基于MEMS光栅光调制器的机电特性及控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于MEMS的光调制器以其出光效率高、调制速度快、灰度等级多、对比度、亮度和均匀性出色等优点,已成为大屏幕高清晰投影显示领域的研究热点。但是由于现有光调制器技术的专利保护,限制了国内投影显示技术的研究和发展,因此开发具有自主知识产权的光调制器则显得尤为重要。对于课题组申请了发明专利的新型光调制器(GLM),其器件的工作电压、固有频率、响应速度等机电特性作为重要性能指标,直接关系到器件的驱动方式、应用范围,决定其能否适用于投影显示领域。因此,本文对提出的新型光调制器的结构、机电特性及其驱动控制系统进行了研究,具体工作包括以下几个方面:
     ① 系统分析了现有基于MEMS技术的光调制器的原理及优缺点,并针对现有技术的不足,提出了两种新型的光栅光调制器:反射镜平动式光栅光调制器(RM-GLM)和光栅平动式光栅光调制器(GM-GLM)。详细介绍了两种GLM的结构和工作原理。
     ② 应用微结构的力学理论,建立了GLM相应的电力学模型,理论分析了器件的工作电压、固有频率、响应速度等机电特性同器件结构参数的关系。利用CoventorWare,进行了器件的机电特性仿真,并针对器件的有效衍射面积,对两种结构进行了优化,得到了能与现有工艺兼容的尺寸参数。加工出4×4、16×16GLM阵列。采用WYKO NT1100干涉轮廓仪,进行了相关测试分析。结果表明,由于现有加工条件的限制,只能加工出GM-GLM器件,其加工工艺尚待进一步改善。
     ③ 针对GLM特有的机电特性,确定了器件的驱动方式及图像灰度实现方式。详细阐述了GLM的显示控制原理,设计出GLM显示控制系统的总体方案。重点针对加工出来的16×16的GLM阵列,采用VHDL语言和Quaruts Ⅱ开发环境,完成了显示控制系统的数据格式转换、脉宽调制等模块的具体设计。为验证控制系统及灰度实现原理,利用LED点阵代替GLM器件,选用美国Altera公司提供的Cyclone开发板,设计搭建了显示驱动的外围硬件电路。
     ④ 完成了GLM的数据驱动电路及脉宽调制电路的相关实验,搭建了实验电路板,完成了灰度图象显示的验证实验。结果表明,数据驱动电路的驱动能力可达0-30V,响应速度能满足高速脉宽调制的要求。设计的脉宽调制电路的输出波形正确,能满足GLM的驱动要求。设计的GLM显示控制系统方案较为合理,利用二进制脉宽调制实现图像灰度可行,达到了预期的效果。
Due to the advantages of high light efficiency, fast modulating speed, great gray scales, excellent contrast, high brightness and good uniformity, light modulator based on MEMS technology has become one of the focus research projects in the field of large screen high definition projection display. Because of the patent protection for the existing light modulators, the research and development of domestic projection display technology is limited, so it is sharply necessary to develop a new light modulator with own patent property right. For this new light modulator proposed by research group, the electromechanical characteristics such as operation voltage, natural frequency and response speed are the key performance, which decide whether the device can be used in the field of projection display. In this dissertation, the structure, electromechanical characteristics and drive control system of the new light modulator are researched and investigated. The main contributions include the following:
    ① The principles and features of the existing light modulator base on MEMS technology are reviewed and discussed firstly. According to the disadvantages of the existing technology, two new grating light modulators (GLM) are proposed: Reflector-moving GLM and Grating-moving GLM. The structures and operation principles of these two GLM are introduced in detail.
    ② Applying the mechanics theory for micro-structure, the corresponding electrodynamics' models are gained; the relations between the electromechanical characteristics and the structure parameters of the device are analyzed theoretically and simulated by CoventorWare. The structures of GLM are optimized to achieve a larger efficient diffracting area and practicable parameters of GLM are gained. Then 4x4 and 16×16 GLM arrays are fabricated, and some of them are tested and analyzed by the interfere contourgragh WYKO NT11100. The results show that due to the limitation of the existing processing technic, only GM-GLM can be achieved in a good result but still needs further improvement.
