扩散过程在若干交叉领域中的理论及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩散过程起源于物理学,之后引起数学学者们的广泛关注,一直以来是随机分析方向的前沿和热点。如何延续这种扩散过程和其它领域的有机结合,体现交叉效用,拓展扩散过程理论的研究视野,是一个具有理论意义和实际应用价值的研究领域。
     全文的创新性工作如下:
     在第3章中我们研究了扩散过程与随机序理论的交叉。利用扩散过程和条件期望的性质,直接证明了扩散过程随机序的比较定理,包括强序、增凸序、增凹序及Laplace-Stieltjes转移序。然后将随机序方法应用到扩散过程的Fokker-Planck方程中,证实了一类偏微分方程解的弱比较定理。
     在第4章中我们探讨了扩散过程与灰色系统、统计推断的交叉。一方面针对小样本观测值的情形,首次提出了用灰估计的方法来估计随机微分方程中的参数,两者间的桥梁是Ito公式。通过实例表明:与原有的方法相较,参数估计的效果相差不大,但我们所需要的数据信息少,在实际中可操作性强,试验成本低。另一方面给出了一类广义的扩散过程(McKean-Vlasov随机微分方程)的参数估计方法,在一些假设条件下,通过一定的变换,将非时齐的Markov过程变形为时齐的Markov过程。再通过对后者作参数估计进而讨论原方程的参数估计问题,得到了参数的极大似然估计和贝叶斯估计,并证明了它们的性质。
     在第5章中我们讨论了扩散过程与三个应用领域的交叉。首先研究了非高斯噪声对热盐环流的影响,根据噪声的性质将其用一个α-稳定的levy过程描述,建立了随机Stommel模型,再用数值的方法模拟随着α的变动,方程解的平均逃逸时的变化情况,从而得到盐度差的稳定范围。其次,分析了纳米药物进入机体后的吸附过程,引入白噪声项描述随机因素对该过程的影响,建立了纳米药物的吸附动力学模型,并分析了参数的变动对整个吸附过程的影响,用于确定纳米药物的制备参数及指导用药量。最后,针对离子在运动过程中由于自身带电荷,相互间产生电磁场不再做自由扩散这一情况,引入McKean-Vlasov随机微分方程描述离子的运动状况。推导出转移密度满足的非线性Fokker-Planck方程,用数值计算的方法模拟离子运动的轨道变化。
Diffusion process was origin of the study of diffusion phenomenon in physics, and then was attracted attention by mathematical scholars. It has been the frontier and hot on direction of stochastic analysis. How to keep this organic combination of diffusion process and other fields, reflect cross utility and expand the research horizon of diffusion process theory, is a study field which has theoretical significance and practical application value.
     The main innovative results of this paper are as follows.
     We discuss stochastic ordering problems of diffusion process in the third chap-ter. Focused on comparing the magnitude and variability of diffusion processes, some properties are intensively demonstrated about strong ordering, increasing convex or-dering, increasing concave ordering and Laplace-Stieltjes transform ordering for d-iffusion processes which are defined as stochastic differential equations respectively. Finally the stochastic ordering was applied to diffusion processes which densities sat-isfied Fokker-Planck equations and the weak comparison theory of partial differential equation is obtained through stochastic ordering method.
     In the fourth chapter parameter estimation problem of diffusion processes is ana-lyzed from two aspects. On one hand, grey estimation method is borrowed to discuss parameter estimation of stochastic differential equations driven by Brownian motion for the situation of little information and small sample observations. We evolve a whitenization equation through substituting random variable, then corresponding grey differential equation can be expressed which suited for describing few data and un-certainty condition. On other hand, we research on parameter estimation of a class of generalized diffusion process named McKean-Vlasov stochastic differential equation, containing Maximum Likelihood Estimator and Bayes Estimator.
