硫化氢在脂多糖所致的急性肺损伤中的作用及其与一氧化氮的相互调节关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性肺损伤(acute lung injury,ALI)是多种原因引起的,以肺泡毛细血管膜和肺上皮广泛受损所致的肺水肿和肺不张为主要特征,临床上可表现为呼吸窘迫和顽固性低氧血症,进一步发展即为急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)。多种病因(包括肺内/肺外,感染/非感染)都能直接或间接地引起ALI及ARDS。革兰氏阴性细菌内毒素的主要活性成分脂多糖(lipopolysaccharide,LPS)是导致肺部感染和全身感染的主要因素。LPS由其受体介导启动机体炎症反应,进而导致全身性炎症反应综合征(systemic inflammatory response syndrome,SIRS),在肺部可表现为ALI。LPS所致ALI是以中性粒细胞(polymorphonuclear neutrophil,PMN)浸润为主的肺组织炎症反应,PMN在肺内的大量扣押、激活及释放大量炎症介质及活性氧物质等,导致弥漫性肺组织损伤,是其发病学的中心环节。然而对于LPS启动机体炎症反应、导致ALI的具体机制尚未完全阐明。
     内源性气体信号分子是一类具有多种病理生理作用的生物物质,它们的发现为ALI发病机制的研究开辟了一个新的领域。迄今已证实的内源性气体信号分子有三种,即一氧化氮(nitric oxide, NO)、一氧化碳(carbon monoxide, CO)和硫化氢(hydrogen sulfide, H2S)。NO和CO在ALI中的作用已得到了证实。H2S是继NO和CO之后被确认的第三种内源性气体信号分子。关于生理和病理情况下H2S作用的研究虽刚刚起步,但已证实H2S参与了神经和血管等的生理功能调节,以及高血压、肺动脉高压、内毒素休克等疾病的发生。那么,探明H2S在LPS所致ALI中发挥何种作用,是本研究的主要目的之一。
     内源性气体信号分子之间存在着相互调节的关系。已有研究证实NO与CO之间可对彼此产生的限速酶进行调节。而关于ALI时NO与H2S之间相互关系如何,尚未见相关报道。
     有研究报道气体信号分子NO可参与生理状态下肺功能的调节和多
Acute lung injury (ALI), is mainly characterized by diffusive injuries to lung epithelium and increased permeability of alveolar-capillary membranes caused by various factors, which lead to pulmonary edema and pulmonary closure. It expresses as distress of respiratory and refractory hypoximia clinically. There are many etiological factors that can evoke ALI/ARDS directly or indirectly. Lipopolysaccharide (LPS), the main component of the cell wall of gram-negative bacteria, is one of the most important factors causing pulmonary infection and systemic infection. LPS plays an important role in initiating inflammatory response through binding to its receptors and causing systemic inflammatory response syndrome (SIRS) which can induce ALI. ALI induced by LPS is an acute pulmonary inflammation response in the lung, in which the accumulation and activation of polymophonuclear neutrophil (PMN) and the release of a large number of inflammatory mediators and oxygen free radical are the key link. However, it remains incompletely illuminated the definite mechanism of LPS initiating inflammatory over-reaction and inducing ALI.
     Endogenous gaseous transmitters, a unique class of biomaterials in regulating homeostasis, are found to play important roles in a variety of physiological and pathological events. Up to now, three gaseous transmitters have been recognized, namely nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S). Mounting evidence confirmed the important role of NO and CO in ALI. H2S is the third to be included in the family of endogenous gaseous transmitters, following NO and CO. Researches about physiological functions and pathological effects of H2S became frequent only recently. It was proved that H2S participated in the regulation of neural function and vasomotion, as well as the pathogenesis of hypertension,
引文
1 Lee WL, Downey GP. Neutrophil activation and acute lung injury. Curr Opin Crit Care, 2001, 7(1): 1~7
    2 Fein AM, Calalang-Colucci MG. Acute lung injury and acute respirator distress syndrome in sepsis and septic shock. Crit Care Clin, 2000,16(2): 289~317
    3 Downey GP, Dong Q, Kruger J, et al. Regulation of neutrophil activation in acute lung injury. Chest, 1999, 116(1Suppl): 46s~54s
    4 Wort SJ, Evans TW. The role of the endothelium in modulating vascular control in sepsis and related conditions. Br Med Bull, 1999, 55(1): 30~48.