    ③ According to the special electromechanical characteristics of GLM, the drive manner for GLM and implementation way for image gray are determined. The general scheme of the GLM display control system is developed. As to the obtained 16x16 GLM array, the data format transformation and pulse width modulation (PWM) modules of the display control system are concretely designed by using the VHDL
引文
[1] 罗元.光通信MEMS光开关关键技术的研究.[博士学位论文].重庆大学.2003.10.pp11~21
    [2] 莫锦秋,梁庆华,汪国宝等著.微机电系统的设计与制造.北京:化学工业出版社.2004.3.pp1~108
    [3] Stephen D.Senturia著.刘泽文,王晓红,黄庆安等译.北京:微系统设计.电子工业出版社.2004.11.Pp.1-9
    [4] 刘达,龚建荣.数字电视技术.北京:电子工业出版社.2005.4.pp.1~28
    [5] Michael Robin,Michel Poulin.北京超品技术有限公司译.数字电视基础:视频与音频系统的设计与安装.北京:人民邮电出版社.2003.1.pp.353~475
    [6] Johannes Buhler, Electrostatic Aluminum Micromirrors Using Double-Pass Metallization, J. Of Microelectromechanical Systems, Vol. 6. N0. 2, 1997. 6
    [7] 西田信夫主编.大屏幕显示.北京:科学出版社,2003 3.pp.1~180
    [8] 应根裕,胡文波,邱勇等著.平板显示技术.北京:人民邮电出版社,2002.10.pp.102~508
    [9] J. B. Sampsell. An overview of the digital micromirror device (DMD) and its application to projection displays. 1993 SID International Symposium Digest of Technical Papers, Vol. 24. pp. 1012 (1993)
    [10] Larry J. Hornbeck. Digital Light Processing~(TM)for High-Brightness, High-Resolution Applications. Texas Instruments Incorporated
    [11] Stephen W. Marshall, Donald B. Doherty, Gary Sextro, Mary DuVal. High Definition Display System Based on Digital Micromirror Device Digital Imaging, Texas Instruments Inc. Dallas, Texas. pp. 1~20
    [12] 赵学峰.数字微镜装置的光机电控制系统研究.[硕士学位论文].西安电子科技大学.2000
    [13] G. Hewlett, W. Werner. Analysis of Electronic Cinema Projection With the Texas Instruments Digital Micromirror Device~(TM)Display System. 137th SMPTE Technical Conference. Los Angeles. CA (September 6-9, 1995).
    [14] G. Sextro, T. Ballew, and J. Iwai. High-Definition Projection System Using DMD Display Technology. SID 95 Digest, pp. 70-73 (1995).
    [15] 小林骏介.乔双,高岩译.彩色液晶显示.北京:科学出版社.2003.4.pp3~166
    [16] 掘浩雄,铃木幸治著.金轸裕译.下一代液晶显示.北京:科学出版社.2003.3.pp.74~86
    [17] Sang-Gook Kim, Kyu-Ho Hwang, Jin Hwang,, Myung-kwon Koo and Geun-Woo Lee. Thin-film Micromirror Array(TMA)-A New Chip-based Display Device for the Large Screen Display. ASIA DISPLAY. 1998
    [18] Sang-Gook Kim, Kyu-Ho Hwang. Thin-film Micromirro Array(TMA) for information Display system. Euro Display'99 in Berlin. 1999.
    [19] S. G. Kim, M. K. Koo. Design of a microactuator army against the coupled nature of microelectromechanical systems (MEMS) processes. Annals of CIRP, vol.49/1, 2000.
