城市地震次生火灾研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个多地震的国家,也是世界上遭受地震灾害最为深重的国家之一,地震灾害严重威胁着人民的生命财产安全,也成为制约和谐社会发展的一个重要因素。地震次生火灾是发生频率最高的地震次生灾害,次生火灾的发生加重了地震灾害的破坏。另外,我国城市化进程的日益加快,使得地震次生火灾研究显得更加紧迫。
     近年来,世界各国都开展了对地震次生火灾方面的研究工作,但是目前对该领域的研究还缺乏系统性的方法体系,次生火灾中一些相关的关键科学问题仍未很好解决。
     本文就地震次生火灾进行了系统性研究,并在这些研究结果的基础上,选择作者参与过的震害预测工作的一个南方小城作为示例城市,利用其中的基础数据和震害预测结果,采用Visual C#和ArcEngine软件包,开发了.net2.0架构的地震次生火灾模拟系统。本文主要工作有以下几个方面。
     1、总结国内外地震次生火灾方面研究的成果和进展,提出了本文的研究思路和目标
     本文系统全面地总结了国内外地震次生火灾方面的研究过程和主要研究成果,在数学物理模型开发方面主要包括以历史震害资料为基础得到的地震次生火灾回归预测模型和地震次生火灾蔓延模型方法。提出了地震次生火灾的研究应包括单体建筑地震次生火灾危险性评估方法,给出城市重大地震次生火灾危险源危险性识别,进而到城市小区地震次生灾害危害性等级评估方法,为了完成这些功能,需要对未来地震城市次生火灾发生概率进行评估,也需要对已发生的地震次生火灾的影响范围进行预测。
     2、系统地对城市地震次生火灾和基础设施之间的关系进行了论述
     城市基础设施是指为物质生产和人民生活提供一般条件的公共设施,是城市赖以生存和发展的基础。本文系统地论述了城市地震次生火灾和基础设施之间的关系:房屋建筑、能源供应系统等基础设施既是城市地震次生火灾的主要承灾体,其地震破坏又是引起地震次生火灾发生的直接原因;震后由于电力系统的急于恢复电力供应可能产生的电火花可能直接成为地震次生火灾的点火源;而交通系统、供水系统和供电系统等一些基础设施的破坏会引起地震次生火灾救灾能力下降,从而使得火灾失去控制,产生更大的经济损失;另外地震次生火灾的发生反过来也会引起基础设施的进一步破坏,并造成更多人员伤亡和更大的经济损失。就城市基础设施和地震次生火灾关系系统地论述是本文创新点之一。
     3、建立了城市地震次生火灾发生次数评估模型
     收集和整理了国内外几十次地震次生火灾震害资料,以这些资料为基础,进行回归分析,分别建立了以地震烈度和地面峰值加速度为参数地震次生火灾发生次数预测模型,该模型由于历史数据量有限,还只能是个初步的预测模型,有待于在城市地震次生火灾发生次数研究实践中不断完善。
     4、建立了城市单体建筑地震次生火灾发生概率模型
     分析了影响单体建筑物地震次生火灾因素,指出建筑结构本身或内部的可燃物是否存在,可燃物的可燃性,地震破坏对可燃物暴露和引燃概率的影响,地震发生时的天气和环境条件是影响单体建筑次生火灾发生的主要因素。以这些因素为基础建立了单体建筑地震次生火灾概率模型,并通过对模型中的各影响因素对应的概率值的设定,使得单体建筑次生火灾发生的概率值计算能够顺利进行,为单体建筑次生火灾危险性评估提供了基础。
     5、建立了城市地震次生火灾重大危险源识别模型
     城市重大次生火灾危险源往往是城市重大次生火灾发生的基础条件,这些危险源的危险性等级评估是城市防震减灾工作中一项重要工作。本文采用格雷厄姆——金尼法,重大次生火灾危险源危险性等级由次生火灾发生的可能性、暴露于危险源的人的频繁程度和建筑物与危险源之间的距离、危险品的储存量三因素来决定。并对这些因素进行了相应的赋值,给出了危险性等级评定标准,建立了城市地震次生火灾重大危险源危险性等级识别模型。该模型能够为城市油库、加油站、火灾危险源存放和生产场所等重大次生火灾危险源危险性等级识别提供技术支撑,是本文一个创新之处。
     6、建立了城市地震次生火灾高危害性小区评估模型
     城市地震次生火灾高危害小区的研究对提高城市防御地震次生火灾能力具有比较现实意义。本文利用层次分析方法,考虑的小区内地震次生火灾的影响因素有:工程结构的地震破坏、建筑密度、人口密度、可能引发地震次生火灾的着火点密度、建筑类型、消防设施状况、消防站点到达时间和小区内道路密度等。对这些影响因素进行量化分析,建立了地震次生火灾高危害小区评价模型,该模型的建立是以工程结构地震破坏等级为基础。模型的建立对于城市小区的地震次生火灾危险性评估提供了切实可行的评价方法,对城市小区日常防火安全也有一定的参考价值。如何给出工程结构各种破坏下对小区地震次生火灾影响因素评分,并建立基于工程结构破坏的地震次生火灾高危害小区危害性等级评估模型,是本文一个重要的创新。
     7、建立了基于地震破坏建筑物之间的地震次生火灾蔓延模型
