紫草素对IL-22介导的HaCaT细胞生物学行为影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     银屑病(Psoriasis)是一种常见的慢性炎症性皮肤病,病情顽固,且发病率在逐年增高。该病组织病理改变主要为表皮角质形成细胞(keratinocyte, KC)过度增殖和分化异常,真皮乳头毛细血管增生、扩张,以及真表皮内炎症细胞浸润。近年来,银屑病发病的免疫机制备受关注,对银屑病患者皮损处T细胞的特性及其产生细胞因子功能的研究发现,一种新的调节性T细胞即Th17细胞及其活化后产生的细胞因子Interleukin-17A(IL-17A)、 IL-17F和IL-22在银屑病的发病中具有重要作用。一个重要发现是在银屑病患者的皮损及血浆中IL-22表达均显著增加。研究表明,IL-22阻碍KC的终末分化,诱导KC的促炎基因表达和KC的迁移。然而目前并不十分明确IL-22介导的KC效应的细胞分子机制。Grb2-相关结合蛋白1/2(Grb2-associated binder1/2, Gab1/2)是一类脚手架/接头蛋白,主要参与膜表面受体酪氨酸激酶和非受体酪氨酸激酶的信号转导。磷酸化的Gab1通过与含有2个Src同源结构域(SH2)的蛋白酪氨酸磷酸酶(Src homology2domain-containing tyrosine phosphatase,Shp-2)相互作用,具有调节表皮细胞生长因子诱导的表皮生长和分化,但尚不清楚Gab1以及同样高表达于KC细胞上的Gab2在IL-22诱导的KC增殖、迁移和分化中是否发挥作用?
     银屑病属于中医“白疙”、“蛇虱”、“松皮癣”等范畴。清热解毒,凉血活血是中医治疗本病的重要治则。紫草味甘、咸,性寒,有凉血、活血、清热、解毒透疹等功效。紫草素(Shikonin)为紫草中的主要有效成分之一,具有多种药用价值,包括抗肿瘤、抗菌、抗病毒、抗炎、镇静、清热解毒、免疫调节以及促进伤口愈合等。在对紫草素诱导肿瘤细胞凋亡机制的研究中发现,紫草素可调节促分裂原活化蛋白激酶激酶(mitogen-ativated protein kinase kinase, MAPK)通路的活性,降低Erk, Jnk, Stat3磷酸化水平,从而抑制肿瘤细胞生长、增殖、存活。临床发现紫草素治疗银屑病具有较好的疗效,但其机制尚有待探讨。我们提出一假设,即紫草素通过拮抗IL-22刺激皮肤角质形成细胞引起的Gab1/2的磷酸化,进一步抑制其下游Erk/MAPK信号通路的活化,从而抑制KC增殖,影响KC分化及迁移等。
     本文的研究目的:
     第一部分:研究紫草素对IL-22刺激HaCaT细胞生物学行为影响
     1.观察紫草素对IL-22刺激HaCaT细胞增殖、迁移的影响;
     2.观察紫草素对IL-22刺激HaCaT细胞分泌S100A7, S100A8、S100A9的影响。
     第二部分:紫草素对IL-22刺激HaCaT细胞生物学行为改变的机制研究
     1.研究IL-22刺激HaCaT细胞中Jak1/Tyk2/Stat, Erk/MAPK信号通路中相关蛋白表达;
     2.研究IL-22刺激Gab1和Gab2突变体(Shp2结合缺陷型)感染的HaCaT细胞中Erk/MAPK信号通路中相关蛋白表达;
     3.研究IL-22刺激Gab1和Gab2基因沉默的HaCaT细胞中Erk/MAPK信号通路中相关蛋白表达;
     4.探讨Gab1和Gab2是否共同参与IL-22诱导的细胞增殖和迁移以及对细胞分化的影响;
     5.研究IL-22刺激HaCaT细胞后Gab1、Gab2以及Erkl/2磷酸化水平及紫草素干预后的变化。
     研究方法:
     1.WST-1法检测细胞增殖;
     2. Transwell法检测细胞迁移;
     3. Real-TimePCR法检测基因mRNA表达;
     4. Western blot法检测相关蛋白的表达;
     5.免疫沉淀技术检测特定蛋白间的相互作用:
     6.构建Shp2结合缺陷型Gabl和/或Gab2以及Gabl和Gab2siRNA干扰的重组腺病毒;
     7.统计学分析:采用SPSS17.0统计软件进行数据分析,P<0.05时差异有统计学意义。
     研究结果:
     1.紫草素抑制HaCaT细胞的生长
     不同浓度的紫草素对HaCaT细胞的生长有一定的抑制作用,但低浓度时(浓度为0.1和0.25μg/ml),紫草素本身不影响细胞活性,对HaCaT细胞无损伤及毒性作用。
     2.紫草素抑制IL-22介导的HaCaT细胞增殖和迁移
     实验分组:未处理(未加紫草素和IL-22)组、IL-22刺激24h组、IL-22+紫草素24h组, IL-22刺激48h组、IL-22+紫草素48h组。紫草素作用浓度选择为0.25μg/ml, IL-22推荐工作浓度为100ng/ml, IL-22刺激HaCaT细胞24h和48h后可促进细胞增殖和迁移,与未处理组相比,P均<0.05;加入紫草素组,IL-22诱导的HaCaT细胞增殖和迁移作用被抑制,P均<0.05。
     3.紫草素可下调IL-22诱导的促炎症因子S100A7、S100A8mRNA表达
     Real-Time PCR检测紫草素对IL-22刺激HaCaT细胞分泌促炎症因子S100A7、 S100A8、S100A9mRNA影响,根据扩增曲线由公式得出2-△Ct值(即实验组目的基因的表达相对于对照组基因的变化倍数),IL-22刺激S100A7S100A8mRNA表达与未处理组相比其差别倍数(2-△△Ct)均大于2,而加入紫草素组与IL-22组相比其差别倍数均小于1,表明IL-22可明显刺激HaCaT细胞分泌S100A7, S100A8,而紫草素可下调IL-22诱导的S100A7S100A8mRNA表达,但对S100A9mRNA的影响不明显。
     4.IL-22诱导HaCaT细胞Jak1/Tyk2/Stat通路、MAPK通路的活化
     HaCaT细胞饥饿处理16-18h后,加入IL-22(100ng/ml)刺激10min、20min、30min、60min以及120min,提取总蛋白,Western blot检测到IL-22刺激10min后即可见Jakl/Tyk2/Stat通路中Stat3Tyr705位酪氨酸磷酸化、Stat3Ser727位丝氨酸磷酸化、Jakl以及Tyk2磷酸化;MAPK通路中Erk1/2和p38磷酸化。Mek抑制剂PD98059(10μM)预处理HaCaT细胞1h,然后再用IL-22刺激,则Erk1/2活化被抑制,同时PD98059预处理后IL-22诱导的HaCaT细胞的增殖及迁移亦被抑制(P分别<0.01和<0.05),而KC细胞分化标志性蛋白Loricrin在IL-22刺激72h后仍未检测到表达,但PD98059预处理后再用IL-22刺激则Loricrin表达明显增加。
     5.IL-22刺激HaCaT细胞引起Gab1和Gab2磷酸化,并进一步活化Erk1/2
