab strength is mainly due to the functions of coating resin which include preventing slippages between warp and weft yarns, protecting fibers from direct contact with the penetrator and distributing load concentration to more fibers. Although resins generally have low mechanical properties compared to those of fibers, the coating resin significantly improves the stab properties of the flexible composite.
     The good agreement between experimental and FE results validates the accuracy of FE models. The numerical simulation will be helpful in predicting tear and stab damage mechanisms on the microstructural level as well as designing flexible composites with high tear and stab resistances. The designing parameters contain specifications of woven fabrics, mechanical properties of yams and coating resin. In practical engineering, the microstructural factors, fiber and coating resin materials can be determined according to the target strength.
引文
[1]Krook CM and Fox KR. Study of the tongue-tear test. Textile Research Journal, 1945,15(11):389-396
    [2]Hager OB, Gagliardi DD and Walker HB. Analysis of tear strength. Textile Research Journal,1947,17(7):376-381
    [3]Teixeira NA, Platt MM and Hamburger WJ. Mechanics of elastic performance of textile materials:Part XII:Relation of certain geometric factors to the tear strength of woven fabrics. Textile Research Journal,1955,25(10):838-861
    [4]Turl LH. The Measurement of tearing strength of textile fabrics. Textile Research Journal,1956,26(3):169-176
    [5]Steele R and Gruntfest IJ. An analysis of tearing failure. Textile Research Journal, 1957,27(4):307-313
    [6]Taylor HM. Tensile and tearing strength of cotton cloths. Journal of the Textile Institute Transactions,1959,50(1):161-188
    [7]Freeston WD and Claus WD. Crack propagation in woven fabric. Journal of Applied Physics,1973,44(7):3130-3138
    [8]Topping AD. Critical slit length of pressurized coated fabric cylinders. Journal of Coated Fabrics,1973,3(2):96-110
    [9]Sarma GV. A study of tear-length distributions in woven apparel fabrics in service. Part II:Applications. Journal of the Textile Institute,1975,66(11):382-388
    [10]Sarma GV. A study of tear-length distributions in woven apparel fabrics in service. Part Ⅰ:Theoretical models. Journal of the Textile Institute,1975,66(11): 375-381
    [11]Hamkins CP and Backer S. On the mechanisms of tearing in woven fabrics. Textile Research Journal,1980,50(5):323-327
    [12]Hamkins CP,储才元.机织物的撕裂机理.国外纺织技术(纺织分册),1981,(30):25-27
    [13]Skelton J. Mechanics of flexible fibre assemblies.1980, Sijthoff & Noordhoff International Publishers, Netherland:243-254
    [14]Popescu C, Chelaru J, Magrini C, Pali S and Corneanu V. Influence of technological processes on tear strength of finished wools. Textile Research Journal,1985,55(1):72-74
    [15]Choudhry MY. Use of scanning electron microscopy for identification of cuts and tears in fabrics:observations based upon criminal cases. Scanning Micros, 1987,1(1):119-125
    [16]Stowell LI and Card KA. Use of scanning electron microscopy (SEM) to identify cuts and tears in a nylon fabric. Journal of Forensic Sciences,1990,35(4): 947-950
    [17]Lloyd DW. Tearing of fastenings through woven fabrics:A simple theory:Part Ⅱ: Tearing in the bias direction. Textile Research Journal,1989,59(12):743-747
