废水生物处理系统的物质流和能量流解析及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于废水生物处理系统的评价尚缺少科学、有效的综合评价方法。针对这一问题,本论文以一个典型的工业废水生物处理厂为对象,建立了废水生物处理系统的物质流与能量流分析方法;以此为基础,利用单物质区域观察法和数学模型解析了进入该系统的碳、氮及磷元素的物质流向和能量流向;集成应用基于物质流与能量流分析的耦合生命周期评价模型、模糊识别以及灰色关联模型,探讨了废水生物处理系统的环境影响、效果以及能量消耗;构建了结合环境影响、能量回收以及运行效果指标的废水生物处理厂综合评价新方法。论文的主要研究内容和研究成果包括:
     1.在对废水生物处理系统厌氧与好氧单元的深入分析基础上,采用单物质区域观察和数学模型相结合的方法,建立了废水生物处理系统中物质流与能量流平衡分析的新方法,有效地解析了厌氧与好氧单元内部的物质与能量流向。
     2.对废水生物处理系统的物质流和能量流解析结果表明:厌氧单元被微生物分解的有机物主要转化为甲烷(CH4),其次转化为二氧化碳(CO2),还有小部分用于合成细胞,进入系统的内能绝大部分转化为甲烷内能;在好氧单元中碳进入到剩余污泥中的比例最高,进入单元的氮分布在剩余污泥、反硝化以及出水中;而进入好氧单元的总磷大部分转移到剩余污泥中;耗散的功和热占去进入系统内能中较大的比例。
     3.利用基于物质流与能量流分析的耦合生命周期评价模型,探索了所选择废水生物处理系统在1年内(2008年7月-2009年6月)的环境影响。研究发现:该系统的厌氧单元2009年2月份环境影响的综合指数最小(97.89),2008年7月环境影响的综合指数最大(112.50);好氧单元在2008年8月份环境影响的综合指数最小(12.34),2008年12月环境影响的综合指数最大(13.45)。
     4.利用模糊识别模型与灰色关联模型,分别考察了所选择废水生物处理系统的运行效果及能量消耗情况。该系统的厌氧单元在2008年8月份属运行状况最佳;好氧单元在2009年2月份属运行状况最佳;厌氧单元能量利用率是影响系统能量消耗的最大因素,碳的平衡率和出水有机酸相对而言对能耗的影响较小;而好氧单元中COD的去除率是影响电耗的最大因素,其次是氮、磷平衡率。该结果能够为企业降低废水处理系统的消耗、提高其效率提供依据。
     5.构建了所选择废水生物处理系统运行时的环境影响、运行效果以及能量回收等因素的综合评价新方法,获得了厌氧与好氧单元的优化工况时间。该系统的厌氧单元在2008年7月的综合评价最好,其次是2008年8月,但在9月至12月的结果看来整体效果较差;到了2009年1-4月,综合分析效果整体转好;而好氧单元在整个生命周期内的综合评价结果波动较大,2008年12月、2009年1月、2月的评价指数较高,属于好氧单元的运行评价较优时段。
So far, there is still lack of effective and comprehensive methods for evaluating biological wastewater treatment systems. Taking a typical industrial wastewater biological treatment plant as an example, based on life cycle assessment (LCA), in this work an integrated approach was established for evaluating this plant in ther terms of the material and energy flows. The material and energy flows of carbon, nitrogen and phosphorus elements were analyzed on the basis of single-element regional observation and mathematical modeling methods. In this study, the LCA method, Fuzzy recognition approach and grey relational model were integrated to assess the potential environmental impact, performance and energy consumption of the wastewater treatment plant (WWTP), and a new method with a consideration of index system of environmental impact, energy recovery and operation performance for the comprehensive evaluation of WWTP was established. The main contents and results of this work are as followed:
     1. On the basis of in-depth analysis of anaerobic and aerobic units of the WWTP, a new method accounting for material and energy flow balance analysis was established by an integration of single-element regional observation and mathematical modeling methods. This method is found to be very effective to analyze the material and energy flows within the anaerobic and aerobic units.