     IL-22刺激饥饿处理后的HaCaT细胞,10min后裂解细胞,采用免疫共沉淀技术及免疫印迹技术检测IL-22刺激后,Gab1和Gab2磷酸化水平明显升高,Shp2结合增强。以表达Shp2结合缺陷型Gab1和Gab2重组腺病毒(AdGab1FF、AdGab2F)以及野生型Gab1和Gab重组腺病毒(AdGab1WT、AdGab2WT)感染HaCaT,检测IL-22刺激引起的Erkl/2以及Stat3Tyr795蛋白活化水平,结果发现,Erkl/2磷酸化水平在(AdGab1FF)HaCaT、(AdGab2F)HaCaT组明显降低,Stat3Tyr795磷酸化水平在缺陷型组及野生型组基本没有变化;IL-22刺激siRNA沉默Gab1和/或Gab2腺病毒感染的HaCaT细胞(AdGab1siRNA) HaCaT、(AdGab2siRNA) HaCaT、(AdGab1siRNA+AdGab2siRNA) HaCaT,检测Erkl/2以及Stat3Tyr795蛋白活化水平,结果发现,Erkl/2磷酸化水平在基因沉默组中明显降低,磷酸化Stat3Tyr795水平依然没有变化。
     6.Gab1和Gab2影响IL-22诱导的HaCaT细胞增殖、细胞迁移及分化与Shp2相关
     IL-22刺激(AdGab1WT)HaCaT、(AdGab2WT)HaCaT、(AdGab1FF)HaCaT、(AdGab2F)HaCaT,24h和48h后分别检测细胞增殖率及细胞迁移,结果(AdGab1FF)HaCaT、(AdGab2F)HaCaT组细胞增殖率减低(P均<0.01),迁移细胞数减少(P均<0.01);IL-22刺激(AdGab1siRNA) HaCaT、(AdGab2siRNA) HaCaT、(AdGab1siRNA+AdGab2siRNA) HaCaT,24h和48h后检测细胞增殖率和迁移,与感染空载体HaCaT细胞相比,细胞增殖率减低(P<0.05,P<0.01),细胞迁移数减少(P均<0.05)。IL-22刺激重组腺病毒感染的HaCaT的细胞72h后,检测Loricin蛋白的表达,结果发现,与野生型组相比,基因突变和沉默组细胞Loricin的表达量均明显增加。
     7.紫草素拮抗IL-22刺激皮肤角质细胞引起的Gab1, Gab2以及Erkl/2的磷酸化
     IL-22刺激经紫草素(0.25μg/ml)预处理HaCaT细胞,检测Gab1和Gab2以及Erkl/2磷酸化水平,与未经紫草素处理组相比,明显减低。
     研究结论:
     1.紫草素能够抑制IL-22诱导的HaCaT细胞的增殖和迁移,并下调IL-22诱导的HaCaT细胞S100A7, S100A8mRNA表达。
     2.IL-22诱导Jak1/Tyk2/Stat及MAPK通路在HaCaT细胞中的活化,介导细胞增殖、迁移和分化。
     3.Gab1和Gab2共同参与IL-22诱导的HaCaT细胞中的Erk/MAPK信号通路的活化,并共同参与IL-22介导的细胞增殖、迁移和分化。Shp2与Gab1和Gab2结合是IL-22介导的效应所必需的。
     4.紫草素抑制IL-22诱导的Gabl,Gab2以及Erkl/2磷酸化,从而推论紫草素治疗银屑病机制可能与抑制IL-22引起的Gab1、Gab2磷酸化,进一步抑制Erk1/2-MAPK通路活化有关。
Background Psoriasis is a kind of common chronic inflammatory skin disease with increasing incidence year by year. The histopathological changes of psoriasis include hyperplasia of the epidermis (acanthosis), abnomal differentiation of keratinocyte (KC), dilation and growth of dermal papilla capillaries, and infiltration of leukocytes into both the dermis and epidermis. Recent studies have shed light on the immunologic mechanism of psoriasis. Based on the studies of the characteristics of T cells in the skin lesions of psoriasis patients and their function of inducing cytokines, researchers found that a new regulatory T cell subset that is, Th17cells secrete cytokines of Interleukin-17A(IL-17A), IL-17F and IL-22, which play important roles in the pathogenesis of psoriasis. Of note, the expression of IL-22in skin lesions and plasma of psoriasis patients is increased significantly. IL-22is known to not only block the terminal differentiation of KC but also induce KC migration and the expression of proinflammatory genes. However, the cellular and molecular mechanism of KC effect mediated by IL-22is not well understood so far. Grb2-associated binder1/2(Gab1/2) are a kind of adaptor proteins which are involved in signal transduction of membrane surface receptor tyrosine kinase and non-receptor tyrosine kinase. Phosphorylated Gabl regulates the epidermal growth and differentiation induced by epidermal growth factor (EGF) through interaction with Src homology2domain-containing tyrosine phosphatase(Shp-2), but it is not known whether Gabl and Gab2, which are highly expressed in KC, paly roles in proliferation, migration and differention of KC induced by IL-22.