    5 Strieter RM, Kunkel SL, Keane MP, et al. Chemokines in lung injury: Thomas A. Neff Lecture. Chest, 1999, 116(1Suppl): 103s~110s
    6 Fujishima S, Aikawa N. Neutrophil-mediated tissue injury and its modulation. Intensive Care Med, 1995, 21(3): 277~285
    7 仇万山,景华. 体外循环与炎性肺损伤. 医学研究生学报, 2001, 14(2): 164~168
    8 钱桂生. 急性肺损伤和急性呼吸窘迫综合征研究进展. 重庆医学,2002,31(9): 769~771
    9 Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener. EMBO J, 2001, 20(21): 6008~6016
    10 杨昕,黄秀榕,祁明信. 内源性硫化氢一种新型气体信息分子. 广州医学院学报, 2005, 33(2): 65~68
    11 Schuster DP. What is acute lung injury? What is ARDS. Chest, 1995, 107(6): 1721~1726
    12 Wyncoll DL, Evans TW. Acute respiratory distress syndrome. Lancet, 1999, 354(9177): 497~501
    13 Zhuo W, Small SA, Kandel ER, et al. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science, 1993, 260(5116): 1946~1950
    14 Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neuosci, 1996, (3): 1066~1071
    15 Kimura H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol, 2002, 26(1): 13~19
    16 Du JB, Yan H, Cheung YF, et al. The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart vessels, 2004, 19(2): 75~80
    17 Bhambhani Y, Bumham R, Snydmiller G, et al. Effects of 10-ppm hydrogen sulfide inhalation in exercising men and women. JOEM, 1997, 39(2): 122~129
    18 Searcy DG, Lee SH. Sulfur reduction by human erythrocytes. J Exp Zool, 1998, 282(3): 310~322
    19 Yuka K, Hideo K. Hydrogen sulfide protects neurons from oxidative stress. FASEB J, 2004, 18(10): 1165~1167
    20 Bian JS, Yong QC, Pan TT, et al. Role of hydrogen sulphide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther, 2006, 316(2): 670~678
    21 Fiorucci S, Antonelli E, Distrutti E, et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology, 2005, 129(4): 1210~1224
    22 Collin M, Anuar FB, Murch O, et al. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol, 2005, 146(4): 498~505
    23 Li L, Bhatia M, Zhu YZ, et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J, 2005, 19(9): 1196~1198
    24 孟祥艳, 鲁平, 凌亦凌. 气体信号分子硫化氢在脂多糖诱导大鼠肺急性炎症反应中的作用. 河北医科大学学报, 2005, 2(26):132~133
    1 Liaudet L,Szabo C,Evgenov OV,et al. Flagellin from Gram-negative bacteria is a potent mediator of acute pulmonary inflammation in sepsis. Shock,2003,19(2): 131~137.
    2 Calkins CM , Barsness K , Bensard DD , et al. Toll-like receptor-4 signaling mediates pulmonary neutrophil sequestration in response to gram-positive bacterial enterotoxin. J Surg Res, 2002, 104(2): 124~130
    3 Wang R. Two’s company, three’s a crowd: Can the H2S be the endogenous gaseous transmitter? FASEB J, 2002, 16(3): 1792~1798
    4 Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor[J]. Biochem Biophys Res Commun, 2000, 267(1): 129~133
    5 Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neuosci, 1996, 35(3): 1066~1071
    6 Zhao W, Wang R. H2S-induces vasorelaxation and underlying celluar and molecular mechanisms. Am J Physiol Heart Circ Physiol, 2002, 283(2): 474~480
    7 Zhong G, Chen F, Cheng Y, et al. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens, 2003, 21(10): 1879~1885
    8 杜军保, 闫辉, 唐朝枢, 等.新型气体分子硫化氢参与高血压形成机制.北京大学学报(医学版), 2003, 35(1): 102
    9 张清友, 杜军保, 石 琳, 等.内源性一氧化氮与硫化氢在大鼠低氧性肺动脉高压中的相互作用. 北京大学学报(医学版), 2004, 36(1): 52~56
    10 张春雨, 杜军保, 卜定方, 等. 内源性硫化氢在大鼠低氧性肺动脉高压中的作用.北京大学学报(医学版), 2003, 5(23): 488~493.
    11 Li L, Bhatia M, Zhu YZ, et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J, 2005, 19(9): 1196~1198.
    12 Hui Y, Du J, Tang C, et al. Changes in arterial hydrogen sulfide content during septic shock and endotoxin shock in rats. J Infect, 2003, 47(2): 155~160
    13 戴鸿雁,凌亦凌,黄新莉,等. 硫化氢在内毒素血症大鼠动脉舒张反应性改变中的作用及其与一氧化氮的关系. 河北医科大学学报, 2004,
    11, 25(6): 355~356
    14 Lertratanangkoon K,Scimeca J M, Wei J N. Inhibition of glutathione synthesis with propargylglycine enhances N-acety methionine protection and methylation in bromobenzene-treated Syrian hamsters. J Nutr, 1999,129(3): 649~656
    15 Calkins CM, Barsness K, Bensard DD, et al. Toll-like receptor-4 signaling mediates pulmonary neutrophil sequestration in response to gram-positive bacterial enterotoxin. J Surg Res, 2002, 104(2): 124~130
    16 谷振勇, 凌亦凌, 丛斌, 等. 过氧亚硝基阴离子参与介导内毒素所致急性肺损伤的研究. 中华医学杂志, 2000, 80(1): 58~61
    17 万梅, 凌亦凌, 谷振勇, 等. 内源性一氧化氮在内毒素诱导的肺动脉高压和肺损伤中的作用. 生理学报, 1999, 51(6): 80~86
    18 Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J, 2001, 20(21): 6008~6016
    19 Zhao W,Wang R. H2S-induces vasorelaxation and underlying celluar and molecular mechanisms. Am J Physiol Heart Circ Physiol, 2002, 283(2): 474~480
    20 Geng B, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun, 2004, 318(3): 756~763
    1 李春盛,桂培春,何新华.大黄对内毒素诱导急性肺损伤大鼠的保护作用.基础医学与临床, 2001, 21(1):65~68
    2 朱光发,周新.核因子-κB 与急性肺损伤关的研究进展.国外医学呼吸系统分册,2002,22(2): 63~65
    3 Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med, 1996, 24(7): 1125~1128
    4 Koch T. Organ and mediators involved in sepsis and the sysmetic inflammatory response syndrome. Kidney Int, 1998,53(Suppl 64):s66-s69.