     2. The results of material and energy flows analysis of the WWTP showed that the organic matters decomposed by microorganism in the anaerobic unit were mainly conversed into methane (CH4), followed by carbon dioxide (CO2), and only a small part for the synthesis of cells. Most of internal energy into the system was converted into the internal energy. In the aerobic unit, proportion of carbon into excess sludge was highest with a nitrogen distribution into residual sludge, denitrification and effluent. On the other hand, total phosphorus was mainly converted into the excess sludge with the dissipation and heat accounting for the larger proportion of the system internal energy.
     3. With the hybid LCA system of flow and energy flow analysis, the environmental impacts of the WWTP during one-year period (July,2008-June,2009) was investigated. The results showed that the comprehensive index of environmental impacts for the anaerobic unit was lowest in February,2009 (97.89) and highest in August,2008 (112.50). On the other hand, the comprehensive index of environmental impacts for the aerobic unit was lowest during the period of August,2008 (12.34) and highest in December,2008 (13.45).
     4. With Fuzzy recognition approach and grey relational model, the operating performance and energy consumption of the WWTP were investigated. The results showed the optimization point for the anaerobic unit appeared in August of 2008 and the optimization point for the aerobic unit in February of 2009. Energy utilization ratio of anaerobic system was the biggest factor affecting the energy consumption, while carbon balance and organic acids in the effluent had relatively less impact on energy consumption. COD removal efficiency in the aerobic unit was the biggest factor affecting power consumption, followed by nitrogen and phosphorus. The results is useful for improving the WWTP operation.
     5. A new method with a considearation of index system of environmental impact, operational efficiency and energy recovery for the comprehensive evaluation of the WWTP was established and the optimized working conditions for the anaerobic and aerobic units were achieved. The comprehensive evaluation of the anaerobic unit was the best in July of 2008, and followed by August of 2008, while became worse from September to December of 2008. The LCA comprehensive evaluation results of the aerobic unit were in large fluctuations. The comprehensive evaluation index was higher in December of 2008, January and February of 2009, which was optimum operating time for the aerobic unit.
引文
[1]沈耀良,王宝贞.废水生物处理新技术一理论与应用.中国环境科学出版社.北京,1999.6.
    [2]高廷耀,顾国维.水污染控制工程(第二版).高等教育出版社.北京,1999.5.
    [3]Grady CPLJ, Daigger GT, Lim HC著,张锡辉,刘勇弟译.废水生物处理:改编及扩充.化学工业出版社.北京,2002.
    [4]马占青.水污染控制与废水生物处理.中国水利水电出版社.北京,2003.
    [5]徐亚同,黄民生.废水生物处理的运行管理与异常对策。化学工业出版社.北京,2003.
    [6]Loukidou MX, Zoubouli AI, Comparison of two biological treatment process using attached-growth biomass for sanitary landfill leachate treatment, Environ. Pollut,2000,111,273-81.
    [7]Waite T. D. Measurement and implications of floc structure in water and wastewater treatment, Colloids and Surfaces A:Physicochemical and Engineering Aspects.1999,151,27-41.
    [8]张本兰,何保福.活性污泥中的主要微生物类群及其基本生态规律初探.环境科学进展,1994,2:32-34.
    [9]Rittmann B.E., McCarty P.L. Environmental biotechnology:Principles and applications.2001, McGraw-Hill Companies, Inc.
    [10]Hsieh K.M., Murgel G.A., Lion L.W., Shuler M.L. Interactions of microbial biofilms with toxic trace metals:2. Prediction and verification of an integrated computer model of lead(II) distribution in the presence of microbial activity. Biotechnol Bioeng.1994,44:232-239
    [11]Spengel D.B., Dzombak D.A. Brokmeter modeling and scale-up considerations for rolating biological contactors. Water Environment Research.1992,64: 223-235.
    [12]Chang H.T., Rittmann B.E., Amar D., Heim R., Fhlinger O., Lesty Y. Biofilm detachment mechanisms in a liquid-fluidized bed. Biotechnology and Bioengineering.1991,38:499-506.
    [13]Anderson B., Aspegren H., Parker D.S., Lutz M.P. High rate nitrifying trickling filters. Water Science and Technology.1994.29 (10/11):47-60.
    [14]刘雨等,生物膜法废水处理技术.北京,中国建筑工业出版社,2000.
