促胚胎干细胞生长的中草药提取物高通量筛选方法的构建及初步应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎干细胞(ESC)能无限增殖,具有可以分化成各种细胞和组织的能力,是在组织工程和细胞治疗中理想的细胞资源。尽管在许多研究工作中,开发出了具有生物相容性的培养基质和适合细胞生长的生物反应器,用于体外干细胞的培养和维持,但是昂贵的细胞生长因子和多能性维持试剂依然使得对ESC进行大量生产是十分困难和具有挑战的。如今,传统中草药(TCHM)由于自身对疾病的治疗效果和对细胞毒性作用低等原因,开始得到了广泛关注。除了疾病治疗外,一些草药还可以通过激活淋巴细胞、增加自然杀伤细胞和抗氧化等方式提高机体免疫力,因此,TCHM也成为了拥有潜在促进ESC增殖能力的新型药物资源。
     本研究建立了一种简单、高效、可靠和高通量的筛选方法,用于评估TCHM提取物对细胞生长的作用效果。这一筛选平台建立在聚对苯二甲酸乙二酯(PET)为支架进行三维(3D)细胞培养的基础之上,选用转染后稳定表达绿色荧光蛋白(GFP)的小鼠ESC、人乳腺癌和结肠癌细胞系,并采用改良的384荧光孔板对细胞表达的荧光强度进行在线监测,从而对细胞生长动力学进行实时分析,实现动态反映药物对细胞生长影响的效果。通过检测不同浓度下脱氧胆酸、灵芝孢子粉(Gls)、银杏和淫羊藿的水提取物对细胞增殖和细胞毒性的作用,得到的检测结果与已有相关报道中的结果一致。在可靠性分析中,Z检验结果为0.5和1.0之间,证明这种细胞水平药物筛选(CBDS)平台提供的筛选结果变异性小,适合用于TCHM的高通量筛选(HTS)。
     Gls浓度为0.01%(w/v)时,mESC在旋转瓶中3D动态培养5d后扩增倍数为18.5,与没有添加药物的对照组(扩增13.6倍)相比,扩增倍数提高了36.1%,同时mESC对SSEA-1和Oct-4的表达维持在90%以上。分别将水溶性的灵芝多糖(PSS)和脂溶性的灵芝三萜(TTS)进行分离和提取,并在3D荧光CBDS系统中检测这两种有效成分对mESC细胞的影响,结果显示当PSS和TTS单独作用于mESC细胞时,没有增殖促进效果。
     对另外6种TCHM在ESC生长中的作用进行了考察,发现三七(Pn)、白术(Ram)、川芎(Rc)和Gls表现出促进ESC增殖的潜力。对这4种药物搭配成的11种药物组合继续进一步筛选,结果显示将Pn和Gls等量混合后,提取物(Pn/Gls)对ESC生长的促进效果十分明显,与没有药物处理的细胞相比,Pn/Gls在较低的剂量下(0.01%w/v)使ESC的比生长速率提高了29.5%(p <0.01),在较高剂量(0.1%w/v)时也使比生长速率增加了34.2%(p <0.05)。之后在旋转瓶反应器中对Pn/Gls在大规模培养环境中促进细胞生长的效果进行验证,5天培养结束后,添加0.01%Pn/Gls的培养基中生长的ESC扩增倍数达到了29.3,而对照组扩增倍数为16.8。此外,在Pn/Gls作用下生长的ESC,生长速率提高的同时对全能性基因阶段特异性胚胎抗原(SSEA-1)和Oct-4基因的表达水平并没有下降,而且细胞核型也没有受到破坏。
     因此,这种3D荧光细胞水平的筛选方法能够提供高效、可靠的方式,从TCHM中筛选ESC生长促进因子;而通过这种筛选体系得到的药物Pn/Gls在大规模生产高质量ESC的应用当中也具有很好的前景。
The capability of unlimited proliferation as well as differentiation into all types of cellsand tissues make embryonic stem (ES) cells ideal cell sources for tissue engineering and celltherapy. Although several biocompatible matrices and bioreactors have been developed forculturing stem cells, mass production of ES cells is still challenging due to the high costs ofcell growth promoters and pluripotency-maintaining reagents. Nowadays, traditional Chineseherbal medicines (TCHM) are becoming popular because of their therapeutic effects and lowtoxicity. In addition to disease treatments, some herbal medicines can also enhance immunefunctions by activating the proliferation of lymphocytes, increasing the amount of naturalkiller (NK) cells, and scavenging free radicals to resist oxidation. Thus, TCHMs have thepotential to be a new source of growth promoters for stem cells, especially ES cells.
     In this work, a simple, reliable, high-throughput screening method was developed andused to assess the pharmaceutical effects of extracts of TCHM. This method is based on3-dimensional (3D) cultures in polyethylene terephthalate (PET) fibrous scaffolds of mouseembryonic stem (mES) and human colon cancer and breast cancer cells expressing enhancedgreen fluorescent protein (GFP) after transfection on modified384-well plates with onlinemonitoring of culture fluorescence for dynamic responses of cells to drugs present in culturemedia. Cell responses to deoxycholic acid and the extracts of3TCHM (Ganoderma lucidumspores, Ginkgo biloba, and Epimedium brevicornum) at various concentrations wereinvestigated for their effects on proliferation and cytotoxicity. The screening results wereconsistent with what have been reported in the literature, confirming the reliability of the newscreening approach. Reliability analysis indicated the value of Z factor is in the range of0.5and1.0, verifying the cell-based drug screening (CBDS) platform is feasible forhigh-throughput screening (HTS) of TCHM with low variation.