    5 郭仓.ARDS 与 MODS 二者发病机制的相互关联性.中国危重急救医学, 1999, 11(1): 69~70
    6 Marini JJ, Evans TW. Round table conference: Acute Lung Injury. Intensive Care Med, 1998,24(8): 878~883
    7 Dinarello CA. Proinflammatory cytokines, Chest, 2000,118(6): 503~508
    8 刘红菊.肿瘤坏死因子在急性肺损伤发病中的作用.国外医学免疫学分册, 1996, 5(2): 229~231
    9 Stephens KE, Ishizaka A, Larrick JW, et al. Tumor necrosis factor causes increased pulmonary permeability and edema comparison to septic acute lung injury. Am Rev Respir Dis, 1998,137(6): 1364~1370
    10 郭振辉,邹霞英,樊满齐.一氧化氮吸入治疗急性肺损伤的作用机制.中华实验外科杂志, 2001, 18(4): 556~558
    11 Gjertsson I, Hultgren OH, Collins LV, et al. Impact of transcription factors AP-1 and NF-kappa B on the outcome of experimental staphylococcus aureus arthritis and sepsis[J]. Microbes & Infect, 2001,3(7): 527~534.
    12 Wu HG, Zhou LB, Pan YY, et al. Study of the mechanisms of acupuncture and moxibustion treatment for ulcerative colitis rats in view of the gene expression of cytokines. World J Gastroenterol, 1999, 5(6): 515~517
    13 Basak C, Pathak SK, Bhattacharyya A, et al. NF-kappa B-and C/EBP beta-driven interleukin-1beta gene expression and PAK1-mediated caspase
    1 activation play essential roles in interleukin-1beta release from Helicobacter pylori lipopolysaccharide (LPS)-stimulated macrophages. J Biol Chem, 2005, 280(6): 4279~4288
    14 Dahle MK, Overland G, Myhre AE, et al. The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect Immun, 2004, 72(10): 5704~5711
    15 Xie J, Qian J, Wang S, et al. Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogen-activated protein kinase p38. J Immunol, 2003, 171(9): 4792~4800
    16 Murphey ED, Traber DL. Pretreatment with tumor necrosis factor-alpha attenuates arterial hypotension and mortality induced by endotoxin in pigs. Crit Care Med, 2000, 28(6): 2015~2021
    17 Cain BS, Meldrum DR, Dinarello CA, et al. Tumor necrosis factor-alpha and interleukin-1 beta synergistically depress human myocardial function. Crit Care Med, 1999, 27(7): 1309~1318
    18 Amiot F, Fitting C, Tracey KJ, et al. Lipopolysaccharide-induced cytokine cascade and lethality in LT alpha PTNF alpha-deficient mice. Mol Med, 1997, 3(12): 864~875
    19 Fong Y, Tracey KJ, Mokdawer LL, et al. Antibodies to cachectin/tumor necrosis factor reduce interleukin 1 anf interleukin 6 appearance during lethal bacteremia. J Exp Med, 1989, 170(5): 1627~1633
    20 Bone RC. Why sepsis trials fail. JAMA, 1996, 276(7): 565~566.
    21 Grutz G. New insights into the molecular mechanism of interleukin-10 mediated immunosuppression. J Leukoc Biol, 2005,77(1): 3~15
    22 Mulligan MS, Warner RL, Foreback JL, et al. Protective effects of IL-4,IL-10,IL-12 and IL-13 in IgG immune complex-induced lung injury.J Immunol, 1997,159(7): 3483~3489
    23 Chomarat P, Banchereau J. An update on Interleukin-4 and its receptor. Eur Cytokine Netw, 1997,8(4): 334~344
    24 Banchereau J. Converging and diverging properties of human Interleukin-4 and Interleukin-10. Behring Inst Mitt, 1995, (96): 58~77
    25 黄 杨, 尹 文, 梁继河, 等. 一氧化氮和白介素-10 抑制核因子-κB 活化的实验研究. 中国急救医学, 2001, 21(10): 565~567
    26 Goff WL, Johnson WC, Parish SM, et al. IL-4 and IL-10 inhibition of IFN-gamma- and TNF-alpha- dependent nitric oxide production from bovine mononuclear phagocytes exposed to Babesia bovis merozoites[J]. Vet Immunol Immunopathol, 2002, 84(324): 2372251.
    27 Pousset F, Cremona S, Dantzer R, et al. IL-10 and IL-4 regulate type-I and type-II IL-1 receptors expression on IL-1 beta-activated mouse primary astrocytes. J Neurochem, 2001, 79(4): 7262736.
