灵芝活性成分抗肿瘤作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵芝(Ganoderma lucidum(curtis:Fr.)P.Karst.)在我国已有悠久的应用历史,可用于多种疾病的治疗。灵芝的化学、药理和临床等现代研究也证明灵芝具有抑制肿瘤、保肝、调节血压、降血糖、抗病毒、延缓衰老、抗炎等多种作用,其中灵芝的抗肿瘤作用更是近年来的热点。由于灵芝的化学成分十分复杂,难以得到纯化合物进行抗肿瘤活性及其作用机制的研究,限制了灵芝产业的深入发展。本研究室运用分离纯化与体外筛选模型相结合的方法,分别得到提高免疫功能的活性成分GLIS和诱导细胞凋亡的有效部位GLAI,本论文在前人工作的基础上对它们的作用机制进行探讨,为将来的进一步研究和开发建立了基础。
     1.灵芝多糖GLIS的免疫刺激活性研究
     灵芝多糖GLIS是经过多步色谱分离纯化得到的糖蛋白组分,以前的研究发现GLIS可以激活淋巴细胞,并能够特异性地刺激淋巴B细胞增殖,增加NK细胞的活性。本论文在前人工作的基础上,探讨了GLIS对小鼠巨噬细胞株RAw264.7、小鼠骨髓来源巨噬细胞(BMMs)和小鼠淋巴细胞(MSLs)的免疫调节作用,并对激活巨噬细胞的作用机理进行了研究。
     GLIS处理小鼠巨噬细胞株RAW264.7后,发现其形态发生了变化,如体积变大,并且形成伪足;同时发现GLIs能刺激RAW264.7细胞呼吸爆发,产生大量活性氧,并刺激RAW264.7细胞释放NO,两项实验结果证明GLIS可激活免疫巨噬细胞的氧依赖杀伤机制;GLIS还刺激RAW264.7细胞增加IL-1β、IL-12p35和IL-12p40细胞因子mRNA的表达,而细胞因子TNF-α、IL-6和IL-18 mRNA的表达则基本无变化;另外还发现其分泌TNF-α、IL-1β和IL-12细胞因子的量明显增加。
     GLIS处理小鼠骨髓来源巨噬细胞(BMMs)后,也发现其体积变大,并且形成伪足;同时GLIS也能刺激BMMs呼吸爆发,产生大量活性氧;并刺激BMMs释放NO,结果与RAW264.7细胞株实验相同;GLIS刺激BMMs后相关细胞因子的表达也增加,在mRNA水平,IL-6、IL-12p35和IL-12p40明显增加,TNF-α、IL-1β和IL-18也有所增加。在蛋白水平,TNF-α、IL-1β和IL-12三种细胞因子的表达明显增加。
     GLIS还可以可刺激淋巴细胞增殖,并且可刺激其呼吸爆发。
     研究结果显示GLIS通过激活巨噬细胞氧依赖杀伤系统及刺激其表达细胞因子达到全面激活免疫功能进行抗肿瘤的目的。
     2.灵芝三萜GLAI诱导肠癌细胞凋亡作用研究
     灵芝三萜GLAI是通过活性跟踪经多步分离纯化从灵芝子实体中分离得到的一个有效部位,对GLAI的理化性质研究发现,其三萜含量为62.8%;HPLC检测发现GLAI含有8个峰,其中有两个峰确定为灵芝酮二醇和丹芝醇A。GLAI对多种肿瘤细胞株具有抑制活性,包括小鼠淋巴癌L1210细胞株、人淋巴癌K562细胞株、人肠癌SW620细胞株和人乳腺癌MCF7细胞株。GLAI处理SW620细胞后,其细胞形态出现明显的变化,细胞变圆、皱缩,体积变小,并可观察到凋亡小体的产生;经过Hoechst 3258荧光染色和annexin V-FITC/PI双染流式细胞仪检测,证明SW620细胞发生了凋亡:研究还发现,GLAI处理SW620细胞后,凋亡关键酶Caspase-3的活性明显增高;同时发现,随着药物浓度和作用时间的增加,凋亡抑制基因BCL-2 mRNA的表达,逐渐减少;而凋亡促进基因BAX mRNA的表达随之增加;另外发现,凋亡重要相关因子P53蛋白的表达随着药物浓度的增加而增加,而凋亡抑制蛋白XIAP则随着浓度的增加而减少。
     研究结果显示GLAI能够通过激活Caspase-3酶途径诱导肠癌细胞SW620凋亡,同时通过上调凋亡促进因子的表达,下调凋亡抑制因子的表达达到诱导SW620细胞凋亡的效果。
     综上所述,灵芝的抗肿瘤作用一方面是通过灵芝多糖激活免疫细胞,通过提高免疫系统的能力来达到消除肿瘤的目的;另一方面是通过灵芝三萜诱导肿瘤细胞凋亡,从而达到消除肿瘤的效果。因此灵芝的抗肿瘤作用可能是多途径共同作用的结果。
Ganoderma lucidum(GL),called "Lingzhi" in China,has a long history of use for the treatment of many different diseases.Chemical,pharmacological and clinical studies have testified that GL possesses various therapeutic functions including anti-tumor, hepatoprotective,anti-senility,anti-viral,anti-inflammatory,anti-hypertensive and hypocholesterolemic activity.In recent years,the anti-cancer effects of GL have become a major focus of research activity involving this mushroom.However,the chemical composition of GL is very complex,and obtaining purified material for research into the pharmaceutical effects and mechanisms of GL is often difficult.In this study,two compounds(GLIS-Ganoderma lucidum immunity stimulator,and GLAI-Ganoderma lucidum apoptosis inducer) have been isolated from GL fruit bodies and their bioactivities determined.GLIS stimulates immunity and GLAI induces apoptosis of tumor cells.The mechanisms underlying these activities have been investigated in order to establish a basis for future research.