     In in vitro mass production test, mESC grew in spinner flask supplemented with0.01%(w/v) Gls for3D dynamic culture reached an18.5folds expansion after5d. Compared to theno drug treated control group (13.6folds), Gls increased the expansion fold of mESC by36.1%, and the fractions of cells expressing both SSEA-1and Oct-4remained at over90%.Two active ingredients, water-soluble polysaccharides (PSS) and lipid-soluble triterpenes(TTS), of Gls were separated and extracted to test the effects on mESC proliferation using3Dfluorescence CBDS platform. Little growth promotion effects were detected when PSS orTTS treated mESC individually.
     For further screening, the high-throughput cell-based method was applied for screeningTCHM for potential stem cell growth promoters. Mouse ES cells expressing enhanced GFPwere cultured in growth media supplemented with various TCHM extracts. Thedosage-dependent effects of TCHM extracts on cell growth, including proliferation andcytotoxicity, were assessed via GFP fluorescence measurement. Six more TCHM extractswere investigated, and among all the nine tested extracts Panax notoginseng (Pn), RhizomaAtractylodis macrocephalae (Ram), Rhizoma chuanxiong (Rc) and Ganoderma lucidumspores (Gls) showed potential to improve mES cell proliferation. Eleven mixtures of these4TCHMs were then studied, and the results showed that the mixture of Pn and Gls had thestrongest growth promoting effect, increasing the specific growth rate of mES cells by29.5%at a low dosage of0.01%(w/v) Pn/Gls (p <0.01) and34.2%at0.1%(w/v) Pn/Gls (p <0.05)compared to the control. The growth promoting effect of Pn/Gls was further confirmed withES cells cultured in spinner flasks. A29.3-fold increase in the total cell number was achievedin the medium supplemented with0.01%Pn/Gls after5days, while the control culture onlygave a16.8-fold increase. It is noted that mES cells cultured in Pn/Gls supplemented mediacan also preserve pluripotency and without damage on Karyotype.
     Therefore, the cell-based screening method can provide an efficient and high-throughputway to explore potential stem cell growth promoters from TCHMs, and Pn/Gls screened fromthis method is promising in large-scale production of high-quality ES cells.
引文
[1] Marshak D.R., Gardner R.L., Gottlieb D. Stem Cell Biology [M]. New York. Cold HarborLaboratory Press,2001:205-230
    [2] Gorta T., Allsopp T.E., Pharmacological potential of embryonic stem cells [J].Pharmacological Research,2003,47:269-278
    [3] Bais M., McLean J., Sebastiani P., et al. Transcriptional Analysis of Fracture Healing andthe Induction of Embryonic Stem Cell–Related Genes [J]. PLoS ONE,2009,4(5): e5393
    [4] Moreau J.L., Xu H.H.K. Mesenchymal stem cell proliferation and differentiation on aninjectable calcium phosphate-chitosan composite scaffold [J]. Biomaterials,2009,30:2675-2682
    [5] Gordon D., Pavlovska G., Glover C.P., et al. Human mesenchymal stem cells abrogateexperimental allergic encephalomyelitis after intraperitoneal injection, and with sparseCNS infiltration [J]. Neroscience Letters,2008,448(1):71-73
    [6] Li C.K., Lee V., Shing M.M.K., et al. Haematopoietic stem cell transplantation forthalassaemia in Chinese patients [J]. Hong Kong Medicine Journal,2009,15(Suppl3):39-41
    [7] Lie A.K.W., Au W.Y., Liang Y. Haematopoietic stem cell transplantation in Hong Kong [J].Hong Kong Medicine Journal,2009,15(Suppl3):17-21
    [8] Zhou K., Brogan M.S., Yang C., et al. Oriental medicine and chronic wound care: theory,practice, and research [J]. Ostomy Wound Manage,2013,59(1):36-46
    [9] Dorai A.A. Wound care with traditional, complementary and alternative medicine [J].Indian Journal of Plastic Surgery,2012,45(2):418-424
    [10] Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonicand adult fibroblast cultures by defined factors [J]. Cell,2006,126:663-676
    [11] Takahashi K., Tanabe K., Ohnuki M., et al. Induction of pluripotent stem cells from adulthuman fibroblasts by defined factors [J]. Cell,2002,131:861-872
    [12] Ouyang A., Yang S.-T. A two-stage perfusion fibrous bed bioreactor system for massproduction of embryonic stem cells [J]. Expert Opinion on Biological Therapy,2008,8(7):895-909
    [13] Chusri S., Settharaksa S., Chokpaisarn J., et al. Thai herbal formulas used for woundtreatment: a study of their antibacterial potency, anti-inflammatory, antioxidant, andcytotoxicity effects [J]. Journal of Alternative and Complementary Medicine,2013,[Epub ahead of print]
    [14] Sun L.X., Lin Z. B., Li X. J., et al. Promoting effects of Ganoderma lucidumpolysaccharides on B16F10cells to activate lymphocytes [J]. Basic and ClinicalPharmacology and Toxicology,2011,108:149-154
    [15] Zhang J., Tang Q., Zimmerman-Kordmann M., et al. Activation of B lymphocytes byGLIS, a bioactive proteoglycan from Ganoderma lucidum [J]. Life Sciences,2002,71:623-638
    [16] Tan B., Vanitha J. Immunomodulatory and antimicrobial effects of some traditionalChinese medicinal herbs: a review [J]. Current Medicinal Chemistry,2004,11:1423-1430