     Psoriasis belongs to categories of "baibi","snake lice","loose skin tinea" in Traditional Chinese Medicine (TCM).Clearing heat and detoxification, cooling blood and invigorating circulation are the important TCM therapeutic principles for the disease. Zicao tastes sweet and salty with cold properties, and has effects of cooling blood, invigorating circulation, detoxification, as well as promoting eruptions. Shikonin is one major effective components of Zicao with a wide range of bioactivities. It has high medicine values including anti-tumor, antibacterial, antiviral, sedation, heat-clearing and detoxifying, immunoregulation, healing wounds. Investigating the apoptosis mechanism of tumor cell induced by shikonin revealed that it inhibits the proliferation of tumor cells by regulating the activity of MAPK pathway and reducing the phosphorylation of Erk, Jnk, and Stat3. Though the effect of shikonin treatment for psoriasis is well demonstrated, the underlying mechanism remains largely unknown.We speculate that shikonin exerts it effect on the proliferation, differentiation and migration of KC by antagonizing IL-22-induced phosphorylation of Gab1/2on KC, which resulting in the down-regulation of the activation of Erkl/2/MAPK singnal pathway.
     Objectives
     Part one:To investigate the effect of shikonin on cell biological behaviour of HaCaT mediated by IL-22
     1. Effect of shikonin on proliferation and migration of HaCaT cell stimulated by IL-22;
     2. Effect of shikonin on expression of proinflammatory genes S100A7, S100A8, S100A9mRNA stimulated by IL-22.
     Part two:The mechanisms study of the effect of shikonin on IL-22-mediated HaCaT biological behaviour.
     1. Detect the expression of proteins in Erkl/2/MAPK pathway in HaCaT stimulated by IL-22;
     2. Explore the expression of proteins in Erkl/2/MAPK pathway in HaCaT infected with adenovirus expressing Gab1and Gab2mutants (Shp2-binding defective);
     3. Explore the expression of proteins in Erk1/2/MAPK pathway in HaCaT with adeno virus expressing siRNA targeting Gab1and Gab2;
     4. Study on whether both Gabl and Gab2play roles in cell proliferation, migration and differentiation of HaCaT induced by IL-22;
     5. Study on the phosphorylation of Gabl, Gab2and Erkl/2stimulated by IL-22and the intervention of shikonin.
     Methods
     1. Detection of cell proliferation by WST-1assay
     2. Detection of cell migration with Transwell assay
     3. Detection of the expression of mRN A by Real-Time PCR
     4. Detection of the expression of proteins by Western blot assay
     5. Deterction of the interactions between specific proteins by immunoprecipitation
     6. Construction of recombinant adenovirus (Shp2-binding defective Gabl and Gabl, siRNA knockouted Gab1and Gab2, siRNA knockouted Gab1+Gab2)
     7. Statistical analysis with SPSS17.0software (difference has statistical significance when P<0.05)
     Results
     1. Shikonin inhibited the growth of HaCaT cells in a dose-dependent manner. It should be noted that low concentration of shikonin (0.1and0.25ug/ml) didn't affect the cell activity and had no damage and toxicity to HaCaT cells.
     2. Shikonin treatment decreased HaCaT cells proliferation and migration mediated by IL-22.. The experiment about the proliferation and migration of HaCaT inhibited by shikonin is performed as following groups:blank control (without shikonin and IL-22), incubate with IL-22for24h, incubate with IL-22and shikonin for24h, incubate with IL-22for48h, and incubate with IL-22and shikonin for48h. The concentration of shikonin and IL-22were0.25ug/ml and100ng/ml, respectively. After adding IL-22for24h and48h, the proliferation and migration of HaCaT were all increased (P<0.05), however these effects were inhibited by adding the shikonin (P<0.05).
