地下工程岩体非线性行为预测识别的高斯过程模型与动态智能反馈分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的飞速增长,地下工程的规模越来越大、施工环境越来越复杂,各种不确定因素越来越多,这就要求与信息化时代相吻合的新的理论与分析方法的提出。鉴于此,本文围绕地下工程岩体非线性行为预测识别与动态智能反馈分析这一主题,将当前流行的高斯过程机器学习方法应用到地下工程当中,提出地下工程非线性系统预测、识别的高斯过程模型,接着与粒子群优化算法相结合,提出粒子群-高斯过程协同优化算法,并将该算法应用到地下工程智能优化反分析,最后在上述研究工作的基础上,综合集成智能优化技术和数值计算方法,融入动态智能反馈分析思想,提出大型地下洞室群动态智能反馈分析方法,为大型地下洞室群的合理开挖支护设计提供科学依据。总体来说,本文主要做了以下几方面研究工作:
     1.针对传统方法在地下工程岩体非线性系统预测和识别问题上的局限性,研究建立基于高斯过程机器学习技术的地下工程非线性系统预测和识别模型,为实现地下工程非线性系统行为演化过程的准确可靠预测和识别提供一条新的途径。
     2.由于岩体结构的复杂性,反分析优化问题是典型的复杂、非线性全局优化问题,采用传统的基于梯度信息的解析优化方法只能获得局部最优解,采用随机性全局优化算法时,为了评价随机解的优劣,往往需要借助三维精细仿真对大量的随机解进行成千上万次地适应度评价,难免存在计算耗时过高、计算代价过大的问题。针对上述问题,提出一种基于机器学习与粒子群优化算法的地下工程岩体力学参数智能优化反分析方法,为地下工程岩体力学参数合理获取提供一种新途径。
     3.开挖后围岩压力的释放情况直接反映了岩体应力卸载程度。在工程实践中,依据新奥法施工理念,当了解围岩压力释放程度时,更有利于发挥围岩的自承载能力,对于判定围岩稳定性和施作支护提供重要依据。为此,将全局寻优性能优异的粒子群算法(PSO)与高斯过程机器学习方法(GP)相融合,结合FLAC3D数值计算软件,提出地下工程岩体力学参数与围岩压力释放率联合反分析的PSO-GP-FLAC3D方法,为岩体力学参数和围岩压力释放率的获取提供一种高效、低成本的方法。
     4.隧洞施工过程中,监测断面的布置一般滞后于掌子面开挖,监测仪器到位前围岩发生的位移可称为损失位移。损失位移的求取对于围岩稳定性的合理评价具有重要意义,此外,在信息化施工过程中,如果忽视损失位移信息,将给施工安全带来不利影响,并会导致围岩反分析结果出现较大误差。因此,如何获取损失位移成为隧洞围岩稳定性评价和安全施工的关键问题。为此,提出隧洞围岩损失位移求取的PSO-GP-FLAC3D方法,为损失位移的合理获取提供一条新的途径。
     5.大型地下洞室群动态智能反馈分析的研究对象是复杂的多空间、多维度耦合系统,这种系统存在着数值模型优化、支护方案优化等多种优化问题,这些问题多是全局优化问题。此外,由于岩体结构的复杂性,决策变量与优化指标之间常常存在复杂的非线性隐式关系,借助数值计算技术进行大规模三维精细仿真是解决该问题的常用方式。然而,全局优化问题求解时,大量的数值计算耗时难以令人接受。如何高精度、快速地进行大型地下洞群动态反馈分析,提出合理、实用的动态反馈分析方法,是当前大型地下洞室群施工领域亟待解决的技术难题。另外,现行的动态反馈分析方法多是将本期反演优化后的参数用来预测后期开挖,未将其代入本期开挖进行正算,进而指导对开挖后围岩的局部补强;同时,现有的方法仅对优化后的工程效果进行评价,忽略了优化前信息对工程施工的预测、指导作用。此外,在动态反馈过程中如何对围岩容易失稳的高边墙做出简便、直观地判断,从而为现场施工提供及时的参考,也是当前地下洞室群工程施工过程中亟待解决的问题。针对上述问题,提出一种基于高斯过程的大型地下洞室群动态智能反馈分析方法,为大型地下洞室群安全施工提供一条新途径。
     6.将上述研究成果应用于某水电站地下厂房大型洞室群动态智能反馈分析,主要针对地下围岩的稳定性分析和支护优化,利用现场监测反馈信息及时优化数值模型和支护方案,实现地下洞室群施工期的反馈分析过程。结果表明:本文提出的大型地下洞室群动态智能反馈分析方法是科学可行的,为大型地下洞室群的科学设计和安全施工提供了参考。
With the rapid development of economy, the scale of underground engineering is more and more big, the construction environment of underground engineering is more and more complicated, and the uncertainties of underground engineering is more and more various. It is required that the new theory and analysis methods are proposed to face new challenges. In view of this, rounding the theme that forecasting and identifying nonlinear behavior of undenrground engineering rock mass and dynamic intelligent feedback analysis, the underground engineering nonlinear system prediction model is proposed based on gaussian process (GP) machine learning. Then a novel hybrid optimization algorithm based on particle swarm optimization (PSO) combined GP is proposed. For convenience, the proposed algorithm will be called as PSO-GP that is used for intelligent optimization back analysis. Adopting dynamic intelligent feedback ideas, basing on numerical method combined with intelligent optimization technology, a new method of dynamic intelligent feedback analysis for large underground caverns is proposed. This method puts forward scientific proof for large underground caverns of reasonable excavation supporting design. In sum, the main works and results are listed as follows:
     1. Aiming to the fact that it is still difficult to reasonably identify and forecast rock mass mechanics nonlinear system behavior in underground engineering, the model based on GP is proposed for identifying and forecasting rock mass mechanics nonlinear system behavior. This provides a new route for accurately and reliably identifying and forecasting rock mass mechanics nonlinear system behavior in underground engineering.