    [17] Narendhirakannan R. T., Limmy T. P. Anti-inflammatory and anti-oxidant properties ofSida rhombifolia stems and roots in adjuvant induced arthritic rats [J].Immunopharmacology and Immunotoxicology,2012,34:326-336
    [18] Caplan A.I., Bruder S.P., Mesenchymal stem cells: building blocks for molecularmedicine in the21st century [J]. Trends in Molecular Medicine,2001,7:259-64
    [19] Rodriguez A.M., Elabd C., Amri E.Z., et al. The human adipose tissue is a source ofmultipotent stem cells [J]. Biochemie,2005,87:125-128
    [20] Alav I.A., Stupack D.G. Cell survival in a three-dimensional matrix [J]. Methods inEnzymology,2007,426:85-101
    [21] Ulloa-Montoya F., Verfaillie C.M., Hu W.-S. Culture Systems for Pluripotent Stem Cells[J]. Journal of Bioscience and Bioengineering,2005,100:12-27
    [22] Martin G.R., Evans M.J. The morphology and growth of a pluripotent teratocarcinomacell line and its derivatives in tissue culture [J]. Cell,1974,2:163-172
    [23] Cheng L., Hammond H., Ye Z., et al. Human adult marrow cells support prolongedexpansion of human embryonic stem cells in culture [J]. Stem Cells,2003,21:131-142
    [24] Xu C., Inokuma M.S., Denham J., et al. Feeder-free growth of undifferentiated humanembryonic stem cells [J]. Nature Biotechnology,2001,19:971-974
    [25] Gao F., Kwon S.W., Zhao Y., et al. PARP1poly(ADP-ribosyl)ates Sox2to control Sox2protein levels and FGF4expression during embryonic stem cell differentiation [J]. TheJournal of Biological Chemistry,2009,284(33):22263-22273
    [26] Richards M., Tan S., Fong C.Y., et al. Comparative evaluation of various human feedersfor prolonged undifferentiated growth of human embryonic stem cells [A]. Stem Cells,2003,21:546–556
    [27] Cheng L., Hammond H., Ye Z., et al. Human adult marrow cells support prolongedexpansion of human embryonic stem cells in culture [G]. Stem Cells,2003,21:131–142
    [28] Smith A.G., Heath J.K., Donaldson D.D., et al. Inhibition of pluripotential embryonicstem cell differentiation by purified polypeptides [J]. Nature,1988,336:684-687
    [29] Zandstra P.W., Le H.V., Daley G.Q., et al. Leukemia inhibitory factor (LIF) concentrationmodulates embryonic stem cell selfrenewal and differentiation independently ofproliferation [J]. Biotechnology and Bioengineering,2000,69:607-617
    [30] Ou-Yang A., Ng R., Yang S.-T. Long-Term Culturing of Undifferentiated EmbryonicStem Cells in Conditioned Media and Three-Dimensional Fibrous Matrices without ECMCoating [J]. Stem Cells,2007,25:447-454
    [31] Amit M., Margulets V., Segev H., et al. Human feeder layers for human embryonic stemcells [J]. Biology of Reproduction,2003,68:2150–2156.
    [32] Li Y., Powell S., Brunette E., et al. Expansion of human embryonic stem cells in definedserum-free medium devoid of animal-derived products [J]. Biotechnology andBioengineering,2005,91:688-698
    [33] Levenstein M.E., Ludwig T.E., Xu R.H., et al. Basic FGF Support of Human EmbryonicStem Cell Self-Renewal [J]. Stem Cells,2006,24:568–574
    [34] Beattie G.M., Lopez A.D., Bucay N., et al. Activin A Maintains Pluripotency of HumanEmbryonic Stem Cells in the Absence of Feeder Layers [J]. Stem Cells,2005,23:489-495
    [35] Amit M., Carpenter M.K., Inokuma M.S, et al. Clonally derived human embryonic stemcell lines maintain pluripotency and proliferative potential for prolonged periods ofculture [J]. Developmental Biology,2000,227:218-278
    [36] Fok E.Y.L, Zandstra P.W. Shear-controlled single-step mouse embryonic stem cellexpansion and embryoid body-based differentiation [J]. Stem Cells,2005,23:1333-1342
    [37] Abranches E., Bekman E., Henrique D., et al. Expansion of mouse embryonic stem cellson microcarriers [J]. Biotechnology and Bioengineering,2007,96:1211-1221
    [38] Fernandes A.M., Fernandes T.G., Diogo M.M., et al. Mouse embryonic stem cellexpansion in a microcarrier-based stirred culture system [J]. Journal of Biotechnology,2007,132:227-236
    [39] Fernandes A.M., Marinho P.A.N.,Sartore R.C., et al. Successful scale-up of humanembryonic stem cell production in a stirred microcarrier culture system [J]. BrazilianJournal of Medical and Biological Research,2009,42:515-522
    [40] Zur Nieden N., Cormier J.T., Rancourt D.E., et al. Embryonic stem cells remain highlypluripotent following long term expansion as aggregates in suspension bioreactors [J].Journal of Biotechnology,2007,129:421-432
    [41] Chai C., Leong K.W. Biomaterials approach to expand and direct differentiation of stemcells [J]. Molecular Therapy,2007,15(3):467-480
    [42] Chen S.S., Revoltella R.P., Papini S., et al. Multilineage differentiation of rhesus monkeyembryonic stem cells in three-dimensional culture systems [J]. Stem Cells,2003,21:291-295
    [43] Levenberg S., Huang N.F., Lavik E., et al. Differentiation of human embryonic stem cellson three-dimensional polymer scaffolds [J]. Proceedings of the National Academy ofScience of the United States of America,2003,100:12741-12746