     城市建筑物是城市地震次生火灾的主要载体。本文考虑城市地震次生火灾发生和蔓延的实际情况,以城市内地震破坏下的建筑物为火灾蔓延的载体,从工程应用的角度通过按不同结构类型给出次生火灾蔓延参数,并建立不同类型蔓延目标建筑火灾蔓延的临界距离等,考虑地震破坏、风速天然阻火带等因素对火灾蔓延影响,建立以建筑物为蔓延对象的城市地震次生火灾蔓延模型。从工程应用的角度建立的城市建筑间地震次生火灾蔓延模型,考虑了影响地震次生火灾蔓延的主要因素,忽略了火灾蔓延动力学中的需要的复杂参数,通过经验的方法予以替代,使得次生火灾蔓延模拟能够进行,是本文一个重要的创新之处。
     8、完成了地震次生火灾模拟系统的开发。
     通过对开发系统的调研和分析,选择采用.NET2.0架构,在VS2005环境下,基于Visual C#语言和Arc Engine软件包独立开发了地震次生火灾模拟系统。为提高开发效率,采用第三方控件Developer Express .NET v7.2进行菜单和界面设计。通过Visual C#语言程序设计调用Arc Engine对象库中对象的属性、方法和接口,完成了系统的开发,实现了部分GIS功能。该系统的成功地将GIS技术和计算机技术应用到城市防震减灾工作中,是一应用性很强的创新。
China is a country of many earthquakes and the one of nation deeply suffering the most serious earthquake disaster in the world. The seismic disaster seriously threatens the people's life and property safety, also becomes an important factor to hinder the development of the harmonious social. The seismic secondary fire disaster is the most frequent seismic secondary disaster heightened seismic disaster damage. Moreover, the urbanization progress increasingly accelerates in our country. The study on the seismic secondary fire disaster seems more urgent.
     In recent years, the studies on the seismic secondary fire disaster were developed in the world. But it still lacks of systematic methodologies. Some relevant and critical science problems are still unresolved. In this paper, the systematic study on the seismic secondary fire disaster was carried out. Then, based on the studying results, the seismic secondary fire disaster simulation system was developed by using Visual C# and ArcEngine9.2 software package. The basic datum is from a small town in the South of China which had been finished the seismic disaster estimation work participated in by the author. The main work in this paper can be generalized as the following.
     1. Summing up the domestic and international achievement and progress in the research realm of the seismic secondary fire disaster and putting forward the research train of thought and target in this paper
     The study on the seismic secondary fire disaster should include some fields. There are the hazard estimation of the single structure, the discrimination of the major secondary fire disaster hazard source, the hazard grade assessment of the urban housing estates and the calculation of the fire influence scope.