     1.Immunomodulating activity of GLIS
     GLIS is a proteoglycan isolated from GL fruit bodies using successive chromatographic steps.Previous research has shown that GLIS stimulated the proliferation of lymphocytes,and that most of the activated lymphocytes were B cells.GLIS also stimulates the activity of NK cells.In this study,the mechanism(s) involved in macrophage stimulation investigated using GLIS modulation of RAW264.7 cells(a mouse macrophage-like cell line),bone marrow-derived macrophages(BMMs) and mouse spleen lymphocytes(MSLs).
     After exposure to GLIS,RAW264.7 cells exhibited altered morphology,increased in size and formed numerous pseudopodia.GLIS also triggered the respiratory burst in RAW264.7 cells,and stimulated the macrophages to produce superoxide anion and NO. GLIS therefore activates the Oxygen-Dependent Kill System of macrophages.GLIS also regulated related cytokine expression at the mRNA level in activated RAW264.7 cells. Interleukin-1β(IL-1β),IL-12p35 and IL-12p40 gene expression was markedly increased within six hours after exposure whereas no changes were recorded in IL-6,IL-18 and TNF-a gene expression.Large increases in IL-1β,IL-12 and TNF-a protein production were also recorded.
     After exposure to GLIS,BMMs also exhibited altered morphology,increased in size and formed numerous pseudopodia.GLIS also triggered the respiratory burst in BMMs and stimulated the macrophages to produce superoxide anion and NO.Therefore,GLIS also activates the Oxygen-Dependent Kill System of macrophages.GLIS also regulated related cytokine expression at the mRNA level in activated BMMs.IL-6,IL-12p35 and IL-12p40 gene expression was markedly increased,and increases in IL-1β,IL-18 and TNF-a gene expression was also observed.Large increases in IL-1β,IL-12 and TNF-a protein production was also recorded.
     GLIS stimulated the proliferation of lymphocytes,and induced the respiratory burst in MSLs.
     The data indicate that induction of the antitumor effect of macrophages by GLIS involves activation of the Oxygen-Dependent Kill System and regulation of related cytokine expression.
     2.Apoptosis-inducing activity of GLAI
     A triterpene fraction,GLAI,was isolated from GL fruiting bodies using successive separation steps combined with activity tracking.The triterpene content of GLAI was 62.8%(using ganodermanondial as standard).HPLC revealed 8 peaks including those corresponding to ganodermanondial and lucidumol A.GLAI inhibited the proliferation of several tumor cell lines including L1210(mouse lymphocytic leukemia),K562(human chronic myelogenous leukemia),SW620(human lymph node metastasis,colon carcinoma) and MCF7(human breast adenocarcinoma,pleural effusion).Marked changes in the morphology of SW620 cells occurred following exposure to GLAI.Cells became more rounded and crimped,and many apoptotic bodies were observed.Hoechst 3258 fluorescence staining combined with annexin V-FITC/PI staining confirmed that GLAI induced apoptosis in SW620 cells.Exposure of SW620 cells to GLAI also increased the activity of caspase-3,the key enzyme associated with apoptosis.At the mRNA level, resulted in down-regulation of Bcl-2 gene expression,and also in XIAP protein production (both Bcl-2 and XIAP are associated with apoptosis inhibition).Conversely,increasing GLAI concentrations and exposure times up-regulated expression of apoptosis enhancer Bax gene and production of apoptosis enhancing p53 protein.