    [44] Ma W., Chen S., Fitzgerald W., et al. Three-Dimensional Collagen Gel Networks forNeural Stem Cell-Based Neural Tissue Engineering [J]. Macromolecular Symposia,2005,227:327-334
    [45] Wang Y., Kim U.J., Blasioli D.J., et al. In vitro cartilage tissue engineering with3Dporous aqueous-derived silk scaffolds and mesenchymal stem cells [J]. Biomaterials,2005,26:7082-7094
    [46] Zhao F., Grayson W.L., Ma T., et al. Effects of hydroxyapatite in3-D chitosan–gelatinpolymer network on human mesenchymal stem cell construct development [J].Biomaterials,2006,27:1859-1867
    [47] Ng K.W., Hutmacher D.W. Reduced contraction of skin equivalent engineered using cellsheets cultured in3D matrices [J]. Biomaterials,2006,26:4591-4598
    [48] OuYang A., Ng R., Yang S.-T. Long-term culturing of undifferentiated embryonic stemcells in conditioned media and three-dimensional fibrous matrices without extracellularmatrix coating [J]. Stem Cells,2007,25:447-454
    [49] Cao Y., Li D., Shang C., et al. Three-dimensional culture of human mesenchymal stemcells in a polyethylene terephthalate matrix [J]. Biomedical Materials,2010,5(6):065013
    [50] Murphy A. R., John P. S., Kapan D. L. Modification of silk fibroin using diazoniumcoupling chemistry and the effects on hMSC proliferation and differentiation [J].Biomaterials,2008,29:2829-2838
    [51] Braccini A., Wendt D., Jaquiery C., et al. Three-dimensional perfusion culture of humanbone marrow cells and generation of osteoinductive grafts [J]. Stem Cells,2005,23:1066-1072
    [52] Scherberich A., Galli R., Jaquiery C., et al. Three-dimensional perfusion culture ofhuman adipose tissue-derived endothelial and osteoblastic progenitors generatesosteogenic constructs with intrinsic vascularization capacity [J]. Stem Cells,2007,25(7):1823-1829
    [53] Shi D.H., Cai D.Z., Zhou C.R., et al. Development and potential of a biomimeticchitosan type Ⅱ collagen scaffold for cartilage tissue engineering [J]. Chinese MedicineJournal,2005,118(17):1436-1443
    [54] Moreau J.L., Xu H.H.K. Mesenchymal stem cell proliferation and differentiation on aninjectable calcium phosphate-Chitosan composite scaffold [J]. Biomaterials,2009,30:2675-2682
    [55] Chen S.S., Revoltella R.P., Papini S., et al. Multilineage Differentiation of rhesusmonkey embryonic stem cells in three-dimensional culture systems [J]. Stem Cells,2003,21(3):281-295
    [56] Rosellini A., Michelini M., Tanda G., et al. Expansion of human mesothelial progenitorcells in a long-term three-dimensional organotypic culture of Processus VaginalisPeritonei [J]. Folia Biologica,2007,53:50-57
    [57] Chen X., Xu H., Wan C., et al. Bioreactor expansion of human adult bonemarrow-derived mesenchymal stem cells [J]. Stem Cells,2006,24:2052-2059
    [58] Kallos M.S., Behie L.A., Vescovi A.L. Extended serial passaging of mammalian neuralstem cells in suspension bioreactors [J]. Biotechnology and Bioengineering,1999,65:589-599
    [59] Sen A., Kallos M.S., Behie L.A. Passaging protocols for mammalian neural stem cells insuspension bioreactors [J]. Biotechnology Progress,2002,18:337-345
    [60] Li Y., Kniss D.A., Lasky L.C. Culturing and differentiation of murine embryonic stemcells in a three-dimensional fibrous matrix [J]. Cytotechnology,2003,41:23-35
    [61] Youn B.S., Sen A. Kallos M.S., et al. Large-scale expansion of mammary epithelial stemcell aggregates in suspension bioreactors [J]. Biotechnology Progress,2005,21:984-993
    [62] Gilbertson J.A., Sen A., Behie L.A., et al. Scale-up production of mammalian neuralprecursor cell aggregates in computer-controlled suspension bioreactors [J].Biotechnology and Bioengineering,2006,94(4):783-792
    [63] Cormier J.T., zur Nieden N.I., Rancourt D.E., et al. Expansion of undifferentiated murineembryonic stem cells as aggregates in suspension culture bioreactors [J]. TissueEngineering,2006,12(11):3233-3245
    [64] Tavakoli T.,Xu X.,Derby E.,et al. Self-renewal and differentiation capabilities arevariable between human embryonic stem cell lines I3, I6and BG01V [J]. BMC CellBiology,2009,10:1-15
    [65] Huang N.F., Niiyama H., De A., et al. Embryonic Stem Cell-Derived Endothelial Cellsfor Treatment of Hindlimb Ischemia [J]. Journal of Visualized Experiments,2009,23:1-3
    [66] Zhao F., Chella R., Ma T. Effects of shear stress on3-D human mesenchymal stem cellconstruct development in a perfusion bioreactor system: experiments and hydrodynamicmodeling [J]. Biotechnology and Bioengineering,2007,96:584-595
    [67] Zhu H., Yang S.-T. Long-term continuous production of monoclonal antibody byhybridoma cells immobilized in a fibrous-bed bioreactor [J]. Cytotechnology,2004,44:1-14
    [68] Ouyang A., Yang S.-T. Effect of mixing intensity on cell seeding and proliferation inthree-dimensional fibrous matrices [J]. Biotechnology and Bioengineering,2007,96:371-380
    [69] Griffth L.G., Swartz M.A. Capturing complex3D tissue physiology in vitro [J]. NatureReviews Molecular Cell Biology,2006,7:211-224
    [70] An W.F., Tolliday N. Cell-based assays for high throughput screening [J]. MolecularBiotechnology,2010,45:180-186