    [18]Lloyd DW. Tearing of fastenings through woven fabrics:A simple theory:Part Ⅰ: Tearing along warp or weft. Textile Research Journal,1989,59(12):680-683
    [19]Chu C, Dhingra R and Postle R. Study of tearing properties of membrane coated fabrics. Journal of Dong Hua University (English Edition),1991,8(4):1-9
    [20]Petrulis DK. Mathematical models for forecasting the tear performance of fabrics. Tekstil'naya Promyshlennost',1992,52(10):29-31
    [21]Popova MB and Iliev VD. Simulation of the tearing behaviour of anisotropic geomembrane composites. Geotextiles and Geomembranes,1993,12(8):725-738
    [22]Eichert U. Residual tensile and tear strength of coated industrial fabrics determined in long-time tests in natural weather conditions. Journal of Coated Fabrics,1994,23:311-327
    [23]Scelzo WA, Backer S and Boyce MC. Mechanistic role of yarn and fabric structure in determining tear resistance of woven cloth Part Ⅱ:modeling tongue tear. Textile Research Journal,1994,64(6):321-329
    [24]Scelzo WA, Backer S and Boyce MC. Mechanistic role of yarn and fabric structure in determining tear resistance of woven cloth Part I:Understanding Tongue Tear. Textile Research Journal,1994,64(5):291-304
    [25]Godfrey TA and Rossettos JN. Damage growth in prestressed plain weave fabrics. Textile Research Journal,1998,68(5):359-370
    [26]Godfrey TA and Rossettos JN. The onset of tear propagation at slits in stressed uncoated plain weave fabrics. Journal of Applied Mechanics,1999,66(4): 926-933
    [27]Godfrey TA and Rossettos JN. A parameter for comparing the damage tolerance of stressed plain weave fabrics. Textile Research Journal,1999,69(7):503-511
    [28]Godfrey TA and Rossettos JN. Analysis of damage tolerance to tear propagation in stressed structural fabrics. Structures and Materials,2000,6:149-158
    [29]Godfrey TA, Rossettos JN and Bosselman SE. The onset of tearing at slits in stressed coated plain weave fabrics. Journal of Applied Mechanics,2004,71(6): 879-886
    [30]Godfrey TA, Rossettos JN and Bosselman SE. A model for the onset of tearing at slits in stressed coated woven fabrics. ASME Conference Proceedings,2004, 2004:3-12
    [31]Primentas A. Puncture and tear of woven fabrics. Journal of Textile and Apparel, Technology and Management,2001,1(4):1-8
    [32]Wang L, Gao C and Li L. Study on mechanism of woven fabric tearing. Journal of Qingdao University (Engineering and Technology Edition),2001,16(1):29-32
    [33]Bigaud D, Szostkiewicz C and Hamelin P. Tearing analysis for textile reinforced soft composites under mono-axial and bi-axial tensile stresses. Composite Structures,2003,62(2):129-137
    [34]Rossettos JN and Godfrey TA. Effect of slipping yarn friction on stress concentration near yarn breaks in woven fabrics. Textile Research Journal,2003, 73(4):292-297
    [35]Rossettos JN and Godfrey TA. A micromechanical model for slit-damaged braided fabric air-beams. Textile Research Journal,2005,75(7):562-568
    [36]Witkowska B and Frydrych I. A comparative analysis of tear strength methods. Fibres& Textiles in Eastern Europe,2004,12(2):42-47
    [37]Witkowska B and Frydrych I. Static tearing, Part Ⅱ:Analysis of stages of static tearing in cotton fabrics for wing-shaped test specimens. Textile Research Journal, 2008,78(11):977-987
    [38]Witkowska B and Frydrych I. Static tearing, Part Ⅰ:Its significance in the light of European standards. Textile Research Journal,2008,78(6):510-517