     In summary,multiple pathways are involved in the antitumor activity GL including the stimulation of macrophages by GL polysaccharide to effectively eliminate tumor cells,and the induction of tumor cell apoptosis by GL triterpenes.
引文
[1] Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science [J], 1998, 281: 1322-1326.
    
    [2] Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED3 protease nomenclature. Cell [J], 1996, 87:171.
    [3] Antonio GG, Francisco L, Augusto R, et al. Lanostanoid triterpenes from Ganoderma lucidum. J Nat Prod [J], 1999, 62:1700 -1701.
    [4] Appella E, Anderson CW. Post translational modifications and activation of p53 by geno toxic stresses. Eur J Biochem [J], 2001, 268 (15): 2764-2772.
    [5] Bao X, Liu C, Fang J, et al. Structural and immunological studies of a major polysaccharide from spores of Ganoderma 1 uci dum (Fr.) Karst. Carbohydr Res [J], 2001,332 (1): 67-74.
    [6] Cande C, Cohen I, Daugas E, et al. Apoptosis inducing factor (AIF): Anovel castase independent death effector released from m itochondria. Biochimie [J], 2002, 223 (84): 215-222.
    [7] Chairul, Tokuyama T, Hayashi Y, et al. Applanoxidic acids A, B, C and D, biologically active tetracyclic triterpenes from Ganoderma applanatum. Phytochemistry [J], 1991, 30 (12): 4105- 4109.
    [8] Chen JH, Zhou JP, Zhang LN, et al. Chemical structure of the water-insoluble polysaccharide isolated from the fruiting body of Ganoderma lucidum. Polymer Journal [J], 1998, 30 (10): 838- 842.
    [9] Cosulich SC, Worrall V, Hedge PJ, et al. Regulation of apoptosis by BH3 domains in a cell-free system. Curr Biol [J], 1997,7: 913-920
    [10] Cryns V, Yuan Y. Proteases to die for. Genes Dev [J], 1998,12:1551-1570
    
    [11] Cutolo M, Sulli A, Barone A, et al. Sex hormones, protooncogene expression and apoptosis: their effects on tissue. Clin Exp Rheumatol [J], 1996,14: 87-90.
    
    [12] Darmon AJ, Nicholson DW, Bleackley RC. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature [J], 1995, 377: 446-448
    [13] David M, Hockenberry. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell [J], 1993, 75: 241-250.
    [14] Desagher S, Osensand A, Nichols A, et al. Bid induced conformational change of Bax is responsible form itochondrial cytochrome C release during apoptosis. J Cell Biol [J], 1999, 144 (3): 891-901.
    [15] Du C, Fang M, Li Y, et al. Smac, amitochondrial protein that promotes cytochrome C dependent caspases activation by eliminating IAP inhibition. Cell [J], 2002,102 (2): 33-42.
    [16] El-Mekkawy S, Meselhy R, Norio M, et al. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidium. Phytochemistry [J], 1998,49 (6): 1651-1657.
    [17] Emoto Y, Manome Y, Meinhardt G, et al. Proteplytic activation of protein kinase C delta by an ICE-like protease in apoptotic cells. EMBO J [J], 1995,14: 6148-6156
    [18] Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature [J], 1998, 391: 43-50
    [19] Erhardt P, Tomaselli KJ, Cooper GM. Identification of the MDM2 oncoprotein as a substrate for CPP32-like apoptotic proteases. J Biol Chem [J], 1997,272:15049-15052
    [20] Ferri KF, Jacotot E, Blanco J, et al. Apoptosis control in syncytia induced by the HIV type E envelope glycoprotein complex: role of mitochondria and caspases. J ExpMed [J], 2000, 192 (8): 1081-1092.
    [21] Gao JJ, Min BS, Ahn EM, et al. New Triterpene Aldehydes, Lucialdehydes A-C, from Ganoderma lucidum and Their Cytotoxicity against Murine and Human Tumor Cells. Chem Pharm. Bull [J]. 2002, 50 (6): 837-840.
    [22] Goldstein JC, Waterhouse NJ, Juin P, et al. The coordinate release of cytochrome C during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol [J], 2000, 2 (1): 156-162.
    [23] Golstein P. Cell death in us and others. Science [J], 1998, 281:1283
    [24] Green LC, Wagner DDA, Glowgowski J, et al. Analysis of nirtate, nitrite and 15N nitrate in biological fluids. Analytical Biochemistry [J]. 1982,1236:131-138
    [25] Gross A, Mcdonneu MJ, Korsmeyer SJ, et al Bcl-2 family members and mitochondria in apoptosis. Gen Dev [J], 1999,13 (2): 1899-1911.