     2. Because of the complexity of the rock mass, the back analysis optimization problem is a typical complex, nonlinear global optimization problem. The traditional analytical optimization method based on gradient information only can obtain the local optimal solution. Using stochastic global optimization algorithm, in order to evaluate the quality of random solution, often needs thousands of times fitness evaluation by three-dimensional elaborate simulation, that is a time-consuming and high computational cost problem. Aiming to the problem, the intelligent optimization back analysis method based on GP and PSO is proposed for obtaining rock mechanics parameters in underground engineering. This provides a new route for reasonably obtaining rock mechanics parameters in underground engineering.
     3. The surrounding rock pressure release situation after excavation directly reflects the degree of rock mass stress unloading. In engineering practice, based on new austrian tunneling method, understanding the degree of surrounding rock pressure release situation can bring into play the surrounding rock bearing capacity and help judge the stability of surrounding rock for applying support. Therefore, a cooperative optimization algorithm based on PSO and GP for back analysis is proposed, then combined the FLAC3D develops a new method called PSO-GP-FLAC3D for joint back analysing of mechanical parameters of rock mass and rock pressure release rate. This provides a new method for high efficiently and low costly obtaining rock mechanics parameters and rock pressure release rate.
     4. The monitored sections are always assembled behind working face excavation. The displacement induced during this period is called loss displacement that has great significance for reasonably evaluating the stability of surrounding rock. In addition, the construction safety would be affected if you ignore the loss of displacement information, with causing the surrounding rock back analysis results appeared large errors. So, it is a critical problem that how to obtain the loss displacement for tunnel surrounding rock stability assessment and the safety of the construction. Therefore, the method based on PSO-GP-FLAC3D is proposed for obtaining the loss displacemen. This provides a new route for reasonably obtaining the loss of displacemen.
     5. Dynamic intelligent feedback analysis of large underground caverns is more complicated space and dimensional increase, including numerical model optimization and supporting scheme optimization that is a global optimization problem. The optimization process is a complicated nonlinear problem, with multiple decision variable and optimization indicators, and the relationship between the variables and optimization index is difficult to exactly express. In addition, in order to ensure the accuracy of the calculation, large-scale elaborately three-dimensional simulation is imperative that will cause a huge amount of calculation combining many excavation supporting combination schemes that is a very expensive and time consuming process. Moreover, the current dynamic feedback analysis method predicts the later excavation using the current optimized parameters and not calculates to guide the local reinforcement. At the same time, the existing methods only focus on the optimized effect, ignoring the former information. In addition, how to make simple, intuitive judgment for the high wall in the process of dynamic feedback, so as to provide reference for the construction, is also a problem to be solved in the process of underground cavern group construction. To the above problems, large underground caverns dynamic intelligent feedback analysis method based on GP is proposed that provides an effective route for large underground cavern group safety construction.