    [39]Zhong W, Pan N and Lukas D. Stochastic modelling of tear behaviour of coated fabrics. Modelling and Simulation in Materials Science and Engineering,2004, 12(2):293-309
    [40]Mukhopadhyay A, Ghosh S and Bhaumik S. Tearing and tensile strength behaviour of military khaki fabrics from grey to finished process. International Journal of Clothing Science and Technology,2006,18(3-4):247-264
    [41]Dhamija S and Chopra M. Tearing strength of cotton fabrics in relation to certain process and loom parameters. Indian Journal of Fibre and Textile Research,2007, 32(4):439-445
    [42]Krasteva D. Comparative analysis of the methods for determination of fabrics' tear resistance. Tekstil i Obleklo,2007,2007(5):2-7
    [43]Djaladat R. Evaluating the relationship between shear property and tear ability in the plane of woven fabrics (short staple). ITC and DC:Book of Proceedings of the 4th International Textile, Clothing and Design Conference-Magic World of Textiles,2008:753-756
    [44]Kotb N, Salman A, Abdel-Samad A and El Geiheini A. Engineering of tearing strength for pile fabrics.86th Textile Institute World Conference Proceedings, 2008,2:U122-U130
    [45]Luo Y, Hu H and Fangueiro R. Tensile and tearing properties of PVC coated biaxial warp knitted fabrics under biaxial loads. Indian Journal of Fibre and Textile Research,2008,33(2):146-150
    [46]Luo Y and Hu H. Mechanical properties of PVC coated bi-axial warp knitted fabric with and without initial cracks under multi-axial tensile loads. Composite Structures,2009,89(4):536-542
    [47]Maekawa S. Shibasaki K, Kurose T, Maeda T, Sasaki Y and Yoshino T. Tear propagation of a high-performance airship envelope material. Journal of Aircraft, 2008,45(5):1546-1553
    [48]Kadem FD and Ogulata RT. Regression analyses of fabric tear strength of 100% cotton fabrics with yarn dyed in different constructions. Tekstil Ve Konfeksiyon, 2009,19(2):97-101
    [49]Pamuk G and Ceken F. Research on the breaking and tearing strengths and elongation of automobile seat cover fabrics. Textile Research Journal,2009, 79(1):47-58
    [50]Wayne Rendely PE. Structural fabric tear propagation. Proceedings of the 2009 Structures Congress,2009:916-919
    [51]Chen YR, Yu JY and Di YH. Study on the tear behaviour of coated fabric using the finite element method. International Journal of Nonlinear Sciences and Numerical Simulation,2010,11(7):517-521
    [52]Hussain T, Ali S and Qaiser F. Predicting the crease recovery performance and tear strength of cotton fabric treated with modified N-methylol dihydroxyethylene urea and polyethylene softener. Coloration Technology,2010, 126(5):256-260
    [53]Bai J, Xiong J and Cheng X. Tear resistance of orthogonal Kevlar-PWF-reinforced TPU Film. Chinese Journal of Aeronautics,2011,24(1): 113-118
    [54]Bilisik K, Turhan Y and Demiryurek O. Tearing properties of upholstery flocked fabrics. Textile Research Journal,2011,81(3):290-300
    [55]Liu Z, Qian X and Chen S. Tearing analysis of coated fabrics under mono-axial tensile stresses. Advanced Materials Research,2011,150-151:1082-1086
    [56]沈志耕,邹秀娟.织物撕破强力力学性质的分析.纺织学报,1980,5:36-39
    [57]杨以雄,近田富士雄,黑崎新也,冈村政明,渡边明.机织物撕裂现象的研讨.中国纺织大学学报,1990,16(6):39-44
    [58]储才元,陈峰.机织物的撕裂破坏机理和测试方法的分析.纺织学报,1992,5:4-8
    [59]刘宏伟.织物撕裂机理的探讨.郑州纺织工学院学报,1995,6(1):8-12
    [60]樊小东,吴强,林荣,吴彤.提高聚氨酯涂层织物撕破强力研究.印染,1998,10:16-19
    [61]张海霞,张喜昌.织物撕裂方法的对比分析.河南纺织高等专科学校学报,1999,4:1-4