    28 Buechler C, Ritter M, Orso E, et al. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and anti-inflammatory stimuli. J Leukoc Biol, 2000, 67(1): 972103
    29 Morise Z, Eppihimer M, Granger DN, et al. Effects of lipopolysaccharide on endothelial cell adhesion molecule expression in interleukin-10 deficient mice. Inflammation, 1999, 23(2): 992110
    30 Ganea D, Delgado M. Neuropeptides as modulators of macrophage functions. Regulation of cytokine production and antigen presentation by VIP and PACAP. Arch Immunol Ther Exp, 2001, 49(2): 101~110
    31 Delgado M, Ernesto J, Munoz E. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 prodution by murine macrophages: in vitro and in vivo studies. J Immunol, 1999, 162(3), 1707~1716
    32 Wulster-Radcliffe MC, Ajuwon KM, Wang J, et al. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun, 2004, 316(3): 924~929
    33 Woo MS, Jang PG, Park JS, et al. Selective modulation of lipopolysaccharide-stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells.Brain Res Mol Brain Res. 2003, 113(1-2): 86~96
    34 徐鑫荣, 张家留, 郑崇明, 等. 丹参注射液对内毒素休克兔多器官损伤的保护作用. 中华急诊医学杂志. 2004, 13(1): 679~681
    35 Ge Y, Ezzell RM, Clark BD, et al. Relationship of tissue and cellular interleukin-1 and lipopolysaccharide after endotoxemia and bacteremia. J Infect Dis, 1997, 176(5): 1313~1321
    36 Dethloff LA, Lehnert BE. Pulmonary interstitial macrophages: isolation and flow cytometric comparisons with alveolar macrophages and blood monocytes. J Leuk Biol, 1988, 43(1): 80~90
    37 Wizemann TM, Laskin DL. Enhanced phagocytosis, chemotaxis, and production of reactive oxygen intermediates by interstitial macrophages following acute endotoxemia. Am J Respir Cell Mol Biol, 1994, 11(3):358~365
    38 Pittet JF, Mackersie RC, Martin TR, et al. Biological markers of acute lung injury: Prognostic and pathogenetic significance. Am J Respir Crit Care Med, 1997, 155(4): 1187~1205
    1 Browning DD, Windes ND, Ye RD. Activation of p38 mitogen-activated protein kinase by lipopolysaccharide in human neutrophils requires nitric oxide-dependent cGMP accumulation. J Biol Chem, 1999; 274(1): 537~542
    2 Ohashi N, Matsumori A, Furukawa Y, et al. Role of p38 mitogen-activated protein kinase in neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol, 2000, 20(12): 2521~2526
    3 Nick JA, Avdi NJ, Young SK, et al. J Clin Invest, 1999, 103(6): 851
    4 Pietersma A, Tilly BC, GaestelM, et al. Biochem Biophys Res Commun, 1997, 230(1): 44~48
    5 Benna JE, Han JH, Park JW, et al. Arch Biochem Biophys, 1996, 334(2): 395~400
    6 Ono K,Han JH. The p38 signal transduction pathway: activation and function. Cellular Signalling, 2000, 12(1): 1~13
    7 Lu HT, Young DD, Wysk M, et al. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3(MKK3)-deficient mice. EMBO J, 1999, 18(7): 1845~1857
    8 Scherle PA, Jones EA, Favata MF, et al. Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in LPS-stimulated monocytes. J Immunol, 1998, 161(10): 5681~5686
    9 Nick JA, Young SK, Brown KK, et al. Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. J Immunol, 2000,164(4): 2151~2159
    10 Mendez C, Jaffray C, Wong V, et al. Involvement of p38 mitogen-activated protein kinase in the induction of tolerance to hemorrhagic and endotoxic shock. J Surg Res, 2000, 91(2): 165~170
    11 Ottervein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med, 2000,6(4): 422~428
    12 Geppert TD, Whitehurst CE, Thompson P, et al. Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway. Mol Med, 1994, 1(1): 93~103
    13 Badger AM. Pharmacological profile of SB203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis,bone resorption, endotoxin shock and immune function. J Pharm Exp Ther, 1996, 279(3): 1453~1461
    14 Wysk M, Yang D, Lu HT, et al. TNF-induced cytokine expression mediated by the p38 MAP kinase activator MKK3. Proc Natl Acad Sci USA, 1999, 96(7): 3763~3768
    15 Ajizian SJ, English BK, Meals EA. Specific inhibitors of p38 and extracellular signal-regulated kinase and mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis, 1999, 179(4): 939~944
    16 Haddad EB, Birrell M, McCluskie K, et al. Role of p38 MAP kinase in LPS-induced airway inflammation in the rat. Bri J Pharmacol, 2001, 132(8): 1715~1724
    17 Carter AB, Monick MM, Hunninghake GW. Both erk and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol, 1999, 20(4): 751~758
    18 Zhang C, Baumgartner RA, Yamada K, et al. Mitogen-activated protein (MAP) kinase regulates production of tumor necrosis factor-α and release of arachidonic acid in mast cells: indications of communication between p38 and p42 MAP kinase. J Biol Chem, 1997, 272(20): 13397~13402
    1 Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J, 2001, 20(21): 6008~6016
    2 陈晓波, 杜军保, 耿彬, 等. 硫化氢对培养的大鼠主动脉平滑肌细胞增殖的作用. 应用生理学杂志, 2003, 19(8): 1009-1011
    3 Nelson MT,Quayle JM. Physiological roles and properties of potassium channels in artery smooth muscle. Am J Physiol,1995,268 (4 Pt 1): C799~822
    4 戴鸿雁,凌亦凌,黄新莉,等. 硫化氢在内毒素血症大鼠动脉舒张反应性改变中的作用及其与一氧化氮的关系. 河北医科大学学报,2004, 11, 25(6): 355~356
    5 Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J, 1982, 206(2): 267~277
    6 杜军保,闫辉,唐朝枢,等.新型气体分子硫化氢参与高血压形成机制.北京大学学报(医学版), 2003, 35(1): 102
    7 张春雨,杜军保,闫辉,等. 硫化氢对低氧性肺动脉高压作用的研究. 实用儿科临床杂志,2003,18(2): 90~91
    8 张春雨,杜军保,卜定方,等. 内源性硫化氢在大鼠低氧性肺动脉高压中的作用.北京大学学报(医学版),2003,5(23): 488~493
    9 Geng B, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun, 2004, 318(3): 756~763
    10 Whiteman M, Jeffrey S, Armstrong, et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? Neurochemistry,2004,90(3): 765~768
    11 Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J, 2004, 18(10): 1165~1167
    12 Searcy DG, Whitehead JP, Maroney MJ. Interaction of Cu, Zn superoxide dismutase with hydrogen sulfide. Arch Biochem Biophys. 1995, 318(2): 251~263
    13 Nicholls P. The formation and properties of sulphmyoglobin and sulphcatalase. Biochem J, 1961, 81: 374~383
    14 Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. Trends Biochem Sci, 1995, 20(3):117~122
    15 Sen J, Kapeller R, Fragoso R, et al. Intrathymic signals in thymocytes are mediated by p38 mitogen-activated protein kinase. J Immunol, 1996, 156(12):4535~4538
    16 姜勇, 韩家淮. p38 MAPK 信号转导通路.生命科学,1999,1(3):102~106.