     6. Finally, applying the research fruits mentioned above to the dynamic intelligent feedback analysis of the large underground caverns of certain power station for the stability of surrounding rock in underground analysis and support optimization. Numerical model and support program are timely optimized by monitoring feedback information to achieve feedback analysis process for underground cavern group during construction. The results show that the large underground dynamic intelligent feedback analysis method is feasible that has provided guidance for rational design and safe construction of the large underground caverns.
引文
[1]吴秋芳,黄勇,吴国荣,等.惠州抽水蓄能电站地下厂房洞室群布置方案研究[J].水力发电,2010,36(9):29-32.
    [2]M. Yazdani, M. Sharifzadeh, K. Kamrani, et al.. Displacement-based numerical back analysis for estimation of rock mass parameters in Siah Bisheh powerhouse cavern using continuum and discontinuum approach[J]. Tunnelling and Underground Space Technology, 2012,28:41-48.
    [3]Pierpaolo Oreste. Back-analysis techniques for the improvement of the understanding of rock in underground constructions[J]. Tunnelling and Underground Space Technology,2005, 20:7-21.
    [4]孙钧.世纪之交岩石力学研究的若干进展[C].第六届全国岩土力学数值分析与解析方法讨论会文集,广东科技出版社,1998.
    [5]L.D. Landau, L.P. Pitaevskii, E.M. Lifshitz, et al.. Theory of Elasticity[M]. Butterworth-Heinemann Ltd,1986.
    [6]Harald Hokmark, Johan Claesson. Use of an analytical solution for calculating temperatures in repository host rock[J]. Engineering Geology,2005,81(3):353-364.
    [7]Zhizen Zhang, Yuzhou Sun. Analytical solution for a deep tunnel with arbitrary cross section in a transversely isotropic rock mass[J]. International Journal of Rock Mechanics & Mining Sciences,2011,48:1359-1363.
    [8]G.Y. Gao, Q.S. Chen, Q.S. Zhang, et al.. Analytical elasto-plastic solution for stress and plastic zone of surrounding rock in cold region tunnels[J]. Cold Regions Science and Technology,2012,72:50-57.
    [9]Mahdi Zoorabadi, Buddhima Indraratna, Jan Nemcik. A new equation for the equivalent hydraulic conductivity of rock mass around a tunnel [J]. International Journal of Rock Mechanics & Mining Sciences,2012,54:125-128.
    [10]王华宁,仲政.粘弹性岩体中支护圆形洞室施工过程的解析分析[J].应用力学学报,2012,29(1):1-8.
    [11]Huabin Zhang, Zhiyin Wang, Yali Zheng, et al.. Study on tri-axial creep experiment and constitutive relation of different rock salt[J]. Safety Science,2012,50(4):801-805.
    [12]Lang LIU, Ge-ming WANG, Jian-hong CHEN, et al.. Creep experiment and rheological model of deep saturated rock[J]. Transactions of Nonferrous Metals Society of China,2013, 23(2):478-483.
    [13]Feng Huang, Hehua Zhu, Qianwei Xu, et al.. The effect of weak interlayer on the failure pattern of rock mass around tunnel-Scaled model tests and numerical analysis[J]. Tunnelling and Underground Space Technology,2013,35:207-218.
    [14]潘亨永,王殿春,贺猛.清远抽水蓄能电站地下厂房岩体变形试验研究[J].水力发电,2012,38(4):11-13.
    [15]M.C. He, J.L.Miao, J.L.Feng. Rock burst process of limestone and its acoustic emission characteristics under true-triaxialunloadingc[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47:286-298.