    [15]Liu Y. Mechanisms and models for anaerobic granulation in up flow anaerobic sludge blanket reactor. Wat. Res.,2003,37:661-673.
    [16]Hulshoff P.L.W., Lopes S.I.D., Lettinga G.., Lens P.N.L.. Anaerobic sludge granulation. Water Res.,2004,38:1376-1389.
    [17]管位农,朱晓玫,潘新明.厌氧生物技术在废水处理中的应用.甘肃科技,2004.第20卷,第11期.
    [18]Ogunfowokan A.O., Adenuga A.A., Torto N. Heavy metals pollution in a sewage treatment oxidation pond and the receiving stream of the Obafemi Awolowo University, lle lfe, Nigeria. Environmental Monitoring and Assessment.2008. 143:25-41.
    [19]Ghangrekar M.M., Kishor N., Mitra A. Sewage reuse for aquaculture after treatment in oxidation and duckweed pond. Water Science and Technology.2007. 55:173-181.
    [20]Rockne K.J. Kinetic hindrance of Fe (H) oxidation at alkaline pH and in the presence of nitrate and oxygen in a facultative wastewater stabilization pond. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering.2007.42:265-275.
    [21]Lessard P., Tusseau-Vuillemin M.H., Heduit A. Assessing chemical oxygen demand and nitrogen conversion in a multi-stage activated sludge plant with alternating aeration. Journal of Chemical Technology and Biotechnology.2007, 82:367-375.
    [22]Zhao H.W., Mavinic D.S., Oldham W.K. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water Research.1999.33:961-970.
    [23]You S.J., Chuang S.H., Ouyang C.F. Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Research. 2003.37:2281-2290.
    [24]Pai T.Y., Ouyang C.F., Su J.L. Modelling the stable effluent qualities of the A2O process with activated sludge model 2d under different return supernatant. Journal of the Chinese Institute of Engineers.2001.24:75-84.
    [25]Banu J.R., Uan D.K., Yeom I.T. Nitrient removal in an A2O-MBR reactor with sludge reduction. Bioresource Technology.2009.100:3820-3824.
    [26]Shi X.Y., Sheng G.P., Li X.Y., Yu H.Q. Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules. Bioresource Technology.2010.101: 2960-2964.
    [27]Munoz C, Young H., Antileo C. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor(SBR). Water Science and Technology.2009.60:2545-2553.
    [28]Martin-Hernandez M., Carrera J., Perez J. Enrichment of a K-strategist microbial population able to biodegrade p-nitrophenol in a sequencing batch reactor. Water Research.2009.43:3871-3883.
    [29]Kaewsuk J., Thorasampan W., Thanuttamavong M. Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. Journal of Environmental Management.2010.91:1161-1168.
    [30]Sarti A., Silva A.J., Zaiat M. The treatment of sulfate-rich wastewater using an anaerobic sequencing batch biofilm pilot-scale reactor. Desalination.2009.249: 241-246.
    [31]Kim D.H., Kim S.H., Kim K.Y. Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste. International Journal of Hydrogen Energy.2010.35:1590-1594.
    [32]Donoso-Bravo A., Rosenkranz F., Valdivia V. Anaerobic sequencing batch reactor as an alternative for the biological treatment of wine distillery effluents. Water Science and Technology.2009.60:1155-1160.
    [33]Schulze-Rettmer R., Zuckut S.W. Treatment of textile dyeing wastewater by adsorption/bio-oxidation process. Textile Chemist and Colorist.1998.30:19-23.
    [34]Tyagi V.K., Subramaniyan S., Kazmi A.A. Microbial community in conventional and extended aeration activated sludge plants in India. Ecological Indicators. 2008.8:550-554.
    [35]Safferman S.I., Burks B.D., Parker R.A. Carbon and nutrient removal from on-site wastewater using extended-aeration activated sludge and ion exchange. Water Environment Research.2004.76:404-412.
    [36]Lo C.K., Yu C. W, Tam N.F.Y. Enhanced nutrient removal by oxidation-reduction potential (ORP) controlled aeration in a laboratory-scale extended aeration treatment system. Water Research.1994.28:2087-2094.