     Applications of diffusion process on three domains are came true in the fifth chapter. Firstly, the effects of non-Gaussian noise on the Stommel box model for the Thermohaline Circulation are considered. The noise is represented by a non-Gaussian α-stable Levy motion with0<α<2. The a value may be regarded as the index of non-Gaussianity. Dynamical features of this stochastic model is examined by computing the mean exit time for various a values. The mean exit time is simulated by numerically solving a deterministic differential equation with nonlocal interac-tions. Secondly, the mechanics of nanoparticles'adhesion and cellular uptake is described in detail, and a stochastic adhesion kinetic model is built by introducing white noise term. Furthermore, using simulation method diagrams are showed the effects to the whole adhesion process due to parameters fluctuations. Lastly since ion has electric charge which create interactions, it is no longer free diffusion. We use McKean-Vlasov stochastic differential equation to delineate ion motion, induce Fokker-Planck equation satisfied by translated density, and simulate varied trajectory of ion motion.
引文
[1]Bachelier L., Theory de la speculation, Ann. Finance,31900,23-51.
    [2]Kolmogorov A.N., Grundberiffe der Wahrscheinlichkeitsrechnung, Ergeb. Math.2,1931.
    [3]Feller W., Diffusion processes in genetics, Math. Stat. and Probab.,1951,227-246.
    [4]Ito K., McKean H.P., Diffusion process and their sample paths, Springer-Verlag, New York, 1965.
    [5]Oksendal B., Stochastic differential equations, Springer-Verlag, New York,2005.
    [6]黄志远,随机分析,武汉大学出版社,武汉,2001.
    [7]Ito K., Stochastic integral, Proc. Imp. Acad.,201944,519-524.
    [8]Stefano M.I., Simulation and inference for Stochastic Differential Equations, Springer-Verlag, New York,2007.
    [9]Arnold L., Horsthemke W., Stueki J.W., The influence of external real and white noise on the Lotka-Volterra model, Biomedical Journal,21 (1979),451-471.
    [10]Krylov N.V., Introduction to the theory of random processes, American Mathematical Society, (2002),9-15,22-34,51-54,173-187.
    [11]Hide T., Brownian motion, Springer-Verlag, New York,1980.
    [12]Sato K.I., Levy processes and infinitely divisible distributions, Cambridge University Press, Cambridge, UK,1999.
    [13]Applebaum D., Levy processes and stochastic calculus, Cambridge University Press, Cam-bridge, UK,2004.
    [14]Ahmed A.N., Alzaid A., Bartoszewicz J et al., Dispersive and superadditive ordering, Advances in Applied probability,18 (1986),1019-1022.
    [15]Lehmann E.L., Ordered families of distributions, The Annals of Mathematical Statistics,26 (1955),399-419.
    [16]Hardy G.H., Littlewood J.E., Polya G., Inequalities, Cambridge Mathematical Library,1934.
    [17]Shaked M., Shanthikumar J.G., Supermodular stochastic orders and positive dependence of random vectors, Multivariate Analysis,61 (1997),86-101.
    [18]Ma C., Convex orders for linear combinations of random variables, Statistical Planning and Inference,84 (2000),11-25.
    [19]Muller A., Stoyan D., Comparison methods for stochastic models and risks, John Wiley and Sons, Newyork,2002.
    [20]Tribe R., Woodward N., Stochastic order methods applied to stochastic travelling waves, Electronic Journal of Probability,16 (2011),436-469.
    [21]Borrello D., Stochastic order and attractiveness for particle systems with multiple births, deaths and jumps, Electronic Journal of Probability,16 (2011),106-151.
    [22]Tepedelenlioglu C.,Rajan A., Zhang Y., Stochastic ordering of fading channels,2011 IEEE 12th International Workshop on Signal Processing Advances in Wiress Communications, (2011), 211-215.
    [23]Laura S., Smith C.E., A qualitative comparison of some diffusion models for neural activity via stochastic ordering, Biological Cybernetics,83 2000,543-551.
    [24]Smith C.E., New parameter relationships determined via stochastic ordering for spike activity in a reversal potential neural model, Biological Cybernetics,58 (2000),59-65.
    [25]Raffaella C., Uniform correlation structure and convex stochastic ordering in the Polya urn scheme, Statistics and Probability Letters,83 (2013),272-277.
    [26]Carleos C., Lopez-Diaz M., A stochastic order of shape variability with an application to cell nuclei involved in mastitis, Journal of Mathematical Imaging and Vision,38 (2010),95-107.
    [27]Murakami H., A numerical comparison of the normal and some saddlepoint approximations to a distribution-free test for stochastic ordering in the competing risks model, Computional Statistics,25 (2010),633-643.