     2. Systematic discussing the relationship between the infrastructures and the seismic secondary fire disaster
     The structures and other infrastructures are main the disaster-affected body. The damages of some infrastructures directly result in the secondary fire disaster. The damages of other infrastructures can weaken the fire fighting. Moreover, it may cause the more losses.
     3. Establishing the estimation model for the occurrence number of the seismic secondary fire disaster
     The domestic and international seismic secondary fire (datum was collected. Then, the regression analysis was finished based on the datum. The estimation formula for the seismic secondary fire disaster was built with the parameters of the seismic intensity and PGA. It can provide basis for the prediction the times of the seismic secondary fire in the urban protection against and mitigation of earthquake disasters.
     4. Building up the probability model of the single structure
     The influence factors of single structure seismic secondary fire were point out. Whether does combustible exist in the buildings or not, the combustibility of the combustible, the breakage of the combustible resulting from the earthquake damage and the probability of catching fire are the main factors. The probability model of the single structure seismic secondary fire was built according to these factors. The probability value of single factor was given under various circumstances.
     5. Building up the discrimination model of the major secondary fire disaster hazard source
     The major secondary fire disaster hazard source is the general basis of the seismic secondary fire in the urban. The discrimination of major secondary fire disaster hazard source is the important mission in the urban protection against and mitigation of earthquake disasters. The model was built by using the Graham-Kinney method. In the model, the probability of the seismic secondary fire disaster, the frequent degree of exposing to the perilous source or the distance between the structure and perilous source are taken into account.
     6. Building up the hazard grade assessment model of the urban housing estates The hazard grade assessment model of the urban housing estates was built by using the AHP method. The influence factors to the urban housing estates secondary fire disaster include the earthquake damage of engineering structures in the area, the building density, the population density, the catching fire point density, the type of structures, the fire-fighting facilities condition, the fire-fighting station arrival time and the road density. The quantity standards of grading were determined. It can provide a workable evaluation method with urban secondary fire by using this model. It is also conductive to the urban daily fire safety.
     7. Building up the seismic secondary fire spread model between the buildings The seismic second fire spread model between the buildings was established at the engineering application standpoint on the basis of the actual circumstance of fire spread from the standpoint of engineering. In the progress, the fire spread parameters and critical distances were given according to the classes of structures. The influence factors of seismic buildings damage and wind velocity were taken into account in the model.
     8. Developing the seismic secondary fire disaster emulation system
     The VC# language and ArcEngine9.2 were applied to the development of emulation system by analyzing and investigating development soft. The frame of system adopts Net2.0 structure. In order to raise to the development efficiency, the third party control (Developer Express.NET v 7.2) was carried on the menu and interface design. The property,method and interface of objects in the ArcEngine object database were called by using VC#. The GIS parts of functions were carried out. The establishment of system is the very good attempt at applying GIS technique and computer technique to protection against and mitigation of earthquake disasters.
引文
[1]卢振恒.日本破坏地震概观[M].地震出版社,1991.
    [2]张宝红,陈宏德.地震火灾事例调查[J].自然灾害学报,1994.10,3(4):39-48.
    [3]田中薰.阪神大震灾全记录[M].每日新闻社,大日本印刷株式会社,1995.
    [4]中国赴日地震考察团.日本阪神大地震考察[M].地震出版社,1995.
    [5]陈尚平主编.破坏性地震史料文图选集(云南卷)[M].海洋出版社,2008.7.
    [6]陈祥熊.集集地震的综合研究[J].福建地震,2000,16(3):74-82.
    [7]顾功序主编.中国地震目录[M].科学出版社,1983.6.
    [8]张邦伸.《锦里新编》[M].清,卷14.
    [9]如如,陈鹏.我国先秦时期的防火技术[J].中国西部科技, 2005(06A): 39-39.
    [10]清华.中国古代防火技术拾趣[J].安全与健康,2002.11:51-51.