    [71] Barberis A. Cell-based high-throughput screens for drug discovery [EB]. EuropeanBiopharmaceutical Review,[2013-2-4].http://immuneweb.xxmu.edu.cn/wenzhai/pdf/004303.pdf
    [72] Guo L., Xie J., Ruan Y., et al. Characterization and immunostimulatory activity of apolysaccharide from the spores of Ganoderma lucidum [J]. InternationalImmunopharmacology,2009,9:1175-1182
    [73] Kang J.W., Kim J.H., Song K., et al. Kaempferol and quercetin, components of Ginkgobiloba extract (EGb761), induce caspase-3-dependent apoptosis in oral cavity cancercells [J]. Phytotherapy Research,2010,24:77-82
    [74] Chen X.H., Miao Y.X., Wang X.J., et al. Effects of Ginkgo biloba extract EGb761onhuman colon adenocarcinoma cells [J]. Cellular Physiology and Biochemistry,2011,27:227-232
    [75] Yap S.P., Shen P., Butler M.S., et al. New estrogenic prenylflavone from Epimediumbrevicornum inhibits the growth of breast cancer cells [J]. Planta Medica,2005,71:114-119
    [76] Guo Y.M., Zhang X.T., Meng J., et al. An anticancer angent icaritin induces sustainedactivation of the extracellular signal-regulated kinase (ERK) pathway and inhibitsgrowth of breast cancer cells [J]. European Journal of Pharmacology,2011,658:114-122
    [77] Li B.Q., Fu T., Yan Y.D., et al. Inhibition of HIV infection by baicalin—a flavonoidcompound purified from Chinese herbal medicine [J]. Cellular Molecular BiologyResearch,1993,39:119-124
    [78] Gu Y., Zhang Y., Shi X., et al. Effect of traditional Chinese medicine berberine on type2diabetes based on comprehensive metabonomics [J]. Talanta,2010,81:766-772
    [79] Cheng J.T. Review: drug therapy in Chinese traditional medicine [J]. Journal of ClinicalPharmacology,2000,40:445-450
    [80] Pan S.Y., Chen S.B., Dong H.G., et al. New perspectives on Chinese herbal medicine(Zhong-Yao) research and development [J]. Evidence-Based Complementary andAlternative Medicine,2011,2011:403709doi:10.1093/ecam/neq056
    [81] Firenzuoli F., Gori L. Herbal medicine today: clinical and research issues [J].Evidence-Based Complementary and Alternative Medicine,2007,4:37-40
    [82] Zhang X., Yang S.-T. High-throughput3-D cell-based proliferation and cytotoxicityassays for drug screening and bioprocess development [J]. Journal of Biotechnology,2011,151:186-193
    [83] Yang S.-T., Zhang X., Wen Y. Microbioreactors for high-throughput cytotoxicity assays[J]. Current Opinion in Drug Discovery and Development,2008,11:111-127
    [84] El-Ali J., Sorger P.K., Jensen K.F. Cells on chips [J]. Nature,2006,442:403-411
    [85] Kunapuli P., Lee S., Zheng W., et al. Identification of small molecule antagonists of thehuman mas-related gene-X1receptor [J]. Analytical Biochemistry,2006,351:50-61
    [86] Sharma S.V., Haber D.A., Settleman J. Cell line-based platforms to evaluate thetherapeutic efficacy of candidate anticancer agents [J]. Nature Reviews Cancer,2010,10:241-253
    [87] Sundberg S.A. High-throughput and ultra-high-throughput screening: solution-andcell-based approaches [J]. Current Opinion in Biotechnology,2000,11:47-53
    [88] Duffy K.J. Hydrazinonaphthalene and azonaphthalene thrombopoietin mimics arenonpeptidyl promoters of megakaryocytopoiesis [J]. Journal of Medicinal Chemistry,2001,44:3730-3745
    [89] Lemm J.A., O’Boyle II D., Liu M., et al. Identification of Hepatitis C virus NS5Ainhibitors [J]. Journal of Virology,2010,84:482-491
    [90] Hughes J.D., Blagg J., Price D.A., et al. Physiochemical drug properties associated within vivo toxicological outcomes [J]. Bioorganic and Medicinal Chemistry Letters,2008,18:4872-4875
    [91] Betts J.I., Baganz F. Miniature bioreactors: Current practices and future opportunities [J].Microbial Cell Factories,2006,5:21. http://dx.doi.org/10.1186/1475-2859-5-21
    [92] Kumar S., Wittmann C., Heinzle E. Minibioreactors [J]. Biotechnology Letters,2004,26(1):1-10
    [93] Ding L., Du D., Zhang X., et al. Trends in cell-based electrochemical biosensors [J].Current Medicinal Chemistry,2008,15:3160-3170
    [94] Walz D., Berg H., Milazzo G. Bioelectrochemistry of cells and tissues [M].1st ed.Switzerland: Birkhauser Verlag,1995:134-158
    [95] Nonner W., Eisenberg B. Electrodiffusion in ionic channels of biological membranes [J].Journal of Molecular Liquids,2000,87:149-162
    [96] Ding L., Hao C., Xue Y.D., et al. A bio-inspired support of gold nanoparticles-chitosannanocomposites gel for immobilization and electrochemical study of K562leukemiacells [J]. Biomacromolecules,2007,8:1341-1346
    [97] May K.M.L., Wang Y., Bachas L.G., et al. Development of a whole-cell-based biosensorfor detecting histamine as a model toxin [J]. Analytical Chemistry,2004,76:4156-4161
    [98] Rabinowitz J.D., Rigler P., Carswell-Crumpton C., et al. Screening for novel drugeffects with a microphysiometer: A potent effect of clofilium unrelated to potassiumchannel blockade [J]. Life Sciences,1997,61:87-94