    [16]陈刚,吴立,左清军,等.锦屏二级水电站地下厂房岩壁梁开挖爆破试验[J].水利水电科技进展,2012,32(3):556-558.
    [17]John Jaeger, N. G. Cook, Robert Zimmerman. Fundamentals of Rock Mechanics [M]. Wiley-Blackwell,2007.
    [18]O.S. Dinc, H. Sonmez, C. Tunusluoglu, et al. A new general empirical approach for the prediction of rock mass strengths of soft to hard rock masses[J]. International Journal of Rock Mechanics & Mining Sciences,2011,48:650-665.
    [19]E. Hoek, M.S. Diederichs. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics and Mining Sciences,2008,43(2):203-215.
    [20]Jiayi Shen, Murat Karakus, Chaoshui Xu. A comparative study for empirical equations in estimating deformation modulus of rock masses[J]. Tunnelling and Underground Space Technology,2012,32:245-250.
    [21]Mahendra Singh, K. Seshagiri Rao. Empirical methods to estimate the strength of jointed rock masses[J]. Engineering Geology,2005,77(1-2):127-137.
    [22]Hosein Rafiai. New empirical polyaxial criterion for rock strength[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48:922-931.
    [23]Chandong Chang, Mark D. Zoback, Abbas Khaksar. Empirical relations between rock strength and physical properties in sedimentary rocks[J]. Journal of Petroleum Science and Engineering,2006,51(3-4):223-237.
    [24]张贵,乔春生.应用支持向量机回归确定岩体强度指标[J].北方交通大学学报,2004,28(1):51-54.
    [25]Hongwei SONG, Yanyan DUAN, Jing YANG. Numerical simulation on bolted rock joint shearing performance[J]. Mining Science and Technology,2010,20(3):460-465.
    [26]肖明,张雨霆,陈俊涛,等.地下洞室开挖爆破围岩松动圈的数值分析计算[J].岩土力学,2010,31(8):2613-2618.
    [27]A. Mortazavi, H. Molladavoodi. A numerical investigation of brittle rock damage model in deep underground openings[J]. Engineering Fracture Mechanics,2012,90:101-120.
    [28]W.C. Zhu, Y. Bai, X.B. Li, et al.. Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests[J]. International Journal of Impact Engineering, 2012,49:142-157.
    [29]W.S. Zhu, X.J.Li, Q.B. Zhang, et al.. A study on sidewall displacement prediction and stability evaluations for large underground power station caverns[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47:1055-1062.
    [30]M. Cai, P.K. Kaiser, H. Morioka, et al.. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44:550-564.
    [31]Zhijun Wu. Louis Ngai Yuen Wong. Frictional crack initiation and propagation analysis using the numerical manifold method[J]. Computers and Geotechnics,2012,39:38-53.
    [32]刘永茜,杨军.一种改进步长自调的非连续变形分析法[J].岩土力学,2011,32(8):2544-2548.
    [33]A.G. Benardos, D.C. Kaliampakos. Modelling TBM performance with artificial neural networks[J]. Tunnelling and Underground Space Technology,2004,19:597-605.
    [34]Arunakumari Garaga, Gali Madhavi Latha. Intelligent prediction of the stress-strain response of intact and jointed rocks[J]. Computers and Geotechnics,2010,37:629-637.
    [35]Sun Jian, Wang Lian-guo, Zhang Hua-lei, et al.. Application of fuzzy neural network in predicting the risk of rock burst[J]. Procedia Earth and Planetary Science,2009,1(1): 536-543.
    [36]SHI Xiu-zhi, ZHOU Jian, WU Bang-biao, et al.. Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction[J]. Trans. Nonferrous Met. Soc. China,2012,22:432-441.
    [37]Li Bin, Qi Taiyue, Zhengzheng Wang. Back analysis of grouted rock bolt pullout strength parameters from field tests[J]. Tunnelling and Underground Space Technology,2012, 38:345-349.
    [38]T. Miranda, D. Dias, S. Eclaircy-Caudron, et al.. Back analysis of geomechanical parameters by optimisation of a 3D model of an underground structure[J]. Tunnelling and Underground Space Technology,2011,26:659-673.