    17 姜勇. LPS 介导细胞激活的信号转导:从 CD14 到 p38MAPK 通路的研究. 生理科学进展, 1999, 30(1): 29~30.
    18 Badger AM, Bradbeer JN, Votta B, et al. Pharmacological-profile of SB203580, as elective inhibitor of cytokine suppressive binding protein/p38 kinase in animal models of arthritis bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther, 1996, 279(3): 1453~1461
    19 王文雅, 黎明涛, 唐孝礼, 等. SB203580 对小脑颗粒神经元的保护作用. 广州医高专学报, 1999, 22(2):83~86
    20 丁涛,李荣山. 肾缺血/再灌注损伤时细胞信号转导分子 p38MAPK 特异性阻滞剂 SB203580 的应用研究. 中华医学会肾脏病学分会 2004 年会论文汇编, 2004: 372
    1 Gaston B, Drazen JM, Loscalzo J, et al. The biology of nitrogen oxides in the airways. Am J Respil Crit Care Med, 1994, 149(2 Pt 1): 538~551
    2 Sheriden BC, Mcintyre Jr RC, Moore EE, et al. Neutrophils mediate pulmonary vasomotor dysfunction in endotoxin-induced acute lung injury. J Trauma, 1997, 42(3): 391~396
    3 李立萍,张建新. 一氧化氮与内毒素性肺损伤. 河北医药,2003,25(3): 210~212
    4 Altavilla D, Squadrito F, Campo GM, et al. The lazaroid, U-74389G, inhibts inducible nitric oxide synthase activity, reverse vascular failure and protests against endotoxin shock. Eur Pharmacol, 1999, 369(1): 49~55
    5 谷振勇,凌亦凌,丛斌,等.过氧亚硝基阴离子参与介导内毒素所至急性肺损伤的研究.中华医学杂志,2000,6(4):422~428
    6 万梅,凌亦凌,谷振勇,等.内源性一氧化氮在内毒素引起的肺动脉高压和肺损伤中的作用.生理学报,1999,51(1): 80~86
    7 Frostell CG. Reassessment of inhaled nitric oxide in acute lung injury. Acta Pharmacol Sin, 2003, 24(12): 1314~1315
    8 Zhou JL, Ling YL , Jin GH , et al. Endogenous carbon monoxide attenuates lung injury following ischemia-reperfusion in the hind limbs of rats.Sheng Li Xue Bao, 2002, 54(3) : 229~233
    9 Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun, 2000, 267(1): 129~133
    10 Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J, 2001, 20(21): 6008~6016
    11 杜军保,闫辉,唐朝枢.新型气体分子硫化氢参与高血压形成机制.北京大学学报(医学版), 2003, 35(1): 102~108
    12 陈晓波,杜军保,耿彬,等. 感染性和内毒素性休克大鼠动脉组织中硫化氢的变化. 基础医学与临床, 2003, 23(4): 384~387
    13 Geng B, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun, 2004, 318(3): 756~763
    14 Wang R. Two’s company, three’s acrowd: canH2S be the third endogenous gaseous transmitter? FASEB J, 2002, 16(3): 1792~1798
    15 张清友,杜军保,石琳,等. 内源性一氧化氮与硫化氢在大鼠低氧性肺动脉高压中的相互作用. 北京大学学报(医学版), 2004, 36(1): 52~56
    16 David JD,Raymond B,Paul S,et al. Complex alterations in gene expression occur in the knee ligments of the skeletally mature multiparous rabbit during pregnancy. Biochmi Biophs Acta, 1998, 1397(2): 331~338
    17 Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J, 1982, 206(2): 267~277
    18 Matthew Whiteman, Jeffrey S, Armstrong, et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? Neurochemistry,2004,90(3): 765~768
    19 Widmann C, Gibson S, Jarpe MB , et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999, 79(1): 143~180
    20 Ono K , Han J. The p38 signal transduction pathway activation and function. Cellular Signalling, 2000, 12(1): 1~13
    21 Chang L,Karin M. Mammalian MAP kinase signaling cascades. Nature, 2001, 410(6): 37~40
    22 Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001, 81(2): 807~869
    23 Williams NG,Zhong H, Minneman KP. Differential coupling of alpha1-, alpha2-, and beta-adrenergic receptors to mitogen-activated protein kinase pathways and differentiation in transfected PC12 cells. J Biol Chem,1998, 273(38):24624~24632
    24 Ushio-Fukai M, Alexander RW, Akers M, et al. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem,1998, 273(24): 15022~15029
    25 Chen Z, Gibson TB, RobinsonF, et al. MAP kinases. Chem Rev, 2001,101(8): 2449~2476
    1 Jons RD, Morice AH. The effect of the nitric oxide synthase inhibitor N-g-nitro-L-argine methyl ester on hypoxic pulmonary vasoconstriction. Eur J Pharmacol, 2000, 402(1-2):111~117
    2 Moore PK, Bhatia M, Moochhala S. Hydrogen sulfide: from the smell of the past to the mediator of the future. Trends Pharmacol Sci,2003,24(12):609~611
    3 Wang R. Two’s company, three’s acrowd: canH2S be the third endogenous gaseous transmitter? FASEBJ, 2002, 16(3): 1792~1798
    4 杜军保,陈晓波,耿 彬,等.硫化氢作为心血管信号分子的研究.北京大学学报:医学版, 2002, 34(2): 187
    5 Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci, 1996, 16(3): 1066~1071
    6 耿 彬,闫 辉,钟光珍,等.硫化氢——心血管功能调节的新型气体信号分子.北京大学学报:医学版, 2004, 36(1): 106
    7 Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun, 1997, 237(3):527~531