    [62]张海霞,张喜昌.灯芯绒织物撕裂性能研究.棉纺织技术,2003,31(11):9-11
    [63]张海霞,张喜昌.牛仔布摩擦后撕破强力的研究.上海纺织科技,2004,32(2):56-57
    [64]汪黎明,高传平,李立.机织物撕裂破坏机理的研究.青岛大学学报(工程技术版),2001,16(1):29-32
    [65]姚澜,吴坚.机织物撕裂强力的测试方法分析.大连轻工业学院学报,2001,20(3):221-224
    [66]邓新华,袁晓燕,孙元.聚氯乙烯涂层织物撕破强度研究.上海纺织科技,2002,30(3):63-64
    [67]高传平.机织物机械物理性能的计算机模拟.2002,青岛大学:27=30
    [68]邓丽丽,吕丽华,姜红.机织物撕裂破坏机理及其影响因素.大连轻工业学院学报,2004,23(1):63-65
    [69]葛振余,吴丽莉,俞建勇,储才元.聚氨酯涂层织物撕裂强力的研究.东华大学学报(自然科学版),2004,30(4):66-71
    [70]葛振余.聚氨酯涂层织物撕裂性能的研究.2004,东华大学:27-35
    [71]弓太生,罗向东,任蕾,王宏升.天然皮革缝合撕裂强度影响因素的研究.中国皮革,2005,34(3):5-8
    [72]李绿叶,沈为.经编双轴向织物撕裂性能研究.产业用纺织品,2005,4:20-22
    [73]王婷,安红.棉型服装面料撕裂性能预测分析.江苏纺织,2005,6:36-39
    [74]黄时建.交联剂浓度与聚氨酯涂层织物梯形撕裂强力的相关性研究.上海工程技术大学学报,2007,3:222-225
    [75]姜启刚,陈旭炜,李毓陵,沈明佳.芳砜纶织物的撕破性能研究.产业用纺织品,2007,2:25-28
    [76]杨芳,于伟东.气密性涂层织物的撕裂和顶破性性能探讨.中国个体防护装备,2007,2:13-15
    [77]詹志兰,陈益人,狄义华.聚氨酯涂层织物梯形撕裂性能的研究.第十五届全国复合材料学术会议论文集(上册),2008:202-204
    [78]刘勤,谢光银,熊艳丽.不同结构相涤纶平纹织物的拉伸与撕裂性能分析.纺织科技进展,2009,1:70-71
    [79]罗以喜,胡红,R.Fangueiro双轴向经编织物增强柔性复合材料中心裂缝撕裂性能研究.国际纺织导报,2009,1:46-48
    [80]宋天军,胡志毅,田少辉,谢光银,贺慧艳.篷盖织物基布及涂层布撕裂性能研究.上海纺织科技,2009,37(7):21-22
    [81]马倩,王萍,王永欣.机织物撕裂破坏分析及其自身性能对二维纺织复合材料力学性能的重要性.纤维复合材料,2010,3:15-19
    [82]Koerner RM, Wilson-Fahmy RF and Narejo D. Puncture protection of geomembranes Part III:Examples. Geosynthetics International,1996,3(5): 655-675
    [83]Narejo D, Koerner RM and Wilson-Fahmy RF. Puncture protection of geomembranes Part II:Experimental. Geosynthetics International,1996,3(5): 629-653
    [84]Wilson-Fahmy RF, Narejo D and Koerner RM. Puncture protection of geomembranes Part I:Theory. Geosynthetics International,1996,3(5):605-628
    [85]Ghosh TK. Puncture resistance of pre-strained geotextiles and its relation to uniaxial tensile strain at failure. Geotextiles and Geomembranes,1998,16(5): 293-302
    [86]Nguyen CT, Vu-Khanh T and Lara J. Puncture characterization of rubber membranes. Theoretical and Applied Fracture Mechanics,2004,42(1):25-33
    [87]Nguyen CT, Dolez PI, Vu-Khanh T, Gauvin C and Lara J. Resistance of protective gloves materials to puncture by medical needles. Journal of ASTM International,2010,7(5)
    [88]Lara J, Turcot D, Daigle R and Boutin J. A new test method to evaluate the cut resistance of glove materials. ASTM Special Technical Publication,1996,1237: 23-31
    [89]Lara J, Turcot D, Daigle R and Payot F. Comparison of two methods to evaluate the resistance of protective gloves to cutting by sharp blades. American Society for Testing and Materials,1996:32-42
    [90]Lara J, Masse S, Daigle R and Turcot D. Testing the cut and puncture resistance of firefighter safety shoes. ASTM Special Technical Publication,2000:74-84
    [91]Leslie LF, Woods JA, Thacker JG, Morgan RF, McGregor W and Edlich RF. Needle puncture resistance of surgical gloves, finger guards, and glove liners. Journal of Biomedical Materials Research,1996,33(1):41-46
    [92]Ankersen J, Birkbeck A, Thomson R and Vanezis P. Puncture resistance and tensile strength of skin simulants. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine,1999,2,13(6):493-501
    [93]LaNieve L and Williams RS. Cut resistant fiber and textiles for enhanced safety and performance in industrial and commercial applications. Materials Technology, 1999,14(1):7-9
    [94]Baucom JN and Zikry MA. Evolution of failure mechanisms in 2d and 3d woven composite systems under quasi-static perforation, journal of composite materials, 2003,37(18):1651-1674