    [37]Hartley K.J. Controlling sludge settleability in the oxidation ditch process. Water Research.2008.42:1459-1466.
    [38]Ben Alaya S., Haouech L., Cherif H. Aeration management in an oxidation ditch. Desalination.2010.252:172-178.
    [39]Hao X.D., Doddema H.J., vanGroenestijn J.W. Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch. Bioresource Technology.1997.59:207-215.
    [40]Zhang D.J., Guo L.S., Xu D.Y., Chen Y. Simulation of component distributions in a full-scale Carrousel oxidation ditch:a model coupling sludge-wastewater two-phase turbulent hydrodynamics with bioreaction kinetics. Environmental Engineering Science.2010.27:159-168.
    [41]Liu Y.C., Shi H.C., Xia L., Shi H.M., Shen T.G., Wang Z.Q., Wang G., Wang Y.Z. Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Bioresource Technology.2010.101:901-906.
    [42]Hashimoto T., Onda K., Nakamura Y., Tada K., Miya A., Murakami T. Comparison of natural estrogen removal efficiency in the conventional activated sludge process and the oxidation ditch process. Water Research.2007.41: 2117-2126.
    [43]McLamore E., Sharvelle S., Huang Z. Simultaneous treatment of graywater and waste gas in a biological trickling filter. Water Environmenta Research.2008.80: 2096-2103.
    [44]Shen J.Y., He R., Yu H.X. Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF). Bioresource Technology.2009.100:1922-1930.
    [45]Liu F., Zhao C.C., Zhao D.F. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations. Journal of Hazardous Materials.2008.160: 161-167.
    [46]Wang X.J., Chen S.L., Gu X.Y. Biological aerated filter treated textile washing wastewater for reuse after ozonation pre-treatment. Water Science and Technology. 2008.58:919-923.
    [47]Fan L., Ni J.R., Wu Y.J., Zhang Y.Y. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter. Journal of Hazardous Materials.2009.162:1204-1210.
    [48]Antileo C., Roeckel M., Lindemann J., Wiesmann U. Operating parameters for high nitrite accumulation during nitrification in a rotating biological nitrifying contactor. Water Environment Research.2007.79:1006-1014.
    [49]Windey K., De Bo I., Verstraete W. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Research.2005.39:4512-4520.
    [50]McCarty P.L., Meyer T.E. Numerical model for biological fluidized-bed reactor treatment of perchlorate-contaminated groundwater. Environmental Science & Technology.2005.39:850-858.
    [51]Shishido M., Kojima T., Araike Y.K. Biological phenol degradation by immobilized activated-sludge in gel bead with 3-phase fluidized-bed bioreactor. Chemical Engineering Research & Design.1995.73:719-726.
    [52]Cui Y., Nakhla G, Zhu J. Simultaneous carbon and nitrogen removal in anoxic-aerobic circulating fluidized bed biological reactor (CFBBR). Environmental Technology.2004.25:699-712.
    [53]Tseng S.K., Yang C.J. The reaction characteristics of waste-water containing nitrophenol, treated using an anaerobic biological fluidized-bed. Water Science and Technology.1994.30:233-240.
    [54]Satyanarayan S., Karambe A., Vanerkar A.P. Herbal pharmaceutical wastewater treatment by a pilot scale upflow anaerobic sludge blanket (UASB) reactor. Water Science and Technology.2009.59:2265-2272.
    [55]Sponza D.T., Cigal C. Relationships between anaerobic consortia and removal efficiencies in an UASB reactor degrading 2,4 DCP. Desalination.2009.245: 1-18.
    [56]Tang C.J., Zheng P., Wang C.H., Mahmood Q. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate anammox UASB reactor. Bioresource Technology.2010.101:1762-1768.
    [57]Vlyssides A., Barampouti E.M., Mai S. Influence of ferrous iron on the granularity of a UASB reactor. Chemical Engineering Journal.2009.146:1-5.
    [58]Zhao B.H., Yue Z.B., Zhao Q.B., Mu Y, Yu H.Q., Harada H., Li Y.Y. Optimization of hydrogen production in a granule-based UASB reactor. International Journal of Hydrogen Energy.2008.33:2454-2461.