    [11]钟茂华.中国火灾史(秦朝~1949年)简析[J].中国安全科学学报,2004,14(5):67-71.
    [12]如如.我国古代防火[J].江苏劳动保护,2003.2:33-34.
    [13]邢君.木及砖木结构古建筑防火初探[D].硕士学位论文,太原理工大学,2007.4.
    [14]范维澄,刘乃安.中国火灾科学基础研究进展与展望[J].中国科学技术大学学报,2006.1 ,36(1): 1-8.
    [15] Wayne D.Moore.防火研究基金会的25年历程[J].亚洲消防,2008.4:66-69.
    [16]范维澄,陈莉.卧室火灾危险度的双重性模型[J].中国科学技术大学学报,1994.6 ,24(2):220-224.
    [17] Toshisuke Hirano.火灾科学的发展前景[J].火灾科学,1992.9,1(3): 9-14.
    [18]张敏杰.浅谈我国建筑防火研究及发展方向[J].成都建筑,1995,NO.2:37-40.
    [19]李杰、江建华.城市地震次生火灾危险性分析[J].自然灾害学报,2000.5,9(2):87-92.
    [20]李杰,宋建学.地震灾场的模拟与模拟控制问题研究(I)地震灾场模拟[J].地震工程与工程振动,1996.6,16(2):46-54.
    [21]李达志.震后火灾起火危险度评估之研究[D].硕士论文,中央警察大学火灾消防科学研究所,台湾桃园,2001.
    [22]郭凯文等.地震后火灾危险度评估系统开发之研究[J].台湾.
    [23]侯遵泽,杨瑞.基于层次分析方法的城市火灾风险评估研究[J].火灾科学,2004.10, 13(4):203-208.
    [24]张志华.城市区域地震次生火灾危险性评估[J].消防管理研究, 2008.8,27(8):602-605.
    [25]向琴琴.基于GIS的地震次生火灾危险性评估及动态蔓延模拟[D].硕士学位论文,北京工业大学,2005.5.
    [26]赵振东,钟江荣,余世舟.若干城市地震次生灾害预测研究[R].中国地震局工程力学研究所研究报告,1995-2000.
    [27]赵振东,余世舟,钟江荣.建筑物震后火灾发生与蔓延危险性分析的概率模型[J].地震工程与工程振动,2003.8, 23(4):183-187.
    [28]余世舟,赵振东,钟江荣.基于GIS的地震灾害数值模拟[J].自然灾害学报,2003.11,12(4):100-105.
    [29]余世舟,赵振东,钟江荣.基于GIS确定城市地震次生火灾高危害区方法研究[J].地震工程和工程振动,2004.4,24(2):176-180.
    [30]余世舟.地震次生灾害的数值模拟[D].硕士学位论文,中国地震局工程力学研究所,2004.
    [31]宋建学,李杰.地震次生火灾计算机仿真研究[J].工程抗震, 1997.9,No.3:32-36.
    [32]黄维章,张锁春,雷光耀,王贻仁.城市火灾蔓延的数学模型和计算机模拟[J].计算物理,1993.3,10(1):9-19.
    [33]许建东,王新茹,林建德,张宁.基于GIS的城市地震次生火灾蔓延初步研究[J].地震地质,2002.9,24(3):445-452.
    [34]谢旭阳,任爱珠,刘铁民,张兴凯.基于GIS的地震次生火灾蔓延范围模拟[J].中国安全科学学报,2005.4,15(5):3-7.
    [35]谢旭阳,任爱珠.城市地震次生火灾蔓延模拟系统[J].消防科学与技术,2003.11,22(6):460-462.
    [36]赵思健,熊利亚,任爱珠.基于GIS的城市特大火灾蔓延模拟[J],火灾科学,2006.7,15(3):128-137.
    [37]赵思健,熊利亚,任爱珠.基于GIS的城市地震次生火灾仿真系统[J].防灾减灾工程学报,2007.2, 27(1):43-51.