    [28]Zhang Z.C., Li X.H., Some new results on stochastic orders and aging properties of coherent systems, IEEE Transactions on Reliability,59 (2010),718-724.
    [29]Amaruchkul K., Stochastic orders in risk-based overbooking, Chiang Mai Journal of Science, 37 (2010),377-383.
    [30]Lefevre C., Loisel S., Stationary-excess operator and convex stochastic orders, Insurance Mathematics & Economics,47 (2013),64-75.
    [31]Klenke A., Mattner L., Stochastic ordering of classical discrete distributions, Advances in Applied Probability,42 (2010),392-410.
    [32]Lopez-Diaz M., A stochastic ordering for random variables with applications, Australian& New Zealand Journal of Statistics,52 (2010),1-16.
    [33]Eisenbaum N., Stochastic order for alpha-permanental point processes, Stochastic Processes and their Applications,122 (2012),952-967.
    [34]Ledwina T., Wylupek G., Nonparametric tests for stochastic ordering, Test,21 (2012),730-756.
    [35]Ttorrado N., Lillo R.E., Wiper M.P., Sequential order statistics:ageing and stochastic orderings, Methodology and Computing in Aapplied Probability,14 (2012),579-596.
    [36]Daly F., Lefevre C., Utev S., Stein's method and stochastic orderings, Methodology and Computing in Applied Probability,44 (2012),343-372.
    [37]Zarei R., Amini M., Roknabadi A.H.R., Some fuzzy stochastic orderings for fuzzy random variables, Fuzzy Optomization and Decision Making,11 (2012),209-225.
    [38]Capitani L., Martini D., On stochastic orderings of the Wilcoxon Rank Sum test statistic-With applications to reproducibility probability estimation testing, Statistics and Probability Letters, 81 (2011),937-946.
    [39]Wang B., Wang M., Stochastic ordering of folded normal random variables, Statistics and Probability Letters,81 (2011),524-528.
    [40]Kenneth S., Lauren D., Stochastic orderings, folded beta distributions and fairness in coin flips, Statistics and Probability Letters,81 (2011),632-638.
    [41]Kochar S.C., On Stochastic orderings between distribution and their sample spacings, Statistic Probability Letters,42 (1999),345-352.
    [42]Hua L., Cheung K.C., Stochastic orders of scalar products with applications, Insurance: Mathematics and Economics, Statistic Probability Letters,42 (2008),865-872.
    [43]Tong Y.L., Probability Inequalities in Multivariate Distributions, Academic Press,1980.
    [44]Arnold B.C., Inequality measures for multivariate distributions, Metron,63 (2005),317-327.
    [45]Shanthikumar J.G., Yao D.D., Bivariate characterization of some stochastic order relation, Advances in Applied Probability,23 (1991),642-659.
    [46]Zhang X., On stochastic ordering for diffusion with jumps and applications, Statistics and Probability Letters,77 (2007),614-620.
    [47]Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion Process, North-Holland/ Kodansha,1989.
    [48]Galuck L.I., Davis M.H.A., A note on a comparison theorem for equations with different diffusions, Stochastics,6 (1982),147-149.
    [49]Geib C., Manthey R., Comparison theorem for stochastic differential equations in finite and infinite dimensions, Stochastic Processes and their Application,53 (1994),23-35.
    [50]Peng S., Zhu X., Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Processes,116 (2006),370-380.
    [51]夏茜伊藤过程的随机序及其应用,[硕士学位论文].华中科技大学:图书馆,2011.
    [52]Shaked M., Shanrhikumar J.G., Stochastic orders and their applications, Academic Press, San Diego, CA,1994.
    [53]Shaked M., Shanrhikumar J.G., Stochastic orders, Springer, New york,2007.
    [54]Arato M., Kolmogorov A.N., Sinay Y.G., Estimation of the parameters of a complex stationary gaussian markov process, Dokl. Akad. Nauk SSSR,146 (1962),445-456.
    [55]Liptser R.S., Shiryayev A.N., Statistics of Random Processes I, II, Springer Verlag, New York, 1977.
    [56]Ibraginmov I.A., Khasminskii, Statistical estimation:asymptotic theory, Springer, Berlin,1981.