    [59]Reis M.A.M., et al. Sulphate Reduction in Anaerobic Phase Anaerobic Digestion[J]. Environ. Tech. Letters.1988.8:833-892.
    [60]Postgate J.R. The Sulphate Reduction Bacteria [M]. UK:Cambridge University Press,1984.
    [61]Mu Y, Yu H.Q. Biological hydrogen production in a UASB reactor with granules. I:Physicochemical characteristics of hydrogen-producing granules. Biotechnology and Bioengineering.2006.94:980-987.
    [62]Yu H.Q., Mu Y. Biological hydrogen production in a UASB reactor with granules. II:Reactor performance in 3-year operation. Biotechnology and Bioengineering.2006.94:988-995.
    [63]Strous M., Jerten M.S.M, Zheng P,et all Ammonium removal from concentrated waste streams with anaerobic ammonium oxidation process in different reactor configurations[J]. Water Research.1997.31:1955-1962.
    [64]郑平.厌氧氨氧化技术的研究[D].杭州:浙江大学,1997.
    [65]M L Lacalle, S Villaverde, F Fdz2 Polanco, P A Garcia2 Encina. Combined anaerobic/aerbic (UASB+UBAF) system for organic matter and nitrogen removal from ahigh strength industrial wastewater [J]. Water Science & Technology.2001 44:255-262.
    [66]Fikar M., Chachuat B., Latifi M.A. Optimal operation of alternating activated sludge process. Control Engineering Practice.2005.13:853-861.
    [67]Sin G, Govoreanu R., Boon N. Evaluation of the impacts of model-based operation of SBRs on activated sludge microbial community. Water Science and Technology.2006.54:157-166.
    [68]Carvalho G, Novais J.M., Vanrolleghem P.A. Optimal operation for timely adaptation of activated sludge plants to changes in the surfactant composition of wastewater. Water Science and Technology.2002.45:345-353.
    [69]Hwang J.H., Cicek N., Oleszkiewicz J.A. Long-term operation of membrane biofilm reactors for nitrogen removal with autotrophic bacteria. Water Science and Technology.2009.60:2405-2412.
    [70]Wu X.M., Yang H.H., Guo L.J. Effects of operation parameters on anaerobic fermentation using cow dung as a source of microorganisms. International Journal of Hydrogen Energy.2010.35:46-51.
    [71]Kardos L., Palko G, Olah J. Operation control of anaerobic digesters on the basis of enzyme activity tests. Water Science and Technology.2009.60:957-964.
    [72]Pinto M.A.T., Neder K.D., Luduvice M.L. Assessing oxidation pond design criteria in a tropical town with low water availability. Water Science and Technology.1996.33:33-40.
    [73]Elgohary F., Abdelwahaab R., Elhawary S. Assessment of the performance of oxidation pond system for waste-water reuse. Water Science and Technology. 1993.27:115-123.
    [74]高志广.城市废水脱氮除磷过程模拟及工艺优化运行研究.同济大学博士论文.2007。
    [75]黄和平,毕军,张炳等.物质流分析研究述评,生态学报.2007,1:368-379.
    [76]Bare J.C., Gloria T., Norris G.A. Development of the Method and U.S. Normalization Database for Life Cycle Impact Assessment and Sustainability Metrics. Environmental Science & Technology.2006.40:5108-5115.
    [77]Wang C.H. Dynamic multi-response optimization using principal component analysis and multiple criteria evaluation of the grey relation model. Int J Adv Manuf Technol.2007.32:617-624.
    [78]Liu K.D., Pang Y.J., Zhang B.W. Unascertained measure model of water environmental quality evaluation. Environmental Engineering.2002.18:58-60.
    [79]Yang J., Bi J., Zhou J.B., et al.. Eco-enterprise as model of circular economy:a case study on cement enterprise. China Population, Resources and Environment. 2005.15:66-70.
    [80]陆钟武,岳强.物质流分析的两种方法及应用,有色金属再生与利用.2006.2:27-28.
    [81]Nakamura S., Nakajima k., Yoshizawa Y. Analyzing polyvinyl chloride in Japan with the waste input-output material flow analysis model. Journal of Industrial Ecology.2009.13:706-717.