    [26] Gupta S. Molecular steps of tumor necrosis factor receptor mediated apoptosis. Curr Mol Med [J], 2001,1 (3): 317-324.
    [27] Henningr S, Guys S. Caspase-controlling intracellular signals by protease zymogen activation. Biochimicaet Biophysica Acta [J], 2000, (1 477): 299-306.
    [28] Herr I, Debatin K. Cellular stress response and apoptosis in cancer therapy. Blood [J], 2001, 98 (9): 2603-2604.
    [29] Hirotani M, Asaka I, Ino C, et al. Ganoderic acid derivatives and ergosta-4, 7, 22-triene-3, 6-dione from Ganoderma lucidum. Phytochemistry [J], 1987,26 (10): 2797-2803.
    [30] Hirotani M, Furuya T, Shiro M, et al. A ganoderic acid derivative, a highly oxygenated lanostane-type triterpenoid from Ganoderma lucidum. Phytochemistry [J], 1985, 24 (9): 2055-2061.
    [31] Hirotani M, Furuya T, Shiro M. A ganoderic acid derivative, a highly oxygenated lanostane-type triterpenoid from Ganoderma lucidum. Phytochemistry [J], 1985, 24 (9): 2055-2061.
    [32] Hirotani M, Furuya T. Ganoderic acid derivatives, a highly oxygenated lanodtane-type triterpenoids from Ganoderma lucidum. Phytochemistry [J], 1986,25 (5): 1189-1193.
    [33] Hirotani M, Ino C, Furuya T, et al. Ganoderic acids T, S and R, new triterpenoids from the cultured mycelia of Ganoderma lucidum. Chem Pharm Bull [J], 1986,34 (5): 2282-2285.
    [34] Hirotani M, Ino C, Furuya T. Comparative Study on the strain-specific triterpenoid compounds of Ganoderma lucidium. Phytochemistry [J], 1993, 33 (2): 379-382.
    [35] Hsu RC, Lin BH, Chen CW. The study of super-critical carbon dioxide extraction for Ganoderma lucidum. Ind Eng Chem Res [J], 2001,40: 4478-4481.
    [36] Hu HB, Ahn NS, Yang XL, et al. Ganoderma lucidum extract induces cell cycle arrest andapoptosis in MCF-7 human breast cancer cell. International Journal of Cancer [J], 2002,102 (3): 250-253.
    [37] Huang DCS, Adams JM, Cory S. The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J [J], 1998,17:1029-1039
    [38] Janicke RU, Walker PA, Lin XY, et al. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J [J], 1996,15: 6969-6978
    [39] Kikuchi T, Kanomi (nee Matsuda) S, Kadota S, et al. Constituents of the fungus Ganoderma lucidum (KR.) KARST I. Structure of ganoderic acids C2, E, I, and K, lucidenic acid F and related Compounds. Chem Pharm Bull [J], 1986,34 (9): 3695-3712.
    [40] Kikuchi T, Kanomi (nee Matsuda) S, Murai Y, et al. Constituent of the fungus Ganoderma lucidum (KR.) KARST. III Structure of ganolucidic acids A and B, new lanostane-type triterpenoids. Chem Pharm Bull [J], 1986, 34 (10): 4030 - 4036.
    [41] Kikuchi T, Matsuda S, Kadota S, et al. Ganoderic acid D, E, F and H and lucidenic acid D, E and F,new triterpenoids from Ganoderma lucidum. Chem Pharm Bull [J], 1985,33 (6): 2624-2627.
    [42] Kim IK, Gupta S. Expression of TRAIL, DR4 (TRA IL receptor 1), DR5 (TRA IL receptor 2) and TRID (TRA IL receptor 3) genes in multidrug resistant human acute myeloid leukemia cell lines that overexpression MDR1 (HL 60/79X) or MRP (HL60/AR). Biochem Biophys Res Commun [J], 2000, 277 (20): 311-316.
    [43] Kimura Y, Masahiko T, Kimiye B, et al. Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum: mechanism of action and isolation of an active substance. Anticancer Research [J], 2002, 22 (6A): 3309-3318.
    [44] Kohda T, Tokumoto W, Sakamoto K, et al. The biologically active constituents of Ganoderma lucidum (FR.) KARST. histamine release-inhibitory triterpenes. Chem Pharm Bull [J],1985, 33(4):1367-1374.
    [45] Kothakota S, Azuma T, Reinhard C, et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science [J], 1997, 278: 294-298
    [46] KruegerA, Baumann S, Krammer PH. FL1CE inhibitory proteins: regulators of death receptor mediated apoptosis. Mol Cell Biol [J], 2001, 21 (24): 8247-8254.