     3. Shikonin down-regulated the expression of S100A7, S100A8and S100A9induced by IL-22. We detected the effect of shikonin on the expression of S100A7, S100A8and S100A9mRNA induced by IL-22by Real-Time PCR. The results showed that2-△△Ct values of S100A7and S100A8induced by IL-22were all more than2, while adding shikonin, the2-△△Ct values were less than1, that indicates shikonin can down-regulate the mRNA expression of S100A7, S100A8induced by IL-22in HaCaT, but has no influence on the expression of S100A9.
     4. IL-22induced the activation of Jakl/Tyk2/Stat and MAPK pathway. HaCaT cells were serum starved for16-18h, and then stimuilated with or without IL-22(100ng/ml) for10min,20min,30min,60min and120min.and total cells lysates were analyzed by Western blot, The results of Western blot showed that Stat3Tyr705, Stat Ser727, Jakl and Tyk2in Jakl/Tyk2/Stat pathway and Erkl/2and p38in MAPK pathway were phosphorylated after10min stimulation by IL-22. The activation of Erkl/2, the proliferation and migration of HaCa T cells induced by IL-22were suppressed when the HaCaT cells were pretreated with Mek inhibitor PD98059(10μM) for1h. However, Loricrin, the marker protein of the differentiation of KC, was still not detected at72h after the stimulation of IL-22, while Loricrin expression of HaCaT was increased significantly when PD98059was added before IL-22stimulation.
     5. IL-22induced the phosphorylation of Gabl and Gab2, and then activated Erkl/2. After the stimulation of serum-starved HaCaT cells with IL-22for10min, co-immunoprecipitation and Western blot assays showed that the phosphorylation of Gabl and Gab2increased markedly and the binding with Shp2was also enhanced. The activation of Erkl/2and Stat3Tyr795were tested after the HaCaT cells were infected by recombinant adenovirus AdGab1EF, AdGab2F, AdGab1WT, AdGab2WT. The results showed that there was a marked decrease in the phosphorylation of Erkl/2in groups of (AdGablEF) HaCaT and (AdGab2F) HaCaT, while the phosphorylation of Stat3Tyr795in groups of (AdGab2F) HaCaT,(AdGab1WT) HaCaT and (AdGab2WT) HaCaT had no change. Besides, the activations of Erkl/2and Stat3Tyr795in (AdGablsiRNA) HaCaT,(AdGab2siRNA) HaCaT and (AdGablsiRNA+AdGab2siRNA) HaCaT were also tested. The results showed that the phosphorylation of Erkl/2all decreased in the three groups, but that of Stat3Tyr795still had no markedly changes.
     6. The influence of Gab1and Gab2on the proliferation, migration and differentiation of HaCaT induced by IL-22is related with Shp2. The cell proliferation rate and migration were detected after the stimulation of(AdGab1WT) HaCaT,(AdGab2WT) HaCaT,(AdGab1FF) HaCaT and (AdGab2F) HaCaT by IL-22for24h and48h. The results showed that the proliferation rate and migration cells of (AdGablFF) HaCaT and (AdGab2F) HaCaT all reduced (P<0.01). Similar results were obtained in (AdGab1siRNA) HaCaT、(AdGab2siRNA) HaCaT and (AdGab1siRNA+AdGab2siRNA) HaCaT. Compaired with the (AdU6Vector) HaCaT, cells proliferation rate decreased in the experimental groups within24h and48h(P<0.05and P<0.01, respectively);migration cells also decreaed(both P<0.05);Stimulating adenovirus-infected HaCaT with IL-22for72h, we observed that the expression of Loricin in mutant and silent taget gene groups were higher than that in wild type groups or the control virus.
     7. Shikonin inhibited IL-22-induced phosphorylation of Gab1, Gab2and Erkl/2on KC. The levels of phosphorylation of Gabl, Gab2and Erkl/2in shikonin-treated HaCaT cells upon IL-22stimulation were lower than in the groups without shikonin.
     Conclusions
     1. Shikonin inhibited the proliferation and migration of HaCaT cells and reduced the expression of S100A7and S100A8mRNA in HaCaT cells induced by IL-22.
     2. IL-22induced the activation of Jakl/Tyk2/Stat and MAPK pathways in HaCaT cells and mediated the cell proliferation, migration and differentiation.
     3. Gabl and Gab2participated jointly in IL-22mediated keratinocyte proliferation, migration and differentiation mainly via activation of Erk/MAPK pathway.
     4. Shikonin inhibited the phosphorylation of Gabl, Gab2and Erkl/2induced by IL-22, suggesting that the mechanism of shikonin treatment for psoriasis may be related with the inhibition of activation of Gabl, Gab2and futhur down-regulated the activation of Erkl/2/MAPK pathway.
引文
1. Griffiths CEM, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet 2007 Jul 21; 370 (9583):263-271
    2.丁晓岚,王婷琳,沈佚葳等.中国六省市银屑病流行病学调查.中国皮肤性病学杂志[J].2010,24(7):598-601
    3. Rapp SR, Feldman SR, Exum ML, et al. Psoriasis causes as much disability as other major medical diseases. J Am Acad Dermatol 1999 Sep; 41 (3 Pt 1):401-407
    4. Yang YW, Keller JJ, Lin HC. Medical comorbidity associated with psoriasis in adults:a population-based study.Br J Dermatol 2011 Nov; 165 (5):1037-1043
    5. Uyemura K. Yamamura M. Fivenson D F,et al. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response.J Invest Dermatol 1993;101:701-705
    6. Nograles K E. Zaba L C. Guttman-Yassky E etal. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways.Br. J.Dermatol.2008:159(5):1092-1102
    7. Ouyang W, Kolls JK, Zheng Y.The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity.2008,28(4):454-467
    8. Trifari S, Kaplan CD, Tran EH, et al.Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)17, T(H)1 and T(H)2 cells. Nat Immunol.2009,10(8):864-871
    9. Duhen T, Geiger R, Jarrossay D, et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol,2009,10(8):857-863
    10. Kotenko SV. Izotova LS. Mirochnitchenko OV et al. Identification of the functional interleukin-22(IL-22) receptor complex:the IL-10R2 chain (IL-10R_) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J. Biol. Chem.2001.276:2725-2732.