    [39]N. Moreira, T. Miranda, M. Pinheiro, et al.. Back analysis of geomechanical parameters in underground works using an Evolution Strategy algorithm[J]. Tunnelling and Underground Space Technology,2013,33:143-158.
    [40]赵洪波.基于微粒群优化的智能位移反分析研究[J].岩土工程学报,2006,28(11):2035-2038.
    [41]姜谙男.基于智能反分析的水布垭电站地下厂房机窝施工方案优化[J].岩土力学,2008,29(5):1372-1376.
    [42]何国华.基于BP神经网络和免疫规划的隧道围岩位移智能反分析研究[D].重庆交通大学,2008.
    [43]祝青.大型地下洞室渐变段施工期围岩稳定的动态数值分析[D].天津大学,2008.
    [44]江权,侯靖,冯夏庭,等.锦屏二级水电站地下厂房围岩局部不稳定问题的实时动态反馈分析与工程调控研究[J].岩石力学与工程学报,2008,27(9):1899-1907.
    [45]A.N. Jiang, S.Y. Wang, S.L. Tang. Feedback analysis of tunnel construction using a hybrid arithmetic based on Support Vector Machine and Particle Swarm Optimisation[J]. Automation in Construction,2011,20(4):482-489.
    [46]Sotirios S. Vardakos, Marte S. Gutierrez, Nick R. Barton. Back-analysis of Shimizu Tunnel No.3 by distinct element modeling[J]. Tunnelling and Underground Space Technology,2007,22:401-413.
    [47]徐卫亚,谢守益,蒋晗等.清江水布垭水电站地下厂房岩体质量评价及反馈设计研究[J].工程地质学报,2000,8(2):191-196.
    [48]李仲奎,周钟,徐千军,等.锦屏一级水电站地下厂房时空智能反馈分析的实现与 应用[J].水力发电学报,2010,29(3):177-183.
    [49]张明,卢裕杰,毕忠伟,等.利用神经网络的反馈分析方法及其在地下厂房中的应用[J].岩石力学与工程学报,2010,29(11):2211-2220.
    [50]Susan Hackwood, Gerardo. Beni Self-organization of Sensors for Swarm Intelligence[C]. In IEEE International conference on Robotics and Automation, IEEE Press:Piscataway,1992, 819-829.
    [51]Christian Blum, Daniel Merkle. Swarm Intelligence:Introduction and Applications[M]. Springer,2008.
    [52]James Kennedy, Russell Eberhart. Particle swarm optimization[C]. In Proc. IEEE Int Conf on Neural Networks, IEEE Press:Piscataway,1995,1942-1948.
    [53]Mahesh Pal, Surinder Deswal. Modelling pile capacity using Gaussian process regression[J]. Computers and Geotechnics,2010,37(7-8):942-947.
    [54]Ricardo Henao, Ole Winther. Predictive active set selection methods for Gaussian processes[J]. Neurocomputing,2012,80(15):148-153.
    [55]C. E. Ramussen, C. K. I. Williams. Gaussian Processes for Machine Learning[M]. Massachusetts:MIT Press,2006.
    [56]Tang Q, Lau Y B, Hu S,et al.. Response surface methodology using Gaussian processes Towards optimizing the trans stilbene epoxidation over Co catalysts[J]. Chemical Engineering Journal,2010,156:423-431.
    [57]Hensman J, Mills R, Pierce S G, et al.. Locating acoustic emission sources in complex structures using Gaussian processes[J]. Mechanical Systems and Signal Processing,2010, 24(1):211-223.
    [58]Marquand A, Howard M, Brammer M, et al.. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes[J]. NeuroImage,2010,49(3): 2178-2189.
    [59]Tao C, Julian M, Elaine M. Gaussian process regression for multivariate spectroscopic calibration[J]. Chemometrics and Intelligent Laboratory Systems,2007,87(1):212-219.
    [60]Sofiane Brahim-Belhouari, Amine Bermak. Gaussian process for nonstationary time series prediction[J]. Computational Statistics & Data Analysis,2004,47:705-712.
    [61]Colin Fyfe, Gayle Leen, Pei Ling Lai. Gaussian processes for canonical correlation analysis [J]. Neurocomputing,2008,71:3077-3088.