    [47] Kuang AA, Diehl GE, Zhang J, et al. FADD is required for DR42 and DR52 mediated apoptosis: lack of trail induced apoptosis in FADD deficied mouse embryonic fibroblasts. Biochem Biophys Res Commun [J], 2000, 60 (1): 4119-4147.
    [48] Kubota T, Asaka Y, Miura 1, et al. Structures of Ganoderic acid A and B, two lanostane type bitter triterpenes from Ganoderma lucidum (Fr.) Karst. Helv Chim Acta [J], 1982, 65(2): 611-619.
    [49] Lazebnik ES. Cytochrome C release from mitochondria in response to activation of cell surface death receptors. Cell [J], 1998, 94: 481-490
    [50] Ledgerwood EC, Pober JG, Bradley JR, et al. Recent advances in the molecular basis of TNF signal transduction. Lab Invest [J], 1999,79 (13): 1041-1050
    [51] Lei LS, Lin ZB. Effect of Ganderma polysacchorides on T cell subpopulations and prodution of Inter - Leukin 2 in mixed lymphocyte response. 药学学报 [J], 1992,27 (5): 331-335.
    [52] Li CH, Chen PY, Chang UM, et al. Ganoderic acid X, a lanostanoid triterpene inhibis topoisomerases and induces apoptosis of cancer cells. Life science [J],2005,77: 252-265.
    [53] Lin CN, Tomp WP. Novel cytotoxic principles of Formosan Ganoderma lucidum. J Nat Prod [J], 1991,54(4): 998-1002.
    [54] Lin HY, Juan SH, Shen SC, et al. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochemcial Pharmacology [J], 2003, 66:1821-1832
    [55] Lin SB, Lia CH, Lee SS, et al. Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest. Life Sciences [J], 2003,72: 2381-2390.
    [56] Liu XS, Zou H, Slaughter C, et al. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell [J], 1997, 89:175-184
    [57] Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Annu Rev Neurosci [J], 1997, 20: 245-267
    [58] Min BS, Gao JJ, Nakamura N, et al Triterpenes from the Meth-A and LLC tumor cells. Chem Pharm Bull [J], 2000, 48(7): 1026-1033.
    [59] Min BS, Nakamura N, Miyashiro H, et al. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull [J], 1998, 46 (10): 1607-1612.
    [60] Minb S, Gao JJ, Nakamura N, et al. Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth - A and LLC tumor cells. Chem Pharm Bull (Tokyo) [J], 2000, 48 (7): 1026-1033.
    [61] Morigiwa A, Kitabatake K, Fujimoto Y, et al. Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem Pharm Bull [J], 1986, 34(7): 3025-3028.
    [62] Mountz JD, Zhou T, Wu J, et al. Regulation of apoptosis inimmune cells. JC1 in Immunol [J], 1995, 15(1): 11.
    [63] Nishitoba T, Goto S, Sato H, et al. Bitter triterpenoids from the fungus Ganoderma applanatum. Phytochemistry [J], 1989, 28 (1): 193-197.
    [64] Nishitoba T, Sato H, Kasai T, et al. New bitter C27 and C30 terpenoids from the fungus Ganoderma lucidum (Reishi). Agric Biol Chem [J], 1984, 48 (11): 2905-2907.
    [65] Nishitoba T, Sato H, Odak, et al. Novel triterpenoids and a steroid from the fungus Ganoderma lucidum. Agri Biol Chem [J], 1988,52 (1): 211-216.
    [66] Nishitoba T, Sato H, Sakamura S. New terpenoids, ganoderis acid D, ganoderic acid L, lucidone C and lucidenic acid G from the fungus Ganoderma lucidum. Agri Biol Chem [J], 1986, 50 (3): 809- 811.
    [67] Nishitoba T, Sato H, Sakamura S. Novel mycelial components, ganoderic acid Mg, Mh, Mi, Mj and Mk from the fungus Ganoderma lucidum. Agri Biol Chem [J], 1987,51 (4): 1149-1153.
    [68] Nishitoba T, Sato H, Sakamura S. Triterpenoids from the fungus Ganoderma lucidum. Phytochemistry [J], 1987, 26 (6): 1777-1784.
    [69] Nishitoba T, Sato H, Shirasu S, et al. Novel triterpenoids from the mycelial mat at the previous stage of fruiting of Ganoderma lucidum. Agri Biol Chem [J], 1987,51 (2): 619-622.
    [70] Oliveira PL, Garcia S, Lecoeur H, et al. Increased sensitivity of T lymphocytes to tumor necrosis factor receptor (TN FR1) and TN FR2 mediated apoptosis in HIV infection: relation to expression of Bcl-2 and active caspase 8 and caspase 3. Blood [J], 2002, 99 (5): 1666-1675.