    11. Wolk K, Haugen HS, Xu W,et al. IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med,2009, 87(5):523-536
    12. Ouyang W. Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease Cytokine Growth Factor Rev,2010,21(6):435-44.
    13. Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T (H) 17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis.Nature 2007,445(7128):648-651
    14. Sano S,Chan KS,Carbajal S,et al.Sata3 links activated keratinocytes and immunocytes required for development for Psorasis in a novel transgenic mouse model. Nat Med,2005,11(1):43-49
    15. Lejeune, D., L. Dumoutier, S. Constantinescu,et al. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK,and p38 MAP kinase pathways in a rat hepatoma cell line: pathways that are shared with and distinct from IL-10. J. Biol. Chem. 2002.277:33676-33682.
    16. Gu H, Neel BG. The "Gab" in signal transduction. Trends Cell Biol.2003.13(3):122-130
    17. Nishida K, Hirano T. The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer Sci,2003,94(12):1029-1033
    18. Kallin A, Demoulin JB, Nishida K, et al. Gab1 contributes to cytoskeletal reorganization and chemotaxis in response to platelet-derived growth factor. J Biol Chem 2004.279(17):17897-17904
    19. Laramee M, Chabot C, Cloutier M, et al. The scaffolding adapter Gabl mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation. J Biol Chem.2007,282(11):7758-7769
    20. Cai T, Nishida K, Hirano T,et al. Gabl and SHP-2 promote Ras/MAPK regulation of epidermal growth and differentiation. J Cell Biol.2002,159(1):103-112
    21. Sa'rmay G, Angyal A, Kerte'sz K, et al. The multiple function of Grb2 associated binder (Gab) adaptor/scaffolding protein in immune cell signaling. Immuno Lett,2006,104:76-82
    22. Meng S, Chen Z, Munoz-Antonia T, et al.Participation of both Gabl and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochem J,2005 391 (Pt 1):143-151
    23. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med,2009,361(5):496-509.
    24. Laws PM, Young HS. Current and emerging systemic treatment strategies for psoriasis. Drugs 2012,72 (14):1867-1880
    25.贾晓光.紫草[M].中国中医药出版社,2001,1:1-11.
    26. Singh F,Gao D, Lebwohl MG, et al.Shikonin modulates cell proliferation by inhibiting epidermal growth factor signaling in human epidermoid carcinoma cells. Cancer lett 2003(200):115-121.
    27. Andujar I, Recio MC, Bacelli T, et al. Shikonin reduces oedema induced by phorbol ester by interfering with IkBa degradation thus inhibiting translocation of NF-kB to the nucleus. Br J Pharmacol 2010,160:376-388
    28. Cheng YW, Chang CY, Lin KL, et al. Shikonin derivatives inhibited LPS-induced NOS in RAW264.7 cells via downregulation of MAPK/NF-kB signaling. J Ethnopharmacol 2008, 120:264-271.
    29. Dhawan P, Richmond A. A novel NF-kB-inducing kinase-MAPK signalling pathway up-regulates NF-kB activity in melanoma cells. J Biol Chem 2002,277:7920-7928.
    30.王景山.紫草注射液治疗银屑病的疗效观察[J].中华皮肤科杂志,1981,14(1):40
    31.孙丽蕴,邓丙戌,陈凯,等.靛玉红紫草素对角质形成细胞株凋亡的影响[J].中国皮肤性病学杂志,2004,18(6):336-338.
    32.吴晓霞,周武庆.紫草素对角质形成细胞株增殖的抑制及凋亡的作用[J].中国麻风皮肤病杂志,2003,19(6):563-566
    33. Meng SS,Gui Q,Xu Q,et al.Association of Shp2 with phosphorylated IL-22R1 is required for interleukin-22-induced MAP Kinase Activation[J]. J.Mol. Cell. Biol.2010,2:223-230.
    34. Sabat R. Wolk K. Research in practice:IL-22 and IL-20:significance for epithelial homeostasis and psoriasis pathogenesis. J Dtsch Dermatol Ges,2011,9(7):518-523
    35. Zhang X,Yang D,Ma S,et al.Up-regualtion of activitives of mitogen-activated protein kinases in psoriatic lesions. J Dermatol Sci,2005,37(2):118-119
    1. Erin F, Erin H, Iliyana S et al. Pathophysiology of psoriasis:recent advances on IL-23 and Th17 cytokines.Curr Rheumatol Rep,2007,6:461-467
    2. Ma HL,Liang S,Li J, et al.IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest,2008,118(2):597-607.
    3.Yamamoto M, Imai Y,Sakaguchi Y, et al. Serum cytokines correlated with the disease severity of generalized pustular psoriasis.Dis Markers,2013,34:153-161
    4. Lo YH, Torii K, Saito C,et al. Serum IL-22 correlates with psoriatic severity and serum IL-6 correlates with susceptibility to phototherapy, J Dermatol Sci 58 (2010),225-227.