    [95]Bleetman A, Watson CH, Horsfall I and Champion SM. Wounding patterns and human performance in knife attacks:Optimising the protection provided by knife-resistant body armour. Journal of Clinical Forensic Medicine,2003,10(4): 243-248
    [96]Brooker DC. Numerical modelling of pipeline puncture under excavator loading. Part Ⅰ. Development and validation of a finite element material failure model for puncture simulation. International Journal of Pressure Vessels and Piping,2003, 80(10):715-725
    [97]Brooker DC. Numerical modelling of pipeline puncture under excavator loading. Part Ⅱ:parametric study. International Journal of Pressure Vessels and Piping, 2003,80(10):727-735
    [98]Erlich DC, Shockey DA and Simons JW. Slow penetration of ballistic fabrics. Textile Research Journal,2003,73(2):179-184
    [99]Shin HS, Erlich DC and Shockey DA. Test for measuring cut resistance of yarns. Journal of Materials Science,2003,38(17):3603-3610
    [100]Shin HS, Erlich DC, Simons JW and Shockey DA. Cut resistance of high-strength yarns. Textile Research Journal,2006,76(8):607-613
    [101]Flambard X and Polo J. Stab resistance of multi-layers knitted structures (comparison between para-aramid and PBO fibers). Journal of Advanced Materials,2004,36(1):30-35
    [102]Walker C, Gray T, Nicol A and Chadwick E. Evaluation of test regimes for stab-resistant body armour. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials:Design and Applications.2004,21,8(4): 355-361
    [103]Egres RG, Halbach CJ, Decker MJ, Wetzel ED and Wagner NJ. in International SAMPE Symposium and Exhibition (Proceedings).2005,50:2369-2380
    [104]Egres RG, Decker MJ, Halbach CJ, Lee YS, Kirkwood JE, Kirkwood KM, Wagner NJ and Wetzel ED. Stab resistance of shear thickening fluid (STF)-Kevlar composites for body armor applications. Transformational Science and Technology for the Current and Future Force,2006,42:264-576
    [105]Decker MJ, Halbach CJ, Nam CH, Wagner NJ and Wetzel ED. Stab resistance of shear thickening fluid (STF)-treated fabrics. Composites Science and Technology,2007,67(3-4):565-578
    [106]Horsfall I, Watson C, Champion S, Prosser P and Ringrose T. The effect of knife handle shape on stabbing performance. Applied Ergonomics,2005,36(4): 505-511
    [107]Vu Thi BN, Vu-Khanh T and Lara J. Effect of friction on cut resistance of polymers. Journal of Thermoplastic Composite Materials,2005,18(1):23-36
    [108]Termonia Y. Puncture resistance of fibrous structures. International Journal of Impact Engineering,2006,32(9):1512-1520
    [109]Houghton JM, Schiffman BA, Kalman DP, Wetzel ED and Wagner NJ. Hypodermic needle puncture of shear thickening fluid (STF)-treated fabrics. International SAMPE Symposium and Exhibition (Proceedings),2007,52
    [110]Kalman DP, Schein JB, Houghton JM, Laufer CHN, Wetzel ED and Wagner NJ. Polymer dispersion based shear thickening fluid-fabrics for protective applications. International SAMPE Symposium and Exhibition (Proceedings), 2007,52:1-9
    [111]Kalman DP, Merrill RL, Wagner NJ and Wetzel ED. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Applied Materials & Interfaces, 2009,1(11):2602-2612
    [112]Griffiths J and Gudimetla P. Puncture resistance of pressurized & unpressurized glass reinforced epoxy (GRE) pipes-a phenomenological model of failure mechanisms. Proceedings of the 9th Global Congress on Manufacturing & Management (GCMM2008),2008:1-8