    [38]宋建学,李杰.城市地震灾场模拟实例分析[J].世界地震工程, 1996.8,12(3):16-19.
    [39]陈素文,李国强.地震次生火灾的研究进展[J].自然灾害学报,2008.10,17(5):120-125.
    [40]尹之潜,杨淑文.地震损失分析与设防标准[M].地震出版社,2006.6.
    [41]中国地震局工程力学研究所.福建省石狮市城区地震灾害预测与信息管理系统[R].中国地震局工程力学研究所研究报告,2004.10.
    [42]中国地震局工程力学研究所.西安市阎良区震害预测与防御对策[R],中国地震局工程力学研究所研究报告,2008.12.
    [43]中国地震局工程力学研究所.中山市城区地震灾害预测与防御对策系统建设[R].中国地震局工程力学研究所研究报告,2009.9.
    [44]霍然,杨振宏,柳静献.火灾爆炸预防控制工程学[M].机械工业出版社,2007.
    [45]江见鲸,徐志胜.防灾减灾工程学[M].机械工业出版社,2005.
    [46]丰飞.电力供应系统地震安全分析与控制[D].硕士学位论文,大连理工大学,2006.6.
    [47]李杰,李国强.地震次生火灾预测模型[J].中国地震,1992.3,8(1):77-82.
    [48]易立新,吴立志.城市火灾风险评价数学模型[J].中国安全科学学报,2008.8,10(4):36-40.
    [49]郭增建,陈鑫连.地震对策[M].地震出版社,1986.
    [50]张宝红,陈宏德.地震火灾事例调查[J].自然灾害学报,1994.3(4):39-48.
    [51]吴宗之,高进东,魏利军.危险评价方法及其应用[M].北京:冶金工业出版社,2002.
    [52]王莲芳,许树柏.层次分析法引论[M].北京,中国人民大学出版社,1990.6.
    [53]刘新宪,朱道立.选择与判断-AHP(层次分析法)决策[M].上海,上海科学普及出版社,1990.2.
    [54]庄丽,高杰,冯启民,武毅,孙峥.城市居住区抗震防灾规划达标模糊评价[J].世界地震工程,2008.6,24(2):78-84.
    [55]冯启明,孙峥,颜锋,武毅,高杰,城市社区抗震能力模糊综合评价模型[J].世界地震工程,2007.3,23(1):1-5.
    [56]李丽华,郑新奇,象伟宁.基于GIS的北京市建筑密度空间分布规律研究[J].中国人口-资源与环境,2008,18(1): 122-127.
    [57]林子瑜等.南昌市2010年规划中心城区建筑密度遥感研究[J].华东地质学院学报,2002.3,23(1):27-31.
    [58]天津市统计局编.天津统计年鉴2005[M].中国统计出版社,2006.
    [59]西安市阎良统计局编.阎良统计年鉴2005[M].2006.
    [60]中华人民共和国公安部主编.城市消防站建设标准[M].2006.
    [61]吴美文,吴军,胡传平.城市消防站布局评估指标量化分析[J].自然灾害学报,2006.10,15(5):162-167.
    [62]胡聿贤.地震工程学[M].地震出版社,1988.
    [63]陈一平,陈欣.公路路基路面的震害预测[J].工程抗震,1993,9(3):40-45.
    [64]中国地震局工程力学研究所.大庆东风新村和开发区地震灾害预测与信息管理系统[R].中国地震局工程力学研究所研究报告,2006.6.
    [65]朱美珍.公路桥梁震害预测[A].林皋主编.第三届全国地震工程会议论文集[C],大连理工大学出版社,1990.
    [66]王东升.桥梁震害预测方法[J].自然灾害学报,2001.8,10(3):113-118.
    [67]申选召,林均岐,李谊瑞,胡明袆.桥梁易损性研究述评[J].世界地震工程,2006.6,22(2):97-103.
    [68]王明钰.给水管线震害预测方法及实例分析[J].四川地震,2000,No.4:23-28.