    [99] Braun R.D., Lanzen J.L., Snyder S.A., et al. Comparison of tumor and normal tissueoxygen tension measurements using OxyLite or microelectrodes in rodents [J]. AmericanJournal of Physiology-Heart and Circularoty Physiology,2001,280: H2533-H2544
    [100] Chen Y., Zhang J., Wang Y., et al. Real-time monitoring approach: assessment of effectsof antibodies on the adhesion of NCI-H460cancer cells to the extracellular matrix [J].Biosensors and Bioelectronics,2008,23:1390-1396
    [101] Yeon J.H., Park J.K. Cytotoxicity test based on electrochemical impedancemeasurement of HepG2cultured in microfabricated cell chip [J]. AnalyticalBiochemistry,2005,341:308-315
    [102] Hogg D., Boden P., Lawton G., et al. Ion channel drug targets–unlocking the potential[J]. Drug Discovery World,2006,7:83-93
    [103] Campling B.B.G., Baker H.M., Cole S.P.C., et al. Chemosensitivity testing of small celllung cancer suing the MTT assay [J]. British Journal of Cancer,1991,63:75-83
    [104] Wodnicka M., Guarino R.D., Hemperly J.J., et al. Novel fluorescent technologyplatform for high throughput cytotoxicity and proliferation assays [J]. Journal ofBiomolecular Screening,2000,5:141-152
    [105] O'Brien J., Wilson I., Orton T., et al. Investigation of the Alamar Blue (resazurin)fluorescent dye for the assessment of mammalian cell cytotoxicity [J]. EuropeanJournal of Biochemistry,2000,267:5421-5426
    [106] Malich G., Markovic B., Winder C. The sensitivity and specificity of the MTStetrazolium assay for detecting the in vitro cytotoxicity of20chemicals using human celllines [J]. Toxicology,1997,124:179-192
    [107] Mahon F.X., Belloc F., Lagarde V., et al. MDR1gene overexpression confersresistance to imatinib mesylate in leukemia cell line models [J]. Blood,2003,101:2368-2373
    [108] Okubo Y., Siddle K., Firth H., et al. Cell proliferation activities on skin fibroblastsfrom a short child with absence of one copy of the type1insulin-like growth factorreceptor (IGF1R) gene and a tall child with three copies of the IGF1R gene [J]. Journalof Clinical Endocrinology and Metabolism,2003,88:5981-5988
    [109] Durick K., Negulescu P. Cellular biosensors for drug discovery [J]. Biosensors andBioelectronics,2001,16:587-92
    [110] Baldwin T.O., Lee J., Jung E., et al. A cell-based system for screening hairgrowth-promoting agents [J]. Archives of Dermatological Research,2009,301:381-385
    [111] Inoue Y., Tojo A., Sekine R., et al. In vitro validation of bioluminescent monitoring ofdisease progression and therapeutic response in leukemia model animals [J]. EuropeanJournal of Nuclear Medicine and Molecular Imaging,2006,33:557-565
    [112] Gribbon P., Sewing A. Fluorescence readouts in HTS: no gainwithout pain [J]. DrugDiscovery Today,2003,8:1035-1043
    [113] Beske O.E., Goldbard S. High-throughput cell analysis using multiplexed arraytechnologies [J]. Drug Discovery Today,2002,7(18Suppl): S131-S135
    [114] Invitrogen. The future of fluorescence-Qdot nanocrystals technology [EB].[2013-2-4]http://www.invitrogen.com/etc/medialib/en/filelibrary/cell_tissue_analysis/pdfs.Par.86928.File.dat/B-075409_Qdot_brochure.pdf
    [115] Wolff M., Wiedenmann J., Nienhaus G.U., et al. Novel fluorescent proteins forhigh-content screening [J]. Drug Discovery Today,2006,11:1054-1060
    [116] Thermo Scientific. High content screening (HCS) and analysis (HCA)[EB].[2013-2-4].http://www.thermoscientific.com/ecomm/servlet/newsdetail?storeId=11152&contentId=54878&ca=highcontent
    [117] BD Biosciences. San Jose, CA, USA [EB].[2013-2-4].http://www.bdbiosciences.com/home.jsp
    [118] GE Healthcare Life Sciences. Uppsala, Sweden [EB].[2013-2-4].http://www.gelifesciences.com/webapp/wcs/stores/servlet/Home/en/GELifeSciences/
    [119] Abraham V.C., Taylor D.L., Haskins J.R. High content screening applied to large-scalecell biology [J]. Trends in Biotechnology,2004,22(1):15-22
    [120] Haney S.A., LaPan P., Pan J., et al. High-content screening moves to the front of theline [J]. Drug Discovery Today,2006,11(19-20):889-94
    [121] Ashcroft R.G., Lopez P.A. Commercial high-speed machines open new opportunities inhigh throughput flow cytometry (HTFC)[J]. Journal of Immunological Methods,2000,243:13-24
    [122] Harborne J.B. Classes and functions of secondary products from plants, in Chemicalsfrom Plants–Perspectives on Plant Secondary Products [M].1st ed. London: ImperialCollege Press,1999:1-25
    [123] Dillard C.J., German J.B. Phytochemicals: nutraceuticals and human health [J]. Journalof the Science of Food and Agriculture,2000,80:1744-1756
    [124] Mo H., Elson C.E. Apoptosis and cell-cycle arrest in human and murine tumor cells areinitiated by isoprenoids [J]. Journal of Nutrition,1999,129:804-813
    [125] Zhou J.R., Mukherjee P., Gugger E.T., et al. Inhibition of murine bladder tumorigenesisby soy sioflavones via alternations in the cell cycle, apoptosis, and angiogenesis [J].Cancer Research,1998,58:5231-5238
    [126] Ellington A.A., Berhow M., Singletary K.W. Induction of macroautophagy in humancolon cancer cells by soybean B-group triterpenoid saponins [J]. Carcinogenesis,2005,26:159-167