    [82]Eckelman M.J., Chertow M.R. Using material flow analysis to illuminate long-term waste management solutions in Oahu, Hawaii. Journal of Industrial Ecology.2009.13:758-774.
    [83]Meinzinger F., Kroger K., Otterpohl R. Material flow analysis as a tool for
    sustainable sanitation planning in developing countries:case study of Arba Minch, Ethiopia. Water Science and Technology.2009.59:1911-1920.
    [84]Federici M., Ulgiati S., Basosi R. A thermodynamic, environmental and material flow analysis of the Italian highway and railway transport systems. Energy.2008. 33:760-775.
    [85]Steubing B., Boni H., Schluep M., Silva U., Ludwig C. Assessing computer waste generation in Chile using material flow analysis. Waste Management.2010. 30:473-482.
    [86]Joschko P., Page B., Wohlgemuth V. Combination of job oriented simulation with ecological material flow analysis as integrated analysis tool for business production processes. Proceedings of the 2009 Winter Simulation Conference. 2009.1456-65.
    [87]Matsubae-Yokoyama K., Kubo H., Nakajima K., Nagasaka T. A material flow analysis of Phosphorus in Japan. Journal of Industrial Ecology.2009.13: 687-705.
    [88]Raugei M., Ulgiati S. A novel approach to the problem of geographic allocation of environmental impact in Life Cycle Assessment and material flow analysis. Ecological Indicators.2009.9:1257-1264.
    [89]Liebe C, Mahnke R., Kuhne R. From traffic breakdown to energy flow analysis. 18th International Symposium on Transportation and Traffic Theory.2009. 155-168.
    [90]Owen William F.. Energy in wastewater treatment. Englewood Cliffs. N.J. Prentice hall Inc.,1982.
    [91]Robert M., Hagan, Edwin B. Roberts. Energy requirements for wastewater treatment. Part 2. Water & Sewage works.1976.123:52-57.
    [92]Zhao C., Wang D.M., Zhang Z.X. Analysis of material flow and energy flow in forest logging system. Journal of Nanjing Forestry University.2008:37-40.
    [93]van Vliet O.P.R., Faaij A.P.C., Turkenburg W.C. Fischer-Tropsch diesel production in a well-to-wheel perspective:a carbon, energy flow and cost analysis. Energy Conversion and Management.2009.50:855-876.
    [94]Liebe C, Mahnke R., Kuhne R. From traffic breakdown to energy flow analysis. 18th International Symposium on Transportation and Traffic Theory.2009. 155-168.
    [95]Hu C.Q., Zhang C.X., Zhang X.X., Qi Y.H., Yin R.Y. Material and energy flow analysis of coking process in integrated steel plants. Journal of Iron and Steel Research.2007.19:16-20.
    [96]Suh S. Theory of materials and energy flow analysis in ecology and economics (vol 189, pg251,2005). Ecological Modelling.2006.195:410-410.
    [97]Goto N., Hu H.Y., Lim B.R., Fujie K. Analysts of material and energy flow in sewage treatment facilities in Japan. Environmental Technology.2001.22: 487-496.
    [98]赖斯(Nath B)等,吕永龙主译.环境管理[M],中国环境科学出版社,1996.
    [99]Mary A.C. Groad based Environmental Life Cycle Assessment. Environmental Science & Technology.1993.27:431-436.
    [100]Tillman A.M. Significance of decision-making for LCA methodology. Environmental Impact Assessment Review.2000.20:113-123.
    [101]郑彬,赵绪新,马晓茜,张凌.生命周期评价方法及其应用.中国资源综合利用.2004.3:9-12.
    [102]Huo H., Wang M., Bloyd C, Putsche V. Life-Cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environmental Science & Technology.2009.43:750-756.
    [103]Cristian D., Patrick R., Adrian B. A life cycle impact of the natural gas used in the energy sector in Romania. Journal of Cleaner Production.2007.15:1451 1462.
    [104]Renou S., Thomas J.S., Aoustin E., Pons M.N. Influence of impact assessment methods in wastewater treatment LCA. Journal of Cleaner Production.2007.1-8.
    [105]Houillon G., Jolliet O. Life cycle assessment of processes for the treatment of wastewater urban sludge:energy and global warming analysis. Journal of Cleaner Production.2005.13:287-299.