    8 Zhang CY, Du JB, Bu DF, et al. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem Biophys Res Commun, 2003, 302(4): 810~816
    9 Geng B, Chang L, Pan CS, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun, 2004, 318(3): 756~763
    10 Yan H, Du JB, Tang CS, et al. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun, 2004, 313(1): 22~27
    11 石 琳,杜军保,齐建光,等.L-精氨酸对大鼠高肺血流所致肺血管结构重建及内源性硫化氢的影响.基础医学与临床, 2004, 24(2): 184~18
    12 Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J, 2001, 20(21): 6008~6016
    13 Zhong GZ, Chen FR, Chen YQ, et al. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens, 2003, 21(10): 1879~1885
    14 张清友,杜军保,张春雨,等.内源性一氧化氮对低氧大鼠肺动脉硫化氢胱硫醚-γ-裂解酶体系的影响.实用儿科临床杂, 2003, 18(11): 865~867
    15 张清友,杜军保,石 琳,等.内源性一氧化氮与硫化氢在大鼠低氧性肺动脉高压中的相互作用.北京大学学报(医学版), 2004, 36(1): 52~56
    16 Wang R, Wu L. The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. J Biol Chem, 1997, 272(13): 8222~8226
    17 Foresti R, Chark JE, Green CJ, et al. Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions. J Biol Chem, 1997, 272(29): 18411~18417
    18 田莉莉,韩 玫.肺动脉高压与肺组织中气体信号分子硫化氢的相关性分析.实用儿科临床杂志, 2005, 20(4): 365~366
    19 Du JB, Hui Y, Cheng YF, et al. The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessels, 2004, 19(2): 75~80
    20 Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest, 1989, 83(5): 1774~1777
    1 Vaandrager AB, Jonge HR. Signalling by cGMP-dependent protein kinase. Molecular and Cellular Biochemistry, 1996, 157(1): 23~30
    2 Heneka MT, Loschmann PA, Osswald H. Polymerized hemoglobin restores cardiovascular and kidney function in endotoxin induce shock in the rat. J Clin Inest, 1997, 99(1): 47~54
    3 Markovic M, Miljkovic DJ, Trajkovic V. Regulation of inducible nitric oxide synthase by cAMP-elevating phospho-diesterase inhibitors. Curr Dru Targets Inflamm Allergy, 2003, 2(1): 63-79
    4 Van’t Hof RJ, Armou KJ, Smith LM, et al. Requirement of the inducible nitric oxide synthase pathway for IL-12 induce osteoclastic bone resorption. Pro Natl Acad Sci Usa, 2000, 97(3): 7993-7998
    5 Vaandrager AB, Jonge HR. Signalling by cGMP-dependent protein kinase. Molecular and Cellular Biochemistry, 1996, 157(1): 23~30
    6 何志旭,周同甫,廖清奎,等. 炎性细胞因子及脂多糖诱导产生的一氧化氮对人血管内皮细胞的损伤作用. 中国病理生理杂志, 2001, 17(1):893-897
    7 Wang LF, Mehta S, Weicker S, et al. Relative contribution of hemopoietic and pulmonary parenchymal cells to lung inducible nitric oxide synthase (iNOS) activity in murine endotoxemia. Biochemical and Biophysical Research Communicaatioms, 2001, 283(3): 694~699
    8 陈莹莹, 夏强. 一氧化氮在铁诱导的大鼠心肌损伤中的作用. 生理学报, 2002, 54(4): 300
    9 Bhat NR, Zhang P, Lee JC, Hogan EL. Extra cellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci, 1998, 18 (5):: 1633~1641
    10 Bhat NR, Zhang P, Bhat AN. Cytokine induction of inducible nitric oxide synthase in an oligodendrocyte cell line: role of p38 mitogen-activated protein kinase activation. J Neurochem, 1999, 72(2):472~478
    11 Kopp EB, Medzhitov R. The Toll-receptor family and control of innate immunity. Curr Opin Immunol, 1999, 11(1): 13~18
    12 Nomurra Y. NF-κB activation and IκBα dynamism involved in iNOS and chemokinein duction in astroglial cells. Life Sci, 2001, 68(15): 1695~1701
    13 沈勤, 张然, 吴杨, 等. p38MAPK 介导的胶质细胞 iNOS 的转录激活机制. 中国生物化学与分子生物学报, 2005, 21(3): 315~321
    14 Cvetkovic I, Miljkovic D, Vuckovic O, et al. Taxol activates inducible nitric oxide synthase in rat as trocytes: the role of MAP kinases and NF-κB. Cell Mol Life Sci, 2004, 61(10): 1167~1175
    15 Gupta AK, Kone BC. CCAAT/enhancer binding protein-beta trans-activates murine nitric oxide synthase-gene in an MTAL cell line. Am J Physiol, 1999, 276 (4 Pt 2): F599~F605
    1 韩启德,文允. 血管生物学. 北京医科大学、中国协和医科大学联合出版社,1997: 3~23
    2 Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J, 2001, 20(21): 6008~6016
    3 Dschietzig T, Richter C, Bartsch C, et al. Flow induced pressure differentially regulates endothelin-1, urotension II, adrenomadullin, and relaxin in pulmonary vascular endothelium. Biochem Biophys Res Commun, 2001, 289(1): 245~251
    4 Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J, 1982, 206(2): 267~277
    5 Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J, 2001, 20(21): 6008~6016