    [71] Oshiyuki M, Stanislaw K, Maryls R. Tumor supressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene [J], 1994, 9: 1799-1805.
    [72] Park KJ, Chai SH, Kim DJ, et al. Hepatitis C virus core protein potentiates c-Jun N -terminal kinase activation through a signaling complex involing TRADD and TRA F2. Virology [J], 2001, 74 (122): 89-98.
    
    [73] Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol [J], 1994,124:1-6
    [74] Reis RS, Neves IJ, Lourenco SL, et al. Comparison of flow cytometric and Alamar Blue tests with the proportional method for testing susceptibility of mycobacterium tuberculosis to rifampin and isoniazid. Journal of Clinical Microbiology [J], 2004, 42: 2247-2248
    [75] Rudel T, Bokoch GM. Membrane and morphological change in apoptosis cells regulated by caspase-mediated activation of PAK2. Science [J], 1997, 276:1571-1573
    [76] Sartorius U, Schmitz I, Krammer PH, et al. Molecular mechanisms of death receptor mediated apoptosis. Biochem [J], 2001, 2 (1): 20-29.
    [77] Sato H, Nishitoba T, Shirasu S, et al. Ganoderiol A and B, new triterpenoids from the fungus Ganoderma lucidum (Reishi). Agri Biol Chem [J], 1986,50 (11): 2887-2890.
    [78] Snearwin WL, Harvey NL, Kumar S. Subcelular localization and CARD dependent oligomerization of the death adaptor RAIDD. Cell Death Differ [J], 2000,7 (21): 155-165.
    [79] Stanley ER. Murine bone marrow-derived macrophages. Methods in Molecular Biology [J]. 1997, 75: 301-304
    
    [80] Steller H. Mechanisms and genes of cellular suicide. Science [J], 1995, 267:1445-1448.
    [81] Stewart JH, Nguyen D, Chen GA, et al. Induction of apoptosis in malignant pleuralmeso thelioma cells by activation of the Fas (Apo-1/CD95) death signal pathway. J Thorac Cardiovasc Surg [J], 2002,123 (2): 295-302.
    [82] Takahashi A, Alnemli ES, Lazebnik YA, et al. Cleavage of lamin A by Mch-a but not CPP32: Multiple interleukin 1β -converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc Natl Acad Sci USA [J], 1996, 93: 8395-8400
    [83] Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J Biol Chem [J], 1997, 272:17907-17911
    [84] Thornbery NA, Lazebnik Y. Caspases: enemies within. Science [J], 1998,281:1312-1316
    [85] Toth JO et al. Les acides ganoderiques T a Z: triterpenes cytotoxiques de Ganoderma lucidum (Polyporacee). Tetrahedron Lett [J], 1983, 24(10):1081.
    [86] Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell [J], 1996, 87: 629-638
    [87] Wen LP, Fahrni JA, Troie S, et al. Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem [J], 1997,272: 26056-26061
    [88] Wilson KP, Black JF, Thomson JA, et al. Structure and mechanism of interleukin-1 converting enzyme. Nature [J], 1994,370: 270-275
    [89] Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by bcl-2: release of cytochrome C from mitochondria blocked. Science [J], 1997, 257 (21): 1129-1130
    [90] Yang X, Chang HY, Baltimore D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis.Science[J],1998,281:1355-1357
    [91]Yeh WC,Dompa JL,Mccarrach ME,et al.FADD:essential for embryo development and signaling from some,but not all,inducer of apoptosis.Science[J],1998,279(5):1954-1958.
    [92]Yu SW,Zhang LD,Zuo KJ.Isolation and characterization of an oilseed rape MAP kinase BnMPK3involved in diverse environmental stresses.Plant Science[J],2005,169:413-421
    [93]Zhang JS.Isolation and biological characterization of active compounds from fungal extracts used in traditional Chinese medicine:investigations on the mechanisms of immunostimulation and of inhabition of tumor growth[D].Berlin:inaugural-dissertation zur erlangung des doktorwurade am fachbereich humanmedizin der freien universitat berlin,2000
    [94]Zhu Y,Xu YI,Huang K.Mitochondrial permeability transition and cytochrome C release induced by selenite.J Inorg Biochem[J],2002,90(122):43-50.
    [95]曹容华.灵芝多糖抗肿瘤的机理研究.山东医科大学学报[J],1992,30(3):203.
    [96]曹瑞珍,薛燕,李大力.抗肿瘤多糖研究进展,内蒙古民族大学学报(自然科学版)[J],2004,19(6):657-658
    [97]柴可群,应栩华.扶正法免疫调节抗肿瘤的机理探讨.浙江中医学院学报[J],2003,27(4):14-15
    [98]陈敬华,张俐娜,余登寿,等.灵芝菌丝体多糖的化学组成和溶液性质.高等学校化学学报[J],2000,21(6):961-964.