    [69]李桂荣,郭恩栋,杨克勇.西安阎良供水系统地震功能失效状态分析[J].地震工程与工程振动, 2007.12,27 (6):130-134.
    [70]赵思健,任爱珠,熊利亚.城市地震次生火灾研究综述[J].自然灾害学报,2006.4,15(2):57-67.
    [71]赵国兴,陈淮,李杰.震后城市交通系统评估与改建[J].世界地震工程,1996.8,12(3):6-10.
    [72]杜鹏.交通系统震害预测中瓦砾堆积问题的改进[J].世界地震工程,2007.3,23(1):161-164.
    [73]徐耀标,许以平编著.城市火灾浅识[M].北京,气象出版社,1992.9.
    [74]林其钊,朱霁平,张彗波.森林大火中飞火行为研究[J].自然灾害学报,1998.8,7(3):32-38.
    [75]蒋波涛.插件式GIS应用框架的设计与实现[M].北京,电子工业出版社,2008.
    [76] ESRI中国(北京)有限公司,ArcGIS9.2系列产品介绍[M],2007.
    [77]郭瑞璜编译.关于大地震火灾对策的研究成果[J],消防技术与产品信息,2003,NO.4:63-64.
    [78]谢毓寿,蔡美彪主编.中国地震历史资料汇编[M].北京,科学出版社,1985.
    [79]周存忠编.地震词典[M].上海,上海辞书出版社,1991.
    [80] ESRI中国(北京)有限公司网站.ArcGIS Engine软件产品及功能介绍介绍,http://www.esrichina-bj.cn/templates/T_yestem_News/index.aspx?nodeid=118.
    [81]青木义次.地震时出火の概率构造[R].日本建筑学会计画系论文报告集,1990,第142号:53-60.
    [82]东京消防厅.地震时の延烧シミュレ-ションシステムに关する调查研究[M].1989.3.
    [83]保野健治郎,高井広行,难波义郎.ロジステイック曲线による建物火灾の延烧速度式に关する基础的研究[R].日本建筑学会论文报告集,昭和57年1月:137-144.
    [84] J.Mohammadi and S.Alyasin. Analysis of Post-earthquake Fire Hazard[C]. Earthquake Engineering, Tenth World Conference, 1992:5983-5988.
    [85] USGS.The San Francisco Earthquake and Fire of April 18,1906 and Their Effects on Structures and Structural Materials[J] . Bull,1907,324,U . S . Geological Survey.Washington DC,US.
    [86] U.S. Geological survey Professional Paper 1553-C, The Loma Prieta, California, Earthquake of October 17, 1989-Fire, Police, Transportation, and Hazardous Materials[C]. Craig Van Anne and Charles Scawthorn, Editors, United States Government Office,Washington:1994.
    [87] Dahlmann, Joseph, S.J., Ph.D. The Great Tokyo Earthquake September 1, 1923. Experiences and Impressions of an Eye-Witness. The America Press, 1924.
    [88] The Hyogo-Ken Nanbu Earthquake, Preliminary Reconnaissance Report, Earthquake Engineering Research Institute,1995.
    [89] Emmons H W. Scientific progress on Fire[J]. Annual Review of Fluid Mechanics, 1980.12: 223-236.
    [90] Akihiko Hokugo. The Performance of Fire Protection of buildings against the fires following the great Hanshin-Awaji earthquake[A]. Thirteenth meeting of the UJNR Panel on Fire Research and Safety[C],1996.2:283-287.
    [91] David D. Evans. William D. Walton and Frederick W. Mowrer. Progress report on fires following the Northridge earthquake[A]. Thirteenth meeting of the UJNR panel on fire research and safety[C],1996.2:273-281.
    [92] Frank W. Borden. The 1994 Northridge Earthquake and the Fires that followed[A]. Thirteenth meeting of the UJNR panel on fire research and safety[C]. 1996.2:303-312.