    6 Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun, 2000, 267(1): 129~133
    7 Abe K,Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neuosci, 1996, (3): 1066~1071
    8 Bin G, Jinghui Y, Yongfen Q, et al. H2S generated by heart in rat and its effects on cardiac function. Biochen Biophys Res Commun, 2004, 313(2): 362~368
    9 Zhao W,Wang R. H2S-induces vasorelaxation and underlying celluar and molecular mechanisms. Am J Physiol Heart Circ Physiol, 2002,283(2): 474~480
    10 Li L, Bhatia M, Zhu YZ, et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J, 2005, 19(9): 1196~1198
    11 Geng B, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun, 2004, 318(3): 756~763
    12 Whiteman M, Jeffrey S, Armstrong, et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? Neurochemistry, 2004, 90(3): 765~768
    13 Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J, 2004, 18(10): 1165~1167
    14 Du JB, Jia JF, Li WZ, et al. Nitric oxide impacts endothelin-1 gene expression in intrapulmonary arteries of chronically hypoxic rats. Angiology, 1999, 50(6): 479~485
    15 Qi JG, Du JB, Wang L, et al. Alleviation of hypoxic pulmonary vascular structural remodeling by L-arginine. Chin Med J, 2001, 38(2): 114~117
    16 Chunyu Z, Junbao D, Dingfang B, et al. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem Biophys Res Commun, 2003, 302(4): 810~816
    17 Zhong G, Chen F, Cheng Y, et al. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens, 2003, 21(10): 1879~1885
    18 Hui Y, Du J, Tang C, et al. Changes in arterial hydrogen sulfide content during septic shock and endotoxin shock in rats. J Infect, 2003, 47(2): 155~160
    19 石 琳,杜军保,齐建光,等.L-精氨酸对大鼠高肺血流所致肺血管结构重建及内源性硫化氢的影响.基础医学与临床, 2004, 24(2): 184~187
    20 20 张清友,杜军保,张春雨,等.内源性一氧化氮对低氧大鼠肺动脉硫化氢胱硫醚-γ-裂解酶体系的影响.实用儿科临床杂,2003,18(11):865~867
    21 张清友,杜军保,石 琳,等.内源性一氧化氮与硫化氢在大鼠低氧性肺动脉高压中的相互作用.北京大学学报(医学版), 2004, 36(1): 52~56
    22 Nick JA, Avdi NJ, Young SK, et al. Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest, 1999, 103(6): 851~858
    23 Dean JL, Brook M, Clark AR, et al. p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J Biol Chem, 1999, 274(1): 264~269
    24 Ajizian SJ, English BK, MealE A. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factoraccumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis, 1999, 179(4): 939~944
    25 Niiro H, Otsuka T, Ogami E, et al. MAP kinase pathways as a route for regulatory mechanisms of IL-10 and IL-4 which inhibit COX-2 expression in human monocytes. Biochem Biophys Res Commun, 1998, 250(2): 200~205
    26 Badger AM, Bradbee JN, Vtta B, et al. Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther, 1996, 279(3): 1453~1461
    27 Nick JA, Young SK, Brown KK, et al. Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. J Immunol, 2000, 164(4): 2151~2159
    28 Yang J, Murphy C, Denham W, et al. Evidence of a central role for p38 map kinase induction of tumor necrosis factor alpha in pancreatitis-associated pulmonary injury. Surgery, 1999, 126(2): 216~222
    1 Abe K,Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neuosci, 1996, 3: 1066~1071
    2 Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun, 1997, 237: 527~531
    3 Stapanuk MH, Beck PW. Characterization of the enzymatic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J, 1982, 206(2): 267~277
    4 Eto K, Kimura H. The production of hydrogen sulfide is regulated by testosterone and S-adenosyl-L-methionine in mouse brain. Neurochem, 2002, 83(1):80~86
    5 Eto K, Ogasawara M, Umemura K, et al. Hydrogen sulfide is produced in response to neuronal excitation. J Neurosci, 2002, 22(9): 3386~3391
    6 Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J, 2001, 20(21): 6008~6016
    7 Wang R. Two’s company, there’s a crowd: can H2S be the third endogenous gaseous tranmitter?. FASEB J, 2002, 16(13): 1792~1798
    8 Mitchell TW, Savaga JC, Gould DH. High-performance liquid chromatography detection of sulfide in tissues from sulfide-treated mice. J Appl Toxicol, 1993, 13(6): 389~394
    9 Warenycia MW, Goodwin LR, Benishin CG, et al. Acute hydrogen sulfide poison: demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Phamacol, 1989, 38(6): 973~981
    10 Savaga JC, Gould DH. Determination of sulfides in brain tissue and human fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr, 1990, 526(2): 540~545