    [62]Paolo Picca, Roberto Furfaro. Neutron inverse kinetics via Gaussian Processes[J]. Annals of Nuclear Energy,2012,47:146-154.
    [63]Hyun-Chul Kim, Daijin Kim, Zoubin Ghahramani, et al.. Appearance-ba sed gender classification with Gaussian processes[J]. Pattern Recognition Letters,2006,27:618-626.
    [64]Geert Meyfroidt, Deputy Head of Clinics, Fabian Guiza, et al. Machine learning techniques to examine large patient databases[J]. Best Practice & Research Clinical Anaesthesiology,2009,23:127-143.
    [65]XIONG Zhi-hua, HUANG Guo-hong, SHAO Hui-he. Soft sensor modeling based on Gaussian processes[J]. Journal of Central South University of Technology,2005,12(4): 469-471.
    [66]熊志化,张继承,邵惠鹤.基于高斯过程的软测量建模[J].系统仿真学报,2005,4:793-794.
    [67]熊志化,黄国宏,邵惠鹤.基于高斯过程和支持向量机的软测量建模比较及应用研究[J].信息与控制,2004,33(6):754-757.
    [68]Guosao S, Liubin Y, Yongchun. S. Gaussian Process for Non-linear Displacement Time Series Prediction of Landslide[J]. Journal of China University of Geosciences,2007,18: 212-219.
    [69]苏国韶,燕柳斌,张小飞,等.基坑位移时间序列预测的高斯过程方法[J].广西大学学报(自然科学版),2007,32(2):223-226.
    [70]苏国韶,宋咏春,燕柳斌.岩体爆破效应预测的一种新方法[J].岩石力学与工程学报,2007,(增1):3509-3514.
    [71]刘开云,刘保国,徐冲.基于遗传-组合核函数高斯过程回归算法的边坡非线性变形时序分析智能模型[J].岩石力学与工程学报,2009,28(10):2128-2134.
    [72]苏国韶,陈光强,吕海波.高斯过程机器学习在膨胀土等级分类中的应用[J].路基工程,2009,2:1-2.
    [73]苏国韶.基于高斯过程机器学习的冲击地压危险性预测[J].辽宁工程技术大学学报(自然科学版),2009,5:762-765.
    [74]徐冲,刘保国,刘开云,等.基于组合核函数的高斯过程边坡角智能设计[J].岩土力学,2010,31(3):821-826.
    [75]刘信恩,肖世富,莫军.高斯过程响应面法研究[J].应用力学学报,2010,1:190-195.
    [76]肖义龙,苏国韶.结构可靠度分析的高斯过程重要抽样方法[J].水利发电,2010,36(12):31-33.
    [77]徐冲,刘保国,刘开云,等.基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型[J].岩土力学,2011,32(6):1669-1675.
    [78]温雯,郝志峰,邵壮丰.面向图像数据集的高斯过程分类[J].计算机工程与应用,2011,47(11):160-163.
    [79]徐冲,刘保国,刘开云,等.基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型[J].岩土力学,2011,32(6):1669-1675.
    [80]徐冲,刘保国,刘开云,等.基于组合核函数的高斯过程边坡角智能设计[J].岩土力学,2010,31(3):821-826.
    [81]赖永标,乔春生.基于支持向量机岩溶塌陷的智能预测模型[J].北京交通大学学报,2008,32(1):36-39.
    [82]霍玉华.隧道围岩变形量预测的灰色模型应用比较研究[J].北京交通大学学报,2006,30(4):42-45.
    [83]姜谙男.基于PSO-SVM非线性时序模型的隧道围岩变形预测[J].岩土力学,2007,28(6):1176-1180.
    [84]马万权,王新平,程崇国.神经网络技术在阳宗隧道围岩变形预测中的应用[J].公路交通技术,2003,4(2):56-57.
    [85]Satar Mahdevari, Seyed Rahman Torabi. Prediction of tunnel convergence using Artificial Neural Networks[J]. Tunnelling and Underground Space Technology,2012,28: 218-228.
    [86]赵洪波.支持向量机在隧道围岩变形预测中的应用[J].岩石力学与工程学报,2005,24(4):649-652.