    5. Sa SM, Valdez PA, Wu J, Jung K, Zhong F, Hall L, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 2007; 178:2229-2240.
    6. Wolk K, Witte E, Wallace E,et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes:a potential role in psoriasis. Eur. J. Immunol.2006.36:1309-1323
    7. Nickoloff, B. J. & Nestle, F. O. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J. Clin. Invest,2004,113,1664-1675
    8 Boniface K, Bernard FX, Garcia M, et al.IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol,2005,174(6):3695-3702
    9. Ouyang W. Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease. Cytokine & Growth Factor Rev,2010,21:435-441
    10. Nograles K E. Zaba L C. Guttman-Yassky E etal. Thl7 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways.Br. J.Dermatol.2008:159(5):1092-1102
    11. Glaser R, Harder J, Lange H, et al. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol.2005.6:57-64.
    12 Thorey IS, Roth J, Regenbogen J,et al.The Ca2+-binding proteins S100A8 and S100A9 are encoded by novel injury-regulated genes. J. Biol. Chem.2001.276:35818-35825.
    13. Mehul B, Bernard D, Schmidt R. Calmodulin-like skin protein:a new marker of keratinocyte differentiation. J. Invest. Dermatol,2001,116(6):905-909
    14. Singh F,Gao D, Lebwohl MG, et al.Shikonin modulates cell proliferation by inhibiting epidermal growth factor signaling in human epidermoid carcinoma cells. Cancer Lett, 2003,200:115-121.
    15.王景山.紫草注射液治疗银屑病的疗效观察.中华皮肤科杂志,1981,14(1):40
    16.朱树宽,郭新.紫草重用善治银屑病.中医杂志,1996,37:454
    17吴晓霞,周武庆.紫草素对角质形成细胞株增殖的抑制及凋亡的作用.中国麻风皮肤病杂志,2003,19(6):563-566
    18. Wolk K, Haugen HS, Xu W, et al.IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med,2009, 87(5):523-536
    19 Btlchau AS. Gauo BL. Innate Immunity and antimicrobial defense systems in psoriasis. Clin Dermatol,2007,25(6):616-624
    1. Dumoutier L. Louahed J. Renauld J C. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9.J Immunol,2000,164(4):1814-1819.
    2. Ouyang W, Kolls JK, Zheng Y.The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity.2008,28(4):454-467
    3.Trifari S, Kaplan CD, Tran EH, et al.Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)17, T(H)1 and T(H)2 cells. Nat Immunol.2009,10(8):864-871
    4. Boniface K, Bernard FX, Garcia M, et al.IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol,2005, 174(6):3695-3702
    5. Wolk K, Witte E, Wallace E,et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes:a potential role in psoriasis. Eur. J. Immunol.2006.36:1309-1323
    6. McKenzie RC, Sabin E. Aberrant signalling and transcription factor activation as an explanation for the defective growth control and differentiation of keratinocytes in psoriasis:a hypothesis. Exp Dermatol,2003;12:337-345.
    7. Johansen C, Kragballe K, Westergaard M, et al. The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin.Br J Dermatol 2005; 152:37-42.
    8. Gobbi G, Ricci F, Malinverno C, et al. Hydrogen sulfide impairs keratinocyte cell growth and adhesion inhibiting mitogen-activated protein kinase signaling. Lab Invest 2009;89:994-1006.
    9. Zhang XY,Yang DQ, Ma SQ,et al.Up-regulation of activities of mitogen-activated protein kinase in psoriatic lesions.J Dermatol Sci,2005,37(2):118-119
    10. Sano S,Chan KS,Carbajal S,et al.Sata3 links activated keratinocytes and immunocytes required for development for Psorasis in a novel transgenic mouse model. Nat Med,2005,11(1):43-49
    11. Weaver CT.,Hatton RD, Mangan PR,et al, IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol,2007,25:821-852.
    12. Zheng Y,Danilenko DM, Valdez P,et al. Interleukin-22,a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature,2007,445:648-651.
    13. Wolk K, Haugen HS, Xu W, et al. IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med,2009,87:523-536.
    14. Lejeune D, Dumoutier L, Constantinescu S, et al. Interleukin-22 (IL-22) Activates the JAK/STAT, ERK, JNK, and p38 MAPKinase Pathways in a Rat Hepatoma Cell Line. J Biol Chem,2002,277(37):33676-33682
    15. Ouyang W.Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease. Cytokine & Growth Factor Rev,2010,21:435-441
    16. Yu XJ, Li CY, Dai HY, et al. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp Mol Pathol 2007;83:413-418
    17. Mirandola P, Gobbi G, Micheloni C. et al.Hydrogen sulfide inhibits IL-8 expression in human keratinocytes via MAP kinase signaling. Lab Invest,2011,91:1188-1194
    18. Hsu HC, Tsai WH, Chen PG, et al. In vitro effect of granulocyte-colony stimulating factor and all-trans retinoic acid on the expression of inflammatory cytokines and adhesion molecules in acute promyelocytic leukemic cells. Eur J Haematol 1999;63:11-18.
    19. Takahashi H, Ibe M, Nakamura S et al. Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis.J Dermatol Sci 2002; 30:94-99.
    20. Sabat R, Wolk K. Research in practice:IL-22 and IL-20:significance for epithelial homeostasis and psoriasis pathogenesis.J Dtsch Dermatol Ges,2011,9(7):1153-1163.