    11 Wang R. The gasotransmitter role of hydrogen sulfide. Antioxidants & Redox Sianaling, 2003, 5(4): 493~501
    12 Richardson CJ, Magee EA, Cummings JH. A new method for the determination of sulphide in gastrointestinal concents and whole blood by microdistillation and ion chromatography. Clin Chim Acta, 2000, 293(1-2): 115~125
    13 石琳,杜军保,卜定方,等. 高肺血流量对肺血管结构及胱硫醚-γ-裂解酶基因表达的影响. 北京大学学报(医学版), 2003, 35(6): 566~570
    14 Zhao WM, Joseph FN, Wang R. Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol, 2003, 81(9): 848~853
    15 Furne J, Springfield J, Koenig T, et al. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem Pharmacol, 2001, 62: 255~259
    16 Shan X, Dunbrack RLJ, Christopher SA, et al. Mutation in the regulatory domain of cystathionine-β-synthase can functionally suppress patient-derived mutations in cis. Human Mol Genet, 2001, 10(6): 635~643
    17 张清友,杜军保,石琳,等. 内源性一氧化氮与硫化氢在大鼠低氧性肺动脉高压中的相互作用[J]. 北京大学学报(医学版),2004, 36(1):52~56
    18 Zhao W, Wang R. H2S-induces vasorelaxation and underlying celluar and molecular mechanisms. Am J Physiol Heart Circ Physiol, 2002, 283(2): 474~480
    19 Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun, 2000, 267(1): 129~133
    20 Bin G, Jinghui Y, Yongfen Q, et al. H2S generated by heart in rat and its effects on cardiac function. Biochen Biophys Res Commun, 2004, 313: 362~368
    21 Bin G, Lin C,Chunshui P, et al. Impact of hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochen Biophys Res Commun, 2004, 318: 756~763
    22 Dello RussoD, Tringali G, Ragazzoni E, et al. Evidence that hydrogen sulfide can modulate hypothalam-pituitary-adrenal axis function: in vitro and in vivo studies in the rat. J Neuroendocrinol, 2000, 12(10): 1043
    23 Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun, 2000, 267(1): 129~133
    24 Kimura H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol, 2002, 26(1):13~19
    25 Teague B, Asiedu S, Moore PK. The smooth muscle relaxant effect of hydrogen sulfide in vitro: evidence for a physiological role to control intestinal contractility. Br J Phamacol, 2002, 137(2): 139~145
    26 Bhambhani Y, Bumham R, Snydmiller G, et al. Effects of 10-ppm hydrogen sulfide inhalation in exercising men and women[J]. JOEM, 1997, 39(2):
    122~129
    27 Searcy DG, Lee SH. Sulfur reduction by human erythrocytes. J Exp Zool, 1998, 282(3): 310~322
    28 张春雨,杜军保,闫辉,等.硫化氢对低氧性肺动脉高压调节作用的研究. 实用儿科临床杂志, 2003, 18(2): 90~91
    29 张春雨,杜军保,卜定方,等.低氧性肺动脉高压大鼠肺组织硫化氢的变化. 基础医学与临床, 2004, 24(2): 145~148
    30 张春雨,杜军保,卜定方,等.内源性硫化氢在大鼠低氧性肺动脉高压中的作用. 北京大学学报(医学版), 2003, 35(5): 488~492
    31 耿彬,杜军保,唐朝枢.内源性 H2S——一种新的气体信号分子. 生理科学进展, 2002, 33: 255~258
    32 Zhang CY, Du JB, DF, et al. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertention in rats. Biochen Biophys Res Commun, 2003, 302: 810~816
    33 杜军保,陈晓波,耿彬.等.硫化氢作为心血管信号分子的研究. 北京大学学报(医学版), 2002, 34(2): 187
    34 陈晓波,杜军保,张春雨,等.新型气体信号分子硫化氢对低氧性肺动脉高压和肺血管结构重建的调节作用. 中华儿科杂志, 2004, 42(4): 303~304
    35 陈晓波,杜军保,张春雨,等.硫化氢对低氧性肺动脉高压大鼠肺动脉增殖细胞核抗原及 Bcl-2 的调节作用. 实用儿科临床杂志, 2004, 19(3): 185~187
    36 陈晓波,杜军保,张春雨,等.新型气体信号分子硫化氢对低氧大鼠肺动脉平滑肌细胞凋亡的影响. 北京大学学报(医学版), 2004, 36(4): 341~344
    37 齐建光,杜军保,郭志良,等.精氨酸调节大鼠低氧性肺血管结构重建与肺动脉平滑肌细胞凋亡. 北京大学学报(医学版), 2001, 35: 339~343
    38 石琳,杜军保,齐建光,等.高肺血流量对肺血管结构及内源性硫化氢的影响. 实用儿科临床杂志, 2003, 18(8): 611~613
    39 石琳,杜军保,齐建光,等.L-精氨酸对大鼠高肺血流所致肺血管结构重建及内源性硫化氢的影响. 基础医学与临床, 2004, 24(2): 184~187
    40 闫辉,杜军保,唐朝枢.新型气体信号分子硫化氢在高血压发病中的变化及意义. 中华儿科杂志, 2004, 42(3): 172~175
    41 闫辉,杜军保,唐朝枢.气体分子硫化氢对自发性高血压大鼠主动脉结构重建的调节作用. 北京大学学报(医学版), 2004, 36(3): 234~237
    42 闫辉,杜军保,唐朝枢.硫化氢对自发性高血压大鼠胸主动脉舒张反应的影响. 中国药理学通报, 2003, 19(6): 633~636
    43 Hui Y, Junbao D, Chaoshu T, et al. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertention in rats. Biochen Biophys Res Commun, 2004, 313: 22~27
    44 闫辉,杜军保,唐朝枢.硫化氢对自发性高血压大鼠主动脉平滑肌细胞增殖与凋亡的影响. 实用儿科临床杂志, 2004, 19(3): 188~190
    45 陈晓波,杜军保,耿彬,等.硫化氢对培养的大鼠主动脉平滑肌细胞增殖的抑制作用. 中国病理生理学杂志, 2003, 19(8): 1009~1011
    46 陈晓波,杜军保,耿彬,等.感染性和内毒素性休克大鼠动脉组织中硫化氢的变化. 基础医学与临床, 2003, 23(4): 384~387
    47 Zhang QY, Du JB, Zhou EJ, et al. Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertention. Biochen Biophys Res Commun, 2004, 317:30~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700