    [127] Qv X.Y., Jiang J.G., Piao J.H. Pharmacodynamic studies of Chinese medicine at levelsof whole animal, cell and molecular models [J]. Current Medicinal Chemistry,2010,17:4521-4537
    [128] Feng L., Wang L., Ma Y.Y., et al. A potential in vitro and in vivo anti-HIV drugscreening system for Chinese herbal medicines [J]. Phytotherapy Research,2012,26:899-907
    [129] Zhu Y., Zhang Z., Zhang M., et al. High throughput screening for bioactive componentsfrom traditional Chinese medicine [J]. Combinatorial Chemistry and High ThroughputScreening,2010,13:837-848
    [130] Youns M., Hoheisel J.D., Efferth T. Traditional Chinese Medicines (TCMs) formolecular targeted therapies of tumors [J]. Current Drug Discovery Technology,2010,7:37-45
    [131] Naoghare P.K., Song J.M. Chip-based high throughput screening of herbal medicines[J]. Combinatorial Chemistry and High Throughput Screening,2010,13:923-931
    [132] Lee S.S., Zhang B., He M.L., et al. Screening of Active Ingredients of Herbal Medicinefor Interaction with CYP4503A4[J]. Phytotherapy Research,2007,21:1096-1099
    [133] Ehrman T.M., Barlow D.J., Hylands P.J. Phytochemical informatics and virtualscreening of herbs used in Chinese medicine [J]. Current Pharmaceutical Design,2010,16:1785-1798
    [134] Zeng X.Y., Zhou X., Xu J., et al. Screening for the efficacy on lipid accumulation in3T3-L1cells is an effective tool for the identification of new anti-diabetic compounds [J].Biochemical Pharmacology,2012,84:830-837
    [135]孙哲,吕秋军.基于检测报告基因的药物筛选方法研究进展[J].中国药学杂志,2000,35(8):507-510
    [136] Dai J., Wang G., Li W., et al. High-throughput screening for anti-Influenza A virus drugsand study of the mechanism of procyanidin on Influenza A virus-induced autophagy [J].Journal of Biomolecular Screening,2012,17:605-617
    [137] Wang Y., Zhao X., Gao X., et al. Development of fluorescence imaging-based assay forscreening cardioprotective compounds from medicinal plants [J]. Analytica ChimicaActa,2011,702:87-94
    [138] Li D., Isherwood S., Motz A., et al. Cell-based screening of traditional Chinesemedicines for proliferation enhancers of mouse embryonic stem cells [J]. BiotechnologyProgress,2013, DOI:10.1021/btpr.1731
    [139] Li D., Zang R., Yang S.-T., et al. Cell-based high-throughput proliferation andcytotoxicity assays for screening of traditional Chinese herbal medicines [J]. ProcessBiochemistry,2013,48(3):517-524
    [140] Firenzuoli F., Gori L. Herbal medicine today: clinical and research issues [J].Evidence-Based Complementary and Alternative Medicine,2007,4:37-40
    [141] Tian H., Ip L., Luo H., et al. A high throughput drug screen based on fluorescenceresonance energy transfer (FRET) for anticancer activity of compounds from herbalmedicine [J]. British Journal of Pharmacology,2007,150:321-334
    [142] Zang R., Li D., Tang I.-C., et al. Cell-based assays in high-throughput screening fordrug discovery [J]. International Journal of Biotechnology for Wellness Industries,2012,1:1-21
    [143] Muramatsu M., Uwada J., Matsumoto N., et al. A simple in situ cell-basedSUMOylation assay with potential application to drug screening [J]. BioscienceBiotechnology and Biochemistry,2010,74:1473-1475
    [144] Zang R., Zhang X., Li M., et al. Microwell bioreactor system for cell-based highthroughput proliferation and cytotoxicity assays [J]. Process Biochemistry,2013,48:78-88
    [145] Marchetti C., Migliorati G., Moraca R., et al. Deoxycholic acid and SCFA-inducedapoptosis in the human tumor cell line HT-29and possible mechanisms [J]. CancerLetters,1997,114:97-99
    [146] Zeng H., Botnen J.H., Briske-Anderson M. Deoxycholic acid and selenium metabolitemethylselenol exert common and distinct effects on cell cycle, apoptosis, and MAPkinase pathway in HCT116human colon cancer cells [J]. Nutrition and Cancer,2010,62:85-92
    [147] Katona B.W., Rath N.P., Anant S., et al. Enantiomeric deoxycholic acid: total synthesis,characterization, and preliminary toxicity toward colon cancer cell lines [J]. Journal ofOrganic Chemistry,2007,72:9298-9307
    [148] Hu H., Ahn N.S., Yang X., et al. Ganoderma lucidum extract induces cell cycle arrestand apoptosis in MCF-7human breast cancer cell [J]. International Journal of Cancer,2002,102:250-253
    [149] Jiang J., Slivova V., Valachovicova T., et al. Ganoderma lucidum inhibits proliferationand induces apoptosis in human prostate cancer cells PC-3[J]. International Journal ofOncology,2004,24:1093-1100
    [150] Jiang J., Slivova V., Harvey K., et al. Ganoderma lucidum suppresses growth of breastcancer cells through the inhibition of Akt/NF-κB signaling [J]. Nutrition and Cancer,2004,49:209-216
    [151] Jiang Z., Jin T., Gao F., et al. Effects of Ganoderic acid Me on inhibiting multidrugresistance and inducing apoptosis in multidrug resistant colon cancer cells [J]. ProcessBiochemistry,2011,46:1307-1314
    [152] Mutoh M., Takahashi M., Fukuda K., et al. Suppression of cyclooxygenase-2promoter-dependent transcriptional activity in colon cancer cells by chemopreventiveagents with a resorcin-type structure. Carcinogenesis,2000,21:959-963