    1. Nishida K. and Hirano T. The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer Sci,2003,94:1029-1033
    2. Neel BG, Gu H, Pao L. The'Shp'ing news:SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci.2003,28:284-293
    3.Cunnick JM, Dorsey JF, Munoz-Antonia T, et al. Requirement of SHP2 binding to Grb2-associated binder-1 for mitogen-activated protein kinase activation in response to lysophosphatidic acid and epidermal growth factor.J Biol. Chem,2000,275:13842-13848
    4. Cunnick JM, Mei L, Doupnik CA, et al. Phosphotyrosines 627 and 659 of Gabl constitute a bisphosphoryl tyrosine-based activation motif (BTAM) conferring binding and activation of SHP2. J Biol Chem,2001,276:24380-24387
    5. Cai T, Nishida K, Hirano T, et al.Gabl and SHP-2 promote Ras/MAPK regulation of epidermal growth and differentiation.J Cell Biol,2002,159:103-112.
    6. Meng SS, Chen ZM, MUNOZ-ANTONIA T, et al. Participation of both Gab1 and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochem J,2005,391:143-151
    7. Meng SS, Gui Q, Qing X, et al. Association of Shp2 with phosphorylated IL-22R1 is required for interleukin-22-induced MAP kinase activation.J Mol Cell Biol,2010,2(4):223-230.
    8. Gu H, Neel BG. The "Gab" in signal transduction. Trends Cell Biol.2003.13(3):122-130
    9. Holgado-Madruga M, Emlet DR, Moscatello DK, et al. Grb2-associated docking protein in EGF-and insulin-receptor signalling," Nature,1996,379(6565):560-564
    10. Nakaoka Y, Komuro I. Gab Docking Proteins in Cardiovascular Disease, Cancer, and inflammation.Int J Inflam,2013, impress, Article ID 141068,10 pages
    11. Maroun CR, Naujokas MA, Park M. Membrane targeting of Grb2-associated binder-1 (Gabl) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell 2003; 14:1691-708.
    12. Nishida K, Wang L,Morii E, et al, Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood,2002,99(5):1866-1869
    13. Yu M, Luo J, Yang W, et al. The scaffolding adapter Gab2, via Shp-2, regulates Kit-evoked mast cell proliferation by activating the Rac/JNK pathway. J Biol Chem,2006,281(39): 28615-28626.
    14. Kuwano Y, Fujimoto M, Watanabe R, et al.The involvement of Gabl and PI 3-kinase in betal integrin signaling in keratinocytes. Biochem Biophys Res Commun,2007, 361(1):224-229
    15. Schaeper U, Vogel R, Chmielowiec J,et al. Distinct requirements for Gab1 in Met andEGF receptor signaling in vivo. Proc Natl Acad Sci,2007,104(39):15376-15381.
    16. Halfter UM, Derbyshire ZE, Vaillancourt RRInterferongamma-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin II and SHP2 in keratinocytes. Biochem J,2005,388(Pt 1):17-28.
    1. Cai T, Nishida K, Hirano T, et al.Gab1 and SHP-2 promote Ras/MAPK regulation of epidermal growth and differentiation.J Cell Biol,2002,159:103-112.
    2. Neel BG, Gu H, Pao L. The'Shp'ing news:SH2 domaincontaining tyrosine phosphatases in cell signaling. Trends Biochem Sci,2003,28(6):284-293
    3. Cunnick J M,'Mei L, Doupnik C A, et al. Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine-basedactivation motif (BTAM) conferring binding and activation of SHP2.J Biol Chem,2001,276(26):24380-24387
    4. Koyama T, Nakaoka Y, Fujio Y,et al. Interaction of Scaffolding Adaptor Protein Gab1 with Tyrosine Phosphatase SHP2 Negatively Regulates IGF-I-dependent Myogenic differentiation via the ERK1/2 Signaling Pathway. J Biol Chem,2008,283(35):24234-24244.
    5. Laramee M,Chabot C,Cloutier M,et al.The scaffolding adapter Gabl mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation.J Biol Chem,2007,282(11):7758-7769
    6. Kallin A,Demoulin JB,Nishida K,et al. Gabl contributes to cytoskeletal reorganization and chemotaxis in response to platelet-derived growth factor.J Biol Chem,2004, 279(17):17897-17904.
    7. Caron C,Spring K,Laramee M,et al. Non-redundant roles of the Gab1 and Gab2 scaffolding adapters in VEGF-mediated signaling,migration, and survival of endothelial cells. Cell Signal,2009,21(6):943-953.
    8. Wang D,Paria BC,Zhang Q,et al. A role for Gab1/SHP2 in thrombin activation of PAK1: gene transfer of kinase-dead PAK1 inhibits injury-induced restenosis.Circ Res, 2009,104(9):1066-1075.
    9. Lu Y,Xiong Y,Huo Y,et al. Grb-2-associated binder 1(Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A-endothelial NOS pathway Proc Natl Acad Sci USA,2011,108(7):2957-2962.
    10. Abreu MT, Hughes WE, Mele K, et al. Gab2 regulates cytoskeletal organization and migration of mammary epithelial cells by modulating RhoA activation. Mol Biol Cell. 2011,22(1):105-116.
    11. Bocanegra M, Bergamaschi A, Kim YH, et al. Focal amplifi cation and oncogene dependency of GAB2 in breast cancer. Oncogene,2010,29:774-779.