    [87]Ahmed Badawy. Status of the crustal stress in Egypt as inferred from earthquake focal mechanisms and borehole breakouts[J]. Tectonophysics,2001,343(1-2):49-61.
    [88]孙叶,谭成轩,等.区域地壳稳定性定量化评价[M].北京:地质出版社,1998.
    [89]孙炜锋,谭成轩,王志明,等.基于BP神经网络的深埋隧洞地应力预测研究[J].地质力学学报,2007,13(3):227-232.
    [90]S. K. Mandal, M. M. Singh, S. Dasgupta. Theoretical Concept to Understand Plan and Design Smooth Blasting Pattern[J]. Geotechnical and Geological Engineering,2008,26(4): 399-416.
    [91]Manoj Khandelwal, M. Monjezi. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method[J]. Rock Mechanics and Rock Engineering, 2013,46(2):389-396.
    [92]Monjezi M, Rezaei M, Yazdian A. Prediction of backbreak in open-pit blasting using fuzzy set theory[J]. Expert Systems with Applications,2010,37(3):2637-2643.
    [93]左宇军,李保珍,陈颖锋.光面爆破参数的多目标灰色决策分析[J].矿物研究与发展,2001,21(4):1-3.
    [94]王长友,唐又驰,刘涛.光面爆破效果BP神经网络预测[J].辽宁工程技术大学学报,2005,24(1):73-75.
    [95]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,2000.
    [96]翁斌.有关岩爆问题的几点探讨[J].地下工程与隧道,2009,3:33-36.
    [97]郭然,潘长良,于润沧.有岩爆倾向硬岩矿床采矿理论与技术[M].北京:冶金工业出版社,2003.
    [98]郭树林,姚香,严鹏,等.中国深井岩爆研究现状评述[J].黄金,2009,30(1):18-21.
    [99]祝启虎,卢文波,孙金山.基于能量原理的岩爆机理及应力状态分析[J].武汉大学学报(工学版),2007,40(2):84-87.
    [100]吴其斌.微重力方法在岩爆预测中的应用[J].地球物理学进展,1993,8(3):136-142.
    [101]王桂尧,孙宗颀,卿笃干.隧洞岩爆机理与岩爆预测的断裂力学分析[J].中国有色金属学报,1999,9(4):841-845.
    [102]李长洪,张立新,张磊,等.灰色突变理论及声发射在岩爆预测中的应用[J].中国矿业,2008,17(8):87-90.
    [103]Amoussou Coffi Adoko, Candan Gokceoglu, Li Wu, et al.. Knowledge-based and data-driven fuzzy modeling for rockburst prediction[J]. International Journal of Rock Mechanics and Mining Sciences,2013,61:86-95.
    [104]雷松林,郑永来.基于遗传算法和BP网络的岩爆预测[J].地下空间与工程学报,2009,5(2):267-271.
    [105]X.T. Feng, L.N. Wang. Rockburst prediction based on neural networks[J]. Transactions of Nonferrous Metals Society of China,1994,4:7-14.
    [106]Jian Zhou, Xibing Li, Xiuzhi Shi. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines[J]. Safety Science,2012,50(4):629-644.
    [107]王元汉,李卧东,李启光,等.岩爆预测的模糊数学综合评价方法[J].岩石力学与工程学报,1998,17(5):493-501.
    [108]葛启发.岩爆综合预测集成智能系统研究[D].沈阳:东北大学,2007.
    [109]王迎超,孙红月,尚岳全,等.基于特尔菲-理想点法的隧道围岩分类研究[J].岩土工程学报,2010,32(4):651-656.
    [110]A. Aydin. Fuzzy set approaches to classification of rock masses[J]. Engineering Geology,2004,74(3-4):227-245.
    [111]李希胜,翟存林.模糊数学围岩分类方法及其在隧道中的应用[J].南京林业大学学报(自然科学版),2006,30(3):55-58.
    [112]郭磊,傅鹤林.基于人工神经网络的梅关隧道围岩级别判别[J].现代隧道技术,2010,47(3):13-17.
    [113]Daohong QIU, Shucai LI, Lewen ZHANG, et al.. Application of GA-SVM in classification of surrounding rock based on model reliability examination [J]. Mining Science and Technology (China),2010,20(3):428-433.