    [57]Prakasa Rao B.L.S., Estimation for the drift for diffusion processes, Statistics,16 (1985), 263-275.
    [58]Yoshida N., Estimation for diffusion processes from diserete observation, Journal of Multivarte Analysise,41 (1992),220-242.
    [59]Kutoyants, Yu A., Parameter estimator for stochastic processes, Heldermann, Berlin,1984.
    [60]Bishwal J.P.N., Large deviations inequalities for the maximum likelihood estimation and Bayes estimators in nonlinear stochastic differential equations, Statistics and Probability Letters,43 (1999),207-215.
    [61]Dorogovcev AJa, On the consistency of nonparametric estimators of a regression function, Teor. VerojatnosL iMat. Statist.,15 (1976),47-53.
    [62]Pedersen A.R., Parametric statistical inference for discretely observed diffusion processes a review, Ph.D dissertation, University of Aarhus.
    [63]Ait-Sahalia., Yacine., Maximum likelihood estimation of discretely sampled diffusions: closed-form approach, Econometrica,70 (2002),223-262.
    [64]Bibby., Martin B., Sorensen M., Martingale estimation for discretely observed diffusion processes, Bernoulli,1 (1995),17-39.
    [65]Ait-Sahalia., Yacine., Nonparametric pricing of interest rate derivatives securities, Econometri-ca,64 (1996),527-560.
    [66]Bandi F.M., Phillips P.C.B., Fully nonparametric estimation of scalar diffusion models, Chicago University Press,2002.
    [67]Stanton, Richard, A nonparametric models of term structure dynamics and the market price of interest rate risk, Journal of Finance,5 (1997),1973-2002.
    [68]Jacod J., Non-parametric kernel estimation of the diffusion coefficient of a diffusion, Se-and.J.Statist.,27 (2000),83-96.
    [69]Woerner, Jeannette H.C., Variational sums and power variation:a unifying approach to model selection and estimation in semimartingale models, Oxford University Press,2002.
    [70]邓聚龙,灰理论基础,华中科技大学出版社,武汉,2002.
    [71]刘思峰,党耀国,方志耕,灰色系统理论及其应用,科学出版社,北京,2004.
    [72]肖新平,宋中民,李峰,“灰技术基础及应用,科学出版社,北京,2005.
    [73]郭涛,新编药物动力学,科学出版社,北京,2005.
    [74]Stommel H., Thermohaline convection with two stable regimes of flow, Tellus.,13 (1961), 224-230.
    [75]Mass L., A simple model for the three-dimensional, thermally and wind-driven ocean circula-tion, Tellus.,46 (1994),671-680.
    [76]Rahmstorf S., On the freshwater forcing and transport of the Atlantic thermohaline circulation, Clim. Dyn.,12 (1996),799-811.
    [77]Scott J., Marotzke J., Stone P., Interhemispheric thermohaline circulation in a coupled box model, J. Phys. Oceanogr.,29 (1999),351-365.
    [78]Cessi P., A simple box model of stochastically-forced thermohaline flow, J. Phys. Oceanogr.,24 (1994),1911-1920.
    [79]Griffies S.M., Tziperman E., A linear thermohaline oscillator driven by stochastic atmospheric forcing, J. Climate,8 (1995),2440-2453.
    [80]Lohmann G., Schneider J., Dynamics and predictability of Stommel's box model:a phase space perspective with implications for decadal climate variability, Tellus.,51 (1998),326-336.
    [81]Woyczynski W.A., Levy processes in the physical sciences. In Levy Processes:Theory and Applications, O. E. Barndorff-Nielsen, T. Mikosch and S. I. Resnick (Eds.), Birkhauser,2001.
    [82]Dijkstra H., Nonlinear physical oceanography,2nd Edition, Springer,2005.
    [83]Glendinning P.,'View from the pennines:Box models of the oceanic conveyor belt, Mathematics Today,45 (2009),230-231.
    [84]Berglund N., Gentz B., Metastability in simple climate models:pathwise analysis of slowly driven langevin equations, Stochastics and Dynamics.,2 (2003),327-356.
    [85]Marotzke J., Analysis of thermohaline feedbacks decadal climate variability:dynamics and predictability, D. L. T. Anderson and J. Willebrand (Eds.), Springer-Verlag,1996.