    [93] Richard N. Wright. Lifelines and control of post earthquake fires. Building and Fire Research Laboratory[A]. National Institute of Standards and Technology[C]. 1998.5.
    [94] Sekizawa A. Post-earthquake fires and firefighting activates in the early stage in the 1995 Hanshin earthquake[A]. Thirteenth meeting of the UJNR panel on fire research and safety[C],1996.2:289-302.
    [95] Masami Kobayashi. Urban post-earthquake fires in Japan[A]. Proceedings-U.S-Japan Workshop on Urban Earthquake Hazards Reduction,1985:121-133.
    [96] Mark A.Finney. FARSITE: Fire Area Simulator-Model Development and Evaluation[M]. United States Department of Agriculature Forest Service, 1998.3.
    [97] Scawthorn C, Yamada Y, Iemura H. A Model for urban post-earthquake fire hazard[J]. Diasters.1981,5(2):125-132.
    [98] Scawthorn C. Fire following earthquake[A]. First Safety Science-Proceedings of the First International Symposium[C].1986:971-979.
    [99] Scawthorn C. Fires following the Northridge and Kobe earthquake [A]. Thirteenth meeting of the UJNR panel on fire research and safety[C],1996.2:337-345.
    [100] Trifunac M D, Todorovska M I. The Northridge, California,earthquake of 1994:fire ignition by strong shaking[J]. Soil Dynamics and Earthquake Engineering,1998:17(2):165-175.
    [101] Federal Emergency Management Agency. HAZUS99 User's and Technical Manuals[M]. National Institute of Building Science, Washington,DC. 1999.
    [102] Pitts W M. Wind effects on fires[J]. Progress in Energy and Combustion Science, 1991,17:83-134
    [103] Mark A. Finney and Patricia L. Andrews. The FARSITE1 fire area simulator: Fire management applications and lessons of summer 1994[M]. United States Department of Agriculture Forest Service, 2000.
    [104] Mark A. Finney. FARSITE: Fire Area Simulator-Model Development and Evaluation[M]. United States Department of Agriculture Forest Service, 1998.3.
    [105] J.Mohammadi and S.Alyasin. Analysis of Post-earthquake Fire Hazard[A]. Earthquake Engineering Tenth World Conference[C]. 1992.
    [106] Himoto Keisuke, Tanake Takeyoshi . A preliminary model for urban fire spread-building fire behavior the influence of external heat and wind[A]. Thirteen Meeting of the UJNR Panel on Fire Reserach and Safety[C]. 2002,2:309-319.
    [107] Himoto Keisuke, Tanake Takeyoshi. A physically-based model for urban fire spread[A]. fires Safety Science-Proceedings of The Seven International Symposium[C]. 2002,129-140.
    [108] Nsmba Joshiro, Yasuno Kenjiro, A study on the fire spread model of wooden buildings in Japan[A], First International Symposium[C]. 1986:881-890.
    [109] Ren A Z, Xie X Y. The simulation of post-earthquake fire-Prone area based on GIS[J]. Journal of Fire Science, 2004,22(5):421-439.
    [110] Anshel J.Schiff. Characterizing power systems for seismic response or risk analysis[A]. Proceedings from the Sixth Japan-U.S. workshop on earthquake resistant design of lifeline facilities and countermeasures for soil liquefaction,1996:697-710.
    [111] Mark A. Finney and Patricia L. Andrews. The FARSITE1 fire area simulator: Fire management applications and lessons of summer 1994[M]. United States Department of Agriculture Forest Service,2000.
    [112] Kazuyoshi OHNISHI. Causes of the Seismic Fires Following the Great Hanshin-awaji Earthquake Survey[A]. Thirteenth Meeting of the UJNR Panel on Fire Research and Safety[C]. 1996.3:337– 344.
    [113] Jim Cousins, Dave Heron , Sabrina Mazzoni,Geoff Thomas & Delwyn Lloydd. Estimating Risks from Fire Following Earthquake[R]. Institute of Geological & Nuclear Sciences client Report ,2002.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700