    [99]陈若云,于德泉.赤芝孢子粉三萜化学成分研究.药学学报[J].1991,26(4):257-263.
    [100]陈若云,于德泉.用二维核磁共振技术研究赤芝孢子内酯A和B的结构.药学学报[J],1991,26:430.
    [101]陈书明,王勤,成玉梅,等.灵芝含氮多糖对小鼠白细胞内SOD的活性的影响.中国食用菌[J],1994,13(3):26-27.
    [102]陈书明.灵芝含N多糖对小鼠溶血素含量的影响.中国食用菌[J],1996,15(4):27
    [103]陈信义.生物免疫疗法-肿瘤治疗新趋势.中国中医药报[N],2006,2636
    [104]陈亚非,陈金显.灵芝多糖免疫调节及抗肿瘤作用综述.中国食品添加剂[J],2002,4:36-41
    [105]陈昭烈.动物细胞培养过程中的细胞凋亡.生物工程进展[J],1998,18(6):17-20.
    [106]邓叔群.中国的真菌[M].北京:科学出版社,1963,1-445
    [107]方一苇.具有药理活性多糖的研究现状.分析化学[J],1994,22(9):955-960.
    [108]冯道俊.灵芝的化学成分功效及药理作用.特种经济动植物[J],2006,8:39-40
    [109]高大庆,刘恭植.灵芝多糖的免疫调节抗肿瘤抗衰老的研究进展.镇江医学院学报[J],1998,8(3):417-419.
    [110]高颖,许彩民,杨洋,等.氧化诱导K562细胞凋亡机制的初步探讨.中国生物化学与分子生 物学报[J],1998,14(3):295-299.
    [111]顾剑.利用超声辅助从培养的灵芝中提取灵芝酸.南通工学院学报(自然科学版)[J],2002,1(3):13-16.
    [112]韩纪举,邓文,亓新国,等.灵芝多糖对NK细胞活性影响的研究.泰山医学院学报[J],2002,23(2):155-156.
    [113]郝瑞霞.灵芝子实体中三萜类化学成分的分离纯化、结构鉴定及体外抑制肿瘤细胞活性的研究[D].南京:南京农业大学硕士学位论文,2006.
    [114]何云庆,李荣芷,蔡廷威,等.灵芝肽多糖的化学研究.中草药[J],1994,25(8):395-397.
    [115]何云庆,李荣芷,陈琪,等.灵芝免疫活性多糖的化学研究.中国中药杂志[J],1992,17(4):226-278.
    [116]洪淑敏.灵芝促进人类肝癌细胞凋亡之研究[D].台湾:国立台湾大学硕士学位论文,2000.
    [117]黄君富,房殿春,罗元辉.p53~(INGI)-种新的肿瘤抑制蛋白.生命化学[J],1998,18(4):1-3.
    [118]黄书铭,杨新林,张自强,等.超声循环提取灵芝中三萜类化合物的研究.中草药[J],2004,35(5):508-510.
    [119]江振友,林晨,刘小澄,等.灵芝多糖对小鼠体液免疫功能的影响.暨南大学学报(医学版)[J],2003,24(2):51-53
    [120]金春花.灵芝多糖活血化瘀作用实验研究.中草药[J],1989,29(12):470-472
    [121]柯金山,戚中田.肿瘤的免疫细胞疗法.国外医学[J],2002,25(6):262-265
    [122]雷林生,林志彬.灵芝多糖对老年小鼠脾细胞DNA多聚酶α活性及免疫功能的影响.药学学报[J],1993,28(8):577-582.
    [123]李明春,雷林生,王庆彪,等.灵芝多糖对小鼠T细胞胞浆游离Ca~(2+)浓度和胞内PH的影响.中国药理学通报[J],2001,17(2):167-170.
    [124]李明春,梁东升,许自明,等.灵芝多糖对小鼠巨噬细胞cAMP含量的影响.中国中药杂志[J],2000,25(1):41-43.
    [125]李平作,张克昌.灵芝发酵菌丝体中灵芝酸的分离纯化及生物活性检测.天然产物研究与开发[J],1999,11(4):67-70.
    [126]李荣芷,何云庆.灵芝抗衰老机理与活性成分灵芝多糖的化学与构效研究.北京医科大学学报[J],1991,23(6):473-475.
    [127]李时珍.本草纲目[M].北京:人民卫生出版社,1987,577.
    [128]梁忠岩,谭日红,张翼伸,等.树舌多糖Fb、Fc的结构研究.生物化学杂志[J],1994,10(4):407-411.