    [153] Papadopoulos V., Kapsis A., Li H., et al. Drug-induced inhibition of the peripheral-typebenzodiazepine receptor expression and cell proliferation in human breast cancer cells [J].Anticancer Research,2000,20:2835-2847
    [154] Chan W.H. Ginkgolide B induces apoptosis and developmental injury in mouseembryonic stem cells and blastocysts [J]. Human Reproduction,2006,21:2985-2995
    [155] Zhu D., Lou Y. Inducible effects of icariin, icaritin, and desmethylicaritin on directionaldifferentiation of embryonic stem cells into cardiomyocytes in vitro [J]. ActaPharmacologica Sinica,2005,26:477-485
    [156] Yap S.P., Shen P., Li J., et al. Molecular and pharmacodynamic properties of estrogenicextracts from the traditional Chinese medicinal herb, Epimedium [J]. Journal ofEthnopharmacology,2007,113:218-224
    [157] Yoo H.H., Park J.H., Kwon S. In vitro cytotoxic activity of some Korean medicinalplants on human cancer cell lines: enhancement in cytotoxicity by heat processing [J].Phytotherapy Research,2007,21:900-903
    [158] Sliva D. Ganoderma lucidum (Reishi) in cancer treatment [J]. Integrative CancerTherapies,2003,2:358-364
    [159] Jin X., Ruiz Bequerie J., Sze D.M., et al. Ganoderma lucidum (Reishi mushroom) forcancer treatment [J]. Cochrane Database of Systematic Reviews,2012,6: CD007731
    [160] Sliva D. Ganoderma lucidum in cancer research [J]. Leukemia Research,2006,30:767-768
    [161] Boh B., Berovic M., Zhang J., et al. Ganoderma lucidum and its pharmaceuticallyactive compounds [J]. Biotechnology Annual Review,2007,13:265-301
    [162] Chen W.Y., Yang W.B., Wong C.H., et al. Effect of Reishi polysaccharides on humanstem/progenitor cells [J]. Bioorganic and Medicinal Chemistry,2010,18:8583-8591
    [163] Yue Q.X., Song X.Y., Ma C., et al. Effects of triterpenes from Ganoderma lucidum onprotein expression profile of HeLa cells [J]. Phytomedicine,2010,17:606-613
    [164] Gill S.K., Rieder M.J. Toxicity of a traditional Chinese medicine, Ganoderma lucidum,in children with cancer [J]. Canadian Journal of Clinical Pharmacology,2008,15:275-285
    [165] Wang G.J., Huang Y.J., Chen D.H., et al. Ganoderma lucidum extract attenuates theproliferation of hepatic stellate cells by blocking the PDGF receptor [J]. PhytotherapyResearch,2009,23:833-839
    [166] Xie J.T., Wang C.Z., Wicks S., et al. Ganoderma lucidum extract inhibits proliferationof SW480human colorectal cancer cells [J]. Experimental Oncology,2006,28:25-29
    [167] Chan W.K., Lam D.T.W., Law H.K.W., et al. Ganoderma lucidum mycelium and sporeextracts as natural adjuvants for immunotherapy [J]. Journal of Alternative andComplementary Medicine,2005,11:1047-1057
    [168] King J.A., Miller W.M. Bioreactor development for stem cell expansion and controlleddifferentiation [J]. Current Opinion in Chemical Biology,2007,11:394-398
    [169] Lam W., Bussom S., Guan F., et al. The four-herb Chinese medicine PHY906reduceschemotherapy-induced gastrointestinal toxicity [J]. Science Translational Medicine,2010,2:45ra59
    [170] Chan R.Y., Chen W.F., Dong A., et al. Estrogen-like activity of ginsenoside Rg1derivedfrom Panax notoginseng [J]. Journal of Clinical Endocrinology and Metabolism,2002,87:3691-3695
    [171] Gao C., Liu Y., Ma L., et al. Effects of Ligustrazine on pulmonary damage in ratsfollowing scald injury [J]. Burns,2012,38:743-750
    [172] Meng Q.T., Xia Z.Y., Luo T., et al. Ligustrazine attenuates acute lung injury induced byblunt chest trauma [J]. Saudi Medicinal Journal,2012,33:139-145
    [173] Fasinu P.S., Bouic P.J., Rosenkranz B. An overview of the evidence and mechanisms ofherb-drug interactions [J]. Frontiers in Pharmacology,2012,3:69
    [174] Wang Y., Yang H., Wang H., et al. Effects of extracted compound of Panax notoginsengand Ganoderma lucidum spore powder on immune function of mice [J]. Journal ofZhejiang University (Medical Science),2008,43:149-151
    [175] Wong C.K., So W.Y., Law S.K., et al. Estrogen controls embryonic stem cellproliferation via store-operated calcium entry and the nuclear factor activated T-cells(NFAT)[J]. Journal of Cellular Physiology,2012,227:2519-2530
    [176] Han H.J., Heo J.S., Lee Y.J. Estradiol-17beta stimulates proliferation of mouseembryonic stem cell: involvement of MAPKs and CDKs as well as protooncogenes [J].American Journal of Physiology-Cell Physiology,2006,290:1067-1075
    [177] Ritchie A., Vadhan-Raj S., Broxmeyer H.E. Thrombopoietin suppresses apoptosis andbehaves as a survival factor for the human growth factor-dependent cell line, M07e [J].Stem Cells,1996,14:330-336
    [178] Welham M.J., Kingham E., Sanchez-Ripoll Y., et al. Controlling embryonic stem cellproliferation and pluripotency: the role of PI3K-and GSK-3-dependent signaling [J].Biochemical Society Transactions,2011,39:674-678
    [179]郑丽华,卢昌均,周志昆,et al. HPLC测定三七总皂苷中5种皂苷的含量及稳定性考察[J].中医药临床杂志,2012,24(1):73-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700