    [86]Imkeller P., Pavlyukevich I., First exit time of SDEs driven by stable Levy processes, Stoch. proc. Appl.,116 (2006),611-642.
    [87]Yang Z., Duan J., An intermediate regime for exit phenomena driven by non-Gaussian Levy noises, Stochastics and Dynamics,8 (2008),583-591.
    [88]Brannan J., Duan J., Ervin V., Escape probability, mean residence time and geophysical fluid particle dynamics, Physica D,133 (1999),23-33.
    [89]Gao T., Duan J., Li X., et al., Mean exit time and escape probability for dynamical systems driven by Levy noise, Submitted,2011.
    [90]Csajka C., Verotta D., Npharmacokinetic-pharmacodynamic modeling:history and perspectives, Journal of Pharmacokinetic and Pharmacodynamic,3 (2006),227-279.
    [91]Ferrari M., The mathematical engines of nanomedicine, Essays,1 (2008),20-25.
    [92]Ferrari M., Cancer nanotechnology:opportunities and challenges, Nat Rev Cancer,5 (2005), 161-171.
    [93]Li M., Lu W., Wang J., Distribution, transition, adhesion and release of insulin loaded nanoparticles in the gut of rats, Essays,329 (2007),182-191.
    [94]Zhang Z., Lee S.H., Feng S., In vitro and in vivo investigation on PLA-TPGS nanoparticles for controlled and sustained small molecule chemotherapy, Pharmaceutical Research,25 (2008), 1925-1935.
    [95]Zhao L., Feng S., Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers:in vitro and in vivo studies, Journal of Pharmaceutical Sciences,99 (2010),3552-3560.
    [96]Desai M.P., Labhasetwar V., Walter E., et al., Stochastic orderings, folded beta distributions and fairness in coin flips, Statistics and Probability Letters,81 (2011),632-638.
    [97]Lerner D.M., Deutsch J.M., Oster G.F., How does a virus bud, Physical Review Letters,65 (1993),73-79.
    [98]Yuan H., Li J., Bao G., Zhang S., Variable nanoparticle-cell adhesion strength regulates cellular uptake, Physical Review Letters,105 (2010),1-4.
    [99]Carrillo J.Y., Raphael E., Dobrynin A.V., Adhesion of nanoparticles, Langmuir,26 (2010), 12973-12979.
    [100]Peskir G., On the diffusion coefficient:the Einstein relation and beyond, Journal of Stochastics Models,19 (2003),383-405.
    [101]Kuo S.C., Relationship between receptor/ligand binding affinity and adhesion strength, Biophysical Journal,65 (1993),2191-2200.
    [102]Bell G.I., Models for the specific adhesion of cells to cells, Science,200 (1978),618-627.
    [103]Bell G.I., Dembo M., Bongrand P., Cell adhesion, competition between nonspecific repulsion and specific bonding, Biophysical Journal,45 (1984),1051-1064.
    [104]魏强,秦水介,光阱中光致旋转测量液体温度的研究,激光&红外,40(2010),598-600.
    [105]Decuzzi P., Ferrari M., Design maps for nanoparticles targeting the diseased microvascularure, Biomaterials,29 (2008),377-384.
    [106]Schuss Z., Nadler B., Eisenberg R.S., Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model, Physical Review E.,64 (2001),1-14.
    [107]Eisenberg R.S., Klosek M.M., Schuss Z., Diffusion as a chemical reaction:Stochastic trajectories between fixed concentrations, J. Chem. Phys,102 (1995),1767-1780.
    [108]Nadler B., Schuss Z., Singer A., et al., Ionic diffusion through confined geometries:from Langevin equations to partial differential equations, J. Phys.:Condens. Matter,16 (2004), 2153-2165.
    [109]Singer A., Schuss Z., Brownian simulations and unidirectional flux in diffusion, Physical Review E,71 (2005),1-7.
    [110]Eisenberg B., Multiple Scales in the Simulation of Ion Channels and Proteins, J. Phys. Chem. C,114 (2010),20719-20733.
    [111]Hyon Y., Eisenberg B., Liu C., A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci.,9 (2011),459-475.
    [112]Bossy M., Talay D., A stochastic particle method for the mckean-vlasov and the burgers equation, Mathematics of Computation,66 (1997),157-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700