    [114]李天斌,王睿.ART1神经网络在隧道围岩分类中的应用[J].成都理工大学学报(自然科学版),2006,33(5):455-459.
    [115]苏永华,马宁.基于最大间隔分类器的围岩级别判断方法[J].地下空间与工程学报,2008,4(5):803-805.
    [116]李俊宏,何淑媛,袁文秀.地下围岩稳定分级的灰色关联优化模型[J].水利水电科技进展,2007,27(6):21-23.
    [117]宫风强,李夕兵,高科.地下工程围岩稳定性分类的突变级数法研究[J].中南大学学报(自然科学版),2008,39(5):1081-1086.
    [118]Y.M. Lin, L. Wang, X.T. Feng. Closed intelligent system for optimal support design of underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 1997,34:197.el-197.e12.
    [119]J. Zhou, X.B. Li. Evaluating the Thickness of Broken Rock Zone for Deep Roadways using Nonlinear SVMs and Multiple Linear Regression Model [J]. Procedia Engineering,,2011, 26:972-981.
    [120]张天军,仁树鑫,许鸿杰.基于概率神经网路的地下围岩稳定性预测[J].武汉工业学院学报(自然科学版),2010,29(2):67-70.
    [121]Li-ning Xing, Ying-wu Chen, Huai-ping Cai. An intelligent genetic algorithm designed for global optimization of multi-minima functions [J]. Applied Mathematics and Computation, 2006,178(2):355-371.
    [122]Sumona Mukhopadhyay, Santo Banerjee. Global optimization of an optical chaotic system by Chaotic Multi Swarm Particle Swarm Optimization [J]. Expert Systems with Applications,2012,39(1):917-924.
    [123]Jin Y C, Olhofer M, Sendhoff B. A Framework for Evolutionary Optimization with Approximate Fitness Functions[J]. IEEE Transactions on Evolutionary Computation,2002, 6(5):481-494.
    [124]Ong Y S, Nair P B, Keane A J. Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling[J]. American Institute of Aeronautics and Astronautics Journal,2003,41(4):687-696.
    [125]Jin Cheng. Hybrid Genetic Algorithms for Structural Reliability Analysis[J]. Computers and Structures,2003,85(19-20):1524-1533.
    [126]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag,1995.
    [127]Alex J S, Bemhard S. A Tutorial on Support Vector Regression[J]. Statistics and Computing,2004,14(3):199-222.
    [128]Dervis Karaboga, Bahriye Akay. A Comparative Study of Artificial Bee Colony Algorithm[J]. Applied Mathematics and Computation,2009,214(1):108-132.
    [129]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [130]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996.
    [131]C Jaeger. Rock mechanics and engineering[M]. London:Cambridge university press, 1979.
    [132]杨志法,熊顺成,王存玉,等.关于位移反分析的某些考虑[J].岩石力学与工程学报,1995,14(1):11-16.
    [133]张传庆,冯夏庭,周辉,等.隧洞围岩收敛损失位移的求取方法及应用[J].岩土力学,2009,30(4):997-1003.
    [134]Itasca Consulting Group, Inc.. Fast Language Analysis of continua in 3 dimensions, version 3.0, user's manual [R]. Itasca Consulting Group, Inc.,2005.
    [135]陈炳瑞,冯夏庭,黄书岭,等.基于快速拉格朗日分析-并行粒子群算法的黏弹塑性参数反演及其应用[J].岩石力学与工程学报,2007,26(12):2517-2525.
    [136]向天兵.大型地下厂房洞室群施工期动态反馈优化设计方法研究[D].中国科学院(武汉岩土力学研究所),2010.
    [137]冯夏庭,江权,向天兵,等.大型洞室群智能动态设计方法及其实践[J].岩石力学与工程学报,2011,30(3):433-447.
    [138]苏国韶,冯夏庭.基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识[J].岩石力学与工程学报,2005,24(17):3029-3034.
    [139]苏国韶,符兴义,李书东.基于FLAC3D的三维地应力场反演分析[J].人民黄河,2011,33(2):142-145.
    [140]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700