    [106]Ortiz M, Raluy R.G., Serra L., Uche J. Life cycle assessment of water treatment technologies:wastewater and water-reuse in a small town. Desalination. 2007.204:121-131.
    [107]Dixon A., Simon M., Burkitt T. Assessing the environmental impact of two options for small-scale wastewater treatment:comparing a reedbed and an aerated biological filter using a life cycle approach. Ecological Engineering.2003.20: 297-308.
    [108]Dennison F.J., Azapagic A., Clift R., Colbourne J.S. Assessing management options for sewage treatment works in the context of life cycle assessment. Proceedings of the 5th SETAC annual conference.1997. Brussels.
    [109]Kosmala A., Charvet S., Roger M.C., Faessel B. Impact assessment of a wastewater treatment plant effluent using instream invertebrates and the ceriodaphnia dubia chronic toxicity test. Water Research.1999.33:266-278.
    [110]Magdalena S., Morgan F., Michael M., William A.P., Jefferson T. Environmental assessment of supercritical water oxidation of sewage sludge. Resource, Conservation and Recycling.2004.41:321-338.
    [111]Suh S., Lenzen M., Treloar G.J., Hondo H., Horvath A., Huppes G, Jolliet O., Klann U., Krewitt W, Moriguchi Y., Munksgaard J., Norris G. System boundary selection in life cycle inventories using hybrid approaches.2004. Environmental Science & Technology.28:657-664.
    [112]Str(?)mman A.H., Solli C., Hertwich E.G Hybrid life-cycle assessment of natural gas based fuel chains for transportation. Environmental Science & Technology. 2006.40:2797-2804.
    [113]胡伟广,林泽楠,赵骥.模糊理论在多目标决策中的应用.市场周刊·理论探索.2007.9:19-23.
    [114]Chen S.Y., Ma J.Q. Multi-objective fuzzy recognition theory for optimal projects using irrigation water-saving technology. Journal of Experimental Botany. 2003.54:63.
    [115]Chen G.N. Assessment of environmental water with fuzzy cluster-analysis and fuzzy recognition. Analytica Chimica Acta.1993.271:115-124.
    [116]刘开弟,李思敏,庞彦军.废水处理厂运行管理效果评价模型.中国给水排水.2000.16:45-47.
    [117]Ren C.T., Li C.Y., Jia K.L., Zhang S., Li W.P., Cao Y.L. Water quality assessment for Ulansuhai lake using fuzzy clustering and pattern recognition. Chinese Journal of Oceanology and Limnology.2008.26:339-344.
    [118]Leng Q., Huang L., Hua B.G., Lou C.H. Grey relation function between local electrical potential and stomatal behavior during light exposure in plants. Chinese Science Bulletin.1998.43:1642-1646.
    [119]Ren C.T., Li C.Y., Jia K.L., Zhang S., Li W.P., Cao Y.L. Water quality assessment for Ulansuhai lake using fuzzy clustering and pattern recognition. Chinese Journal of Oceanology and Limnology.2008.26:339-344.
    [120]Lin Z.C., Ho C.Y. Analysis and application of grey relation and ANOVA in chemical-mechanical polishing process parameters. The International Journal of Advanced Manufacturing Technology.2003.21:10-14.
    [121]Zhang L.J., Li Z.J. Gene selection for classifying microarray data using grey relation analysis. Discovery Science, Proceedings.2006.4265:378-382.
    [122]李凡修,陈武,肖遥.灰色关联分析在城市废水处理厂规划改造决策中的应用.环境工程.2000.18:52-54.
    [123]张先起,刘慧卿.基于熵权的灰色关联模型在水环境质量评价中的应用.水资源研究.2006.27:17-19.
    [124]时勇,毕诗咏.灰色关联在布尔哈通河水质评价中的应用.吉林水利.2007.306:24-28.
    [125]胡天觉,陈维平,曾光明,陈信常.灰色系统关联模式用于株洲霞湾废水处理厂选址分析.环境工程.1999.17:69-71.
    [126]刘波,姚红,何炎炎.南通市城市地表水环境质量评价与灰色分析.环境科学导刊.2007.26:70-72.
    [1]黄和平,毕军,张炳等.物质流分析研究述评.生态学报,2007,1:368-379.