    [20] Kyu-Ho Hwang,, Myung-Kwon Koo,, andSang-Gook Kim. High-brightness Projection Display Systems Based on the Thin-Film Actuated Mirror Army (TFAMA). Proc. of SPIE. Santa Clara. 1998. Vol. 3513. pp.171~180.
    [21] Raj B. Apte. Grating Light Valve for High Resolution Display. June, 1994. pp. 10~80
    [22] David T. Amm, Robert W. Corrigan. Optical Performance of the Grating Light Valve Technology. Photonics West-Electronic Imaging '99. Projection Displays V.
    [23] R. W. Corrigan, D. T. Amm, C. S. Gudeman. Grating Light Valve Technology for Projection Displays. International Display Workshop. Kobe, Japan. December 1998. pp. 3~6
    [24] D. Bloom. The Grating Light Valve: Revolutionizing Display Technology. Projection Displays Ⅲ Symposium. SPIE Proceedings Volume 3013. San Jose CA. February 1997
    [25] Robert Corrigan, Randy Cook, Olivier Favotte. Silicon Light Machines~(TM)-Grating Light Valve~(TM)Technology Brief. MEMS Component Technology for Optical Networks. 2001 June 2001 ver. C.
    [26] Eiichi Tamakia,, Yoshimi Hashimoto. Computer-to-plate printing using the Grating Light Valve~(TM)device. SPIE USE, V. 6 5348-8
    [27] Alexander Payne, Wilhellus DeGroot, Robert Monteverde, David Amm. Enabling high data-rate imaging applications with Grating Light Valve~(TM) technology. Photonics West 2004-Micromachining and Microfabrocation Symposium, January 2004
    [28] Trisnadi, Clinton B. Carlisle, Robert Monteverde. Overview and applications of Grating Light ValveTM based optical write engines for high-speed digital imaging. Photonics West 2004-Micromachining and Microfabrication Symposium. January 2004
    [29] 黄尚廉,伍艺,张洁,张智海,付红桥,闫许.反射镜平动式光栅光调制器及阵列.200510020185.3,2005年1月13日
    [30] Zhangjie, Huang Shanglian, Yan Xu, Hart Lei, Wu Yi, Zhang Zhihai. The Influence of Support Structure Patten to the Flatness of Reflector Moving Grating Light Modulator. 1 stIEEE-NEMS. Junuary 18-21,2006
    [31] 张洁,黄尚廉,闫许,等.光栅平动式光调制器的光学特性分析和仿真.中国机械工程,2005,16卷增刊:218~220
    [32] M.Elwenspoek,R.Wiegerink.陶家渠,李应选、万达等译.硅微机械传感器.北京:中国宇航出版社.2003.9.pp.60~85
    [33] Gary Keith Fedder. Simulation of Microelectromechanical Systems. [Ph. D]. University of California. 1994. pp67~156
    [34] R. J. Roark and W. C. Young, Formulas for Stress and Stran, McDraw-Hill, NewYork, 5th ed, 1975, chapter 8, pp. 125~266
    [35] 李炳乾.MEMS谐振器件及其相关理论研究.[博士学文论文].西安交通大学.2000
    [36] 戎华,黄庆安,李伟华。多层梁机电耦合系统的等效电路宏模型.微纳电子技术.2003年第7/8期.pp.44~47
    [37] 蔡乾煌.工程力学[M].北京:高等教育出版社.1992.pp.20.~21
    [38] J. B. Starr. Squeeze Film Damping in Solid State Accelerometer. Tech. Digest, IEEE. June 1990, pp. 44-47.
    [39] M. J. Novack. Design and Fabrication of a Thin Film Micromachined Accelerometer. M. S. Thesis(1992). Massachusetts Institute of Technology.