    [129]梁忠岩,张翼伸,苗春艳.长白山树舌水溶性色素多糖CF1的分离纯化和结构研究.生物化学杂志[J],1990,6(3):273-277.
    [130]梁忠岩,张翼伸,苗春艳.长白山松杉灵芝发酵菌丝体水溶多糖的分离纯化与结构的比较研究.真菌学报[J],1994,13(3):211-214.
    [131]梁忠岩,张翼伸.长白山松杉灵芝子实体水溶多糖的分离鉴定与结构研究.生物化学与生物物理学报[J],1993,25(1):59-63.
    [132]林东星.灵芝辅助治癌探讨.中国食用菌[J],2000,19(1):3-5
    [133]林志斌.灵芝的现代研究[M].北京:北京医科大学出版社,2001,1-327.
    [134]刘光伟,龚守良.细胞凋亡的线粒体调控机制与电离辐射.国外医学:放射医学核医学分册[J],2003,7(2):90-93.
    [135]刘晓翌,刘建军.Caspase与细胞凋亡.武汉大学学报(医学版)[J],2004,25(6):742-325
    [136]罗俊,林志彬.灵芝三萜类化合物药理作用研究进展.药学学报[J],2002,37(7):574-578
    [137]马礼金,姚汝华,黄自然.超临界流体萃取红芝三萜化合物.华南农业大学学报[J],1998,19(3):107-110.
    [138]邵力平,沈瑞祥,张素轩,等.真菌分类学[M].北京:中国林业出版社,1983,1-345.
    [139]孙汶生,王福庆.医学免疫学[M].北京:科学出版社,2004:1-314
    [140]田泽.灵芝口服液对机体免疫功能的作用研究.中医药研究[J],1996,2:55-57.
    [141]王芳生,蔡辉,杨峻山,等.赤芝子实体中三萜化学成分的研究.药学学报[J],1996,31(3):200-204.
    [142]王文恭,童旦君.细胞凋亡过程中bcl-2基因的甲基化.中国生物化学与分子生物学报[J],1998,14(3):309-313.
    [143]王文恭,童旦君.细胞凋亡过程中c-erbB-2基因的表达.中国生物化学与分子生物学报[J],1998,14(3):314-316.
    [144]王文恭,童旦君.小鼠成纤维细胞凋亡过程中p53与bcl-2表达的时序性.中国生物化学与分子生物学报[J],1998,14(3):318-321.
    [145]武梅,周应揆,赵永昌,等.碱提碱溶性灵芝菌丝体多糖方法研究.云南大学学报(自然科学版)[J],1999,21(2):160-161.
    [146]邢小黑,吴明忠,朱述钧,等.灵芝多糖化学研究.中国食用菌[J],1996,15(3):14-16.
    [147]徐朝晖.灵芝提取物对人肝癌SMMC-7721细胞DNA合成的影响.中国食用菌[J],1996,15(1):34-35
    [148]徐新.灵芝多糖对人脐血LAK细胞增殖活性的影响.中国实验临床免疫学杂志[J],1996,8(1):19-21
    [149]颜毅宏,陈在敏.灵芝药理作用研究进展.海峡药学[J],1999,3(11):4-5
    [150]张罗修.日本灵芝对小鼠脾细胞产生白细胞介素-2的影响.中国中西医结合杂志[J],1993,13(10):613-615
    [151]张强.灵芝孢子粉胶囊提高小鼠免疫功能实验研究.山东医药工业[J],1998,17(4):24-25
    [152]张庆萍.灵芝孢子粉对肝脏保护作用的药理试验研究.基层中药杂志[J],1997,11(1):40-41
    [153]张群豪,林志彬.灵芝多糖GL-B的抗瘤作用和机制研究.中国中西医结合杂志[J],1999,19(9):544-547.
    [154]张振书,张亚历.中国大肠癌研究进展.世界华人消化杂志[J],2001,9(5):489-494
    [155]章灵华.灵芝孢子粉提取物对实验性糖尿病的防治作用.中草药[J],1993,24(5):246
    [156]章灵华.灵芝孢子粉提取物在体内外的免疫效应.中国免疫学杂志[J],1994,10(3):169-172
    [157]赵继鼎.中国灵芝科真菌资源与分布.真菌学报[J].1992,11(1):56-62.
    [158]郑虎占.中药现代研究与应用[M],北京:学苑出版社,1998.1-2513
    [159]周际昌.实用肿瘤内科学[M],北京:人民卫生出版社,2005:1-610
    [160]邹一丰,吴小剑,兰平.结直肠癌免疫治疗.中国普外基础与临床杂志[J],2006,13(3):358-361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700