    [2]Yang J., Bi J., Zhou J.B., et al.. Eco-enterprise as model of circular economy:a case study on cement enterprise. China Population, Resources and Environment,. 2005.15:66-70.
    [3]陆钟武,岳强.物质流分析的两种方法及应用.有色金属再生与利用,2006,2:27-28.
    [4]M Henze., P. Herromos.废水生物与化学处理技术[M].北京:中国建筑工业出版社,1999.
    [5]张自杰等.排水工程下册(第4版)[M].北京:中国建筑工业出版社,2000.
    [6]Owen W.F.废水处理能耗与能耗[M].北京:能源出版社,1989.
    [7]Nowak O., et al. Parameter estimation for activated sludge models with the help of mass balances. Wat. Sci. Tech.,1999,39:113-120.
    [1]Chang S.H., et. al. The biomass fractions of heterotrophs and phosphate accumulating organisms in a nitrogen and phosphorus removal system. Water Research.2000,34:2283-2290.
    [2]Barker P.S., et. al. COD and nitrogen mass balance in activated sludge systems. Water Research.1995,29:633-643.
    [3]汉斯(HenzeM.).废水生物与化学处理技术.北京.中国建筑工程出版社.2001.
    [4]Ewa L ie, et al. Carbon and phosphorus transformations in a Full-scale enhanced biological phosphorus removal process. Water Research.1997, 31:2689-2693.
    [1]P L Bishopl Pollution Prevention [M]. London:McGraw2Hill, Inc,2000. 251-253.
    [2]Edward S Rubin, Cliff I Davidsonl Introduction to Engineering & the Environment [M] 1 London:McGraw-Hill, Incl,2001.282-285.
    [3]Loeve M. Probability Theory. New York:D Van Nostrand Company,1963.
    [4]Halmos P R. Measure Theory, New York:D Van Nostrand Company,1950.
    [5]Zadeh L A. Fuzzy Sets, Information and Control.1965.8:338.
    [6]刘顺妮,林宗寿.硅酸盐水泥的生命周期评价方法初探[J].中国环境科学,1998.19(4):328-332.
    [7]杨建,王浩,陆雍森.废水处理技术生命周期分析基本概念初探[J].四川环境.2003,22(5):22-24.
    [8]周凌,郑泽根.城市废水处理厂环境效益的生命周期分析[D].重庆.重庆大学硕士论文.2006.
    [9]李学平.用层次分析法求指标权重的标度方法的探讨[J].北京邮电大学学报.2001.1(3):25-27.
    [10]刘恒,耿雷华,陈晓燕.区域水资源可持续利用评价指标体系的建立[J].水科学进展.2003.3(14):265-270.
    [11]施熙灿,杨邦军等.用模糊多因素、多层次综合评价法优选城市防洪标准[J]. 水利科技与经济.1998.1(4):27-29.
    [12]Chen S.Y., Ma J.Q. Multi-objective fuzzy recognition theory for optimal projects using irrigation water-saving technology. Journal of Experimental Botany.2003. 54:63.
    [13]Chen GN. Assessment of environmental water with fuzzy cluster-analysis and fuzzy recognition. Analytica Chimica Acta.1993.271 (1):115-124.
    [14]刘开弟,李思敏,庞彦军.废水处理厂运行管理效果评价模型.中国给水排水.2000.16:45-47.
    [15]Ren C.T., Li C.Y., Jia K.L., Zhang S., Li W.P., Cao Y.L. Water quality assessment for Ulansuhai lake using fuzzy clustering and pattern recognition. Chinese Journal of Oceanology and Limnology.2008.26:339-344.
    [16]Lin Z.C., Ho C.Y. Analysis and application of grey relation and ANOVA in chemical-mechanical polishing process parameters. The International Journal of Advanced Manufacturing Technology.2003.21:10-14.
    [17]Zhang L.J., Li Z.J. Gene selection for classifying microarray data using grey relation analysis. Discovery Science, Proceedings.2006.4265:378-382.
    [18]胡天觉,陈维平,曾光明,陈信常.灰色系统关联模式用于株洲霞湾废水处理厂选址分析.环境工程.1999.17:69-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700