    [40] P G Steeneken, Th G S M Rijks, J T M van Beck. Dynamics and squeeze film gas damping of a capacitive RF MEMS switch. Journal of Micromechanics and Microengineering. 2005. pp176~184
    [41] Timo Veijola. Compact models for squeezed-film dampers with inertial and rarefied gaseffects. Journal of Micromechanics and Microengineering.2005. pp. 1109~1118
    [42] Feixia Pany, Joel Kubbyy, Eric Peetersy, Alex T Trany and Subrata Mukherjeez. Squeeze film damping effect on the dynamic response of a MEMS torsion mirror. Journal of Micromechanics and Microengineering. 1998. pp.200~208
    [43] Gary K. Fedder, Tamal Mukherjee. Physical design for surface-micromachained MEMS. Preceedings of the 5th ACM/SIGDA. April. 1996. pp. 153~60
    [44] Kim E-S, Cho Y-H and Kim M-U 1999 Micro Electro Mechanical Systems, MEMS '99: 12th IEEE Int. Conf. (17-21Jan.) pp 296-30
    [45] Scott Irving, Yong Liu. Wafer Depositionl Metallization and Back Grind, Process-Induced Warpage Simulation. Electronic Components and Technology Conference. 2003. pp1459~1462
    [46] Gary Keith Fedder. Simulation of Microelectromechanical Systems. [Ph. D]. University of California. 1994. pp67~156
    [47] Eung-Sam Kim, Young-Ho Cho, Moon-Uhn Kim. Effect of holes and edges on the squeeze film damping of perforated micromechanical structures. IEEE. 1999. 0-7803-5194-0
    [48] Minhang Baol, HengYang2, Yuancheng Sunl and Paddy J French2 Modified Reynolds' equation and analytical analysis of squeeze-film air damping of perforated structures. Journal of micromechanics snd mircoengineering.
    [49] 赵学峰.数字微镜装置的光机电控制系统研究.[硕士学位论文].西安电子科技大学.2000
    [50] Kazuhiro Ohara, Adam Kunzman. VIDEO PROCESSING TECHNIQUE FOR MULTIMEDIA HDTV WITH DIGITAL MICRO-MIRROR ARRAY. IEEE Transactions on Consumer Electronics, Vol. 45, No. 3, AUGUST 1'499
    [51] G. Sextro, T. Ballcw, J. Iwai, "High Definition Projection System using DMD Display Technology", Society for Information Display, SID9.5, May 199.5.
    [52] A. Kunzman, A. Wclzcl," 1394 High Performance Serial Hiis: The Digital Inlerlacc ix ATV", IEEE Trans. On CE Vol 41, No. 3, 1995,
    [53] V. Markandey, T. ClatanolT, G.i'ettill, "Vitleo Processing lor DLP'" Display Systems", SHEProceedings, Vol, 2666, 1996.
    [54] V. Markantlcy, T. Clatanoll, R. Govc, K. Ohara, "Motion Adaptive Dciiiterlaccr lor DMD based Digital Television", IEEE Trans. CE Vol.40, No.3.1994.
    [55] 卢官明,宗防著.数字电视原理.北京:机械工程出版社.2004.1.pp.1~10
    [56] Don Doherty and Greg Hewlett. Pulse width modulation control in DLPTM projectors. TI TECHNICAL JOURNAL. pp. 115~121
    [57] Hewlett and W. Wemer, "Electronic Cinema Projection with the Texas Instruments Digital Micromirror Device," 137th SMPTE Technical Conference, September 1995.
    [58] 潘松,黄继业,曾毓.SOPC技术实用教程.北京:清华大学出版社.2005.3
    [59] 齐洪喜,陆颖.VHDL电路设计实用教程.北京:清华大学出版社.2004.6
    [60] 杨刚,龙海燕.现代电子技术——VHDL与数字系统设计.北京:电子工业出版社.2004.1
    [61] 李国洪,沈明山.可编程器件EDA技术与实践.北京:机械工程出版社.2004.7
    [62] 诸昌铃.LED显示屏系统原理及工程技术.成都:电子科技大学出版社.2000.12
    [63] 余家春.Prote199SE电路设计实用教程.北京:中国铁道出版社.2003.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700