    [113]Hosur MV, Mayo JB, Wetzel E and Jeelani S. Studies on the fabrication and stab resistance characterization of novel thermoplastic-Kevlar composites. Advanced Structural and Functional Materials for Protection,2008,136:83-92
    [114]Rawal A, Anand S and Shah T. Optimization of parameters for the production of needlepunched nonwoven geotextiles. Journal of Industrial Textiles,2008,37(4): 341-356
    [115]Basu G, Roy AN, Bhattacharyya SK and Ghosh SK. Construction of unpaved rural road using jute-synthetic blended woven geotextile-A case study. Geotextiles and Geomembranes,2009,27(6):506-512
    [116]Mayo Jr JB, Wetzel ED, Hosur MV and Jeelani S. Stab and puncture characterization of thermoplastic-impregnated aramid fabrics. International Journal of Impact Engineering,2009,36(9):1095-1105
    [117]Koerner GR and Koerner RM. Puncture resistance of polyester (PET) and polypropylene (PP) needle-punched nonwoven geotextiles. Geotextiles and Geomembranes, DOI:10.1016/j.geotexmem.2010.10.008
    [118]Koerner RM, Hsuan YG, Koerner GR and Gryger D. Ten year creep puncture study of HDPE geomembranes protected by needle-punched nonwoven geotextiles. Geotextiles and Geomembranes,2010,28(6):503-513
    [119]Tien D, Kim J and Huh Y. Stab-resistant property of the fabrics woven with the aramid/cotton core-spun yarns. Fibers and Polymers,2010,11(3):500-506
    [120]Alpyildiz T, Rochery M, Kurbak A and Flambard X. Stab and cut resistance of knitted structures:A comparative study. Textile Research Journal, 10.1177/0040517510383617
    [121]Sun B, Wang Y, Wang P, Hu H and Gu B. Investigations of puncture behaviors of woven fabrics from finite element analyses and experimental tests. Textile Research Journal, DOI:10.1177/0040517510395999
    [122]汤宝润,于延有,郑俊芝.针刺土工布的顶破强度实验分析.纺织学报,1993,2:27-29+23
    [123]孙晓雯.防刺服材料瞬态刺力的测定与分析.测试技术学报,1994,1:54-57
    [124]储才元,严灏景.非织造布力学各向异性与顶破强力的模拟计算.中国纺织大学学报,1995,9:1-9
    [125]林楠,余涛,汤为人,叶美玲,余一鹗,柳孝龙.影响真丝针刺非织造布顶破强力的相关因素分析.丝绸,1999,6:39-40
    [126]郭静荷.纬编复合防刺织物的防剌性能研究.2005,天津工业大学:31-53
    [127]姜亚明,郭静荷,刘良森,邱冠雄.纬编复合防刺织物的防刺性能研究.针 织工业,2007,12:3-5+1
    [128]梁国斌,何秀玲.针织产品顶破强力测试方法改进的研究.上海纺织科技,2005,5:52-54
    [129]赵玉梅.柔性复合防刺服的研究.2005,东华大学:13-21
    [130]顾肇文.柔性复合防刺服机理研究.纺织学报,2006,8:80-84
    [131]姚晓林.纬编针织物防刺机理研究.2006,天津工业大学:62-86
    [132]姚晓林,姜亚明,邱冠雄,刘良森.纬编针织物刺物穿剌过程纱线张力变化特性.针织工业,2006,5:16-18
    [133]姚晓林,姜亚明,邱冠雄,刘良森.纬编针织物刺物准静态侵彻实验研究.针织工业,2006,10:7-10
    [134]徐文建,赵俐.玻璃纤维经编柔性复合材料顶破性能的研究.国际纺织导报,2007,1:70-73
    [135]徐英,胡红.经编双轴向柔性复合材料的顶破性能.东华大学学报(自然科学版),2007,4:475-477
    [136]王志刚,周兰英,朱杰.SiO2纳米粒子/Kevlar织物复合材料的防刺性能研究.产业用纺织品,2008,10:15-18
    [137]张玉芳,朱牡,庞雅莉.用于个体防剌服的UHMWPE纤维针刺毡的性能研究.产业用纺织品,2008,2:24-27
    [138]方心灵,刘胜,左向春,刘腾龙,张艳朋.树脂基体对芳纶材料防刺性能的影响.合成纤维,2009,7:45-47
    [139]方心灵,张艳朋.树脂对芳纶无纬布防弹防刺性能的影响.高科技纤维与应用,2009,3:21-23
    [140]张艳,周宏,杨年慈,高波,阮建明.超高分子量聚乙烯纤维在防弹、防刺材料方面的应用.纺织科学研究,2009,4:16-26
    [141]张艳.超高分子量聚乙烯纤维在防弹和防刺材料方面的应用.产业用纺织品,2010,10:32-39
    [142]刘君,熊党生.单分散氧化硅浓缩悬浮液浸渍Kevlar复合材料的防刺性能.硅酸盐通报,2010,1:184-187
    [143]刘君,熊党生,熊华超.剪切增稠流体浸渍Kevlar复合材料的防刺性能.南京理工大学学报(自然科学版),2010,2:271-274
    [144]杨中甲,张佐光,孙志杰,李敏.高强织物防穿刺作用特征与机制分析.玻璃钢/复合材料,2010,1:40-45
    [145]Valizadeh M, Lomov S, Ravandi SAH, Salimi M and Rad SZ. Finite element simulation of a yarn pullout test for plain woven fabrics. Textile Research Journal, 2010,80(10):892-903

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700