    12. Horst B,Gruvberger-Saal SK,Hopkins BD,et al. Gab2-mediated signaling promotes melanoma metastasis. Am J Pathol 2009,174:1524-1533.
    13. Lee SH, Jeong EG,Nam SW,et al.Increased expression of Gab2, a scaffolding adaptor of the tyrosine kinase signalling, in gastric carcinomas. Pathology,2007,39:326-9
    14. Xu XL, Wang X, Chen ZL,et al.Overexpression of Grb2-associated binder 2 in human lung cancer.Int J Biol Sci,2011:7:496-504.
    15. Shi LH,Sun XN, Zhang J,et al. Gab2 expression in glioma and its implications for tumor invasion.Acta Oncologica,2012; Early Online:1-12.
    16. Kuwano Y, Fujimoto M, Watanabe R, et al. The involvement of Gabl and PI 3-kinase in betal integrin signaling in keratinocytes. Biochem Biophys Res Commun,2007, 361(1):224-229.
    17. Schaeper U, Vogel R, Chmielowiec J, et al. Distinct requirements for Gab1 in Met andEGF receptor signaling in vivo. Proc Natl Acad Sci USA,2007,104(39):15376-15381.
    18. Halfter UM, Derbyshire ZE, Vaillancourt RR, Interferongamma-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin Ⅱ and SHP2 in keratinocytes. Biochem J,2005,388(Pt 1):17-28.
    19. Brummer T, Schramek D, Hayes VM,et al. Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. J Biol Chem,281(1):626-637.
    1.贾晓光.紫草[M].中国中医药出版社,2001,1:1-11
    2. Singh F, Gao D, Lebwohl MG, et al.Shikonin modulates cell proliferation by inhibiting epidermal growth factor signaling in human epidermoid carcinoma cells. Cancer Lett 2003(200):115-121.
    3. Chen X, Yang L, Oppenheim JJ, et al. Cellular Pharmacology Studies of Shikonin Derivatives. Phytother. Res.2002,16:199-209
    4. Wang R, Yin R, Zhou W et al. Shikonin and its derivatives:a patent review. Expert Opin.Ther. Patents,2012,22(9):977-997
    5. Kaith BS, Kaith NS, Chauhan NS. Anti-inflammatory effect of Anebia euchronma root extracts in rats. J Ethnopharmacol,1996,55:77-80.
    6. Andujar I, Recio MC, Bacelli T, et al. Shikonin reduces oedema induced by phorbol ester by interfering with IkBa degradation thus inhibiting translocation of NF-kB to the nucleus. Br J Pharmacol 2010,160:376-388
    7. Ishida T, Sakaguchi I,et al. Protection of Human Keratinocytes from UVB-Induced Inflammation Using Root Extract of Lithospermum erythrorhizonBiol. Pharm. Bull.2007,30(5) 928-934
    8. Lu L, Qin A, Huang H, et al. Shikonin extracted from medicinal Chinese herbs exerts anti-inflammatory effect via proteasome inhibition. Eur J Pharmacol,2011; 658:242-247
    9. Sakaguchi I; Tsujimura M; Ikeda N, et al.Granulomatous tissue formation of shikon and shikonin by air pouch method. Biol Pharm Bull,2001,24:650-655.
    10. Mani H; Sidhu GS; Singh AK et al. Enhancement of wound healing by Shikonin analogue 93/637 in normal and impaired healing. Skin Pharmacol. Physiol.,2004,17,49-56.
    11.胡艳萍.紫草素增加小鼠肝癌和Lewis肺癌放射化疗效应的初步研究.肿瘤防治研究,1991,18(2):711-713.
    12.刘立华,马赤.紫草萘醌提取物对小鼠NK细胞活性的增强作用.中国免疫学杂志,1990,6:154-155.
    13. Wu Z, Wu LJ, Li L, et al. P53-mediated cell cycle arrest and apoptosis induced by shikonin via a caspase-9-dependent mechanism in human malignant melanoma A375-S2 cells.J Pharmacol Sci 2004;94:166-76
    14. Chen J, Xie J, Jiang Z, et al. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 2011; 30:4297-306.
    15. Folkman J. Antiangiogenesis in cancer therapy-endoStatin and its mechanisms of action. Exp Cell Res 2006; 312:594-607.
    16. Lee HJ, Magesh V, Nam D, et al.Shikonin, acetylshikonin, and isobutyroylshikonin inhibit VEGF-induced angiogenesis and suppress tumor growth in lewis lung carcinoma-bearing mice.Yakugaku Zasshi 2008; 128:1681-1688.
    17.刘青梅.不同剂量紫草醇提取物对表皮细胞过度增殖的实验研究.临床医药实践杂志,2003,12(7):485-487
    18.刘青梅.紫草提取物对小鼠尾部角化异常的恢复作用.临床皮肤科杂志,2003,32(8):449-450.
    19. Miao H,Zhao LY,Li CL,et al. Inhibitory Effect of Shikonin on Candida albicans Growth. Biol. Pharm. Bull.2012,35(11) 1956-1963.
    20. Chen X, Yang L, Zhang N, et al. Shikonin, a component of Chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob Agents Chemother 2003; 47:2810-2816.
    21.李惠兰,秦剑,何洪静,等.滇紫草、新疆紫草和露蕊滇紫草提取物药效学研究.中国民族民间医药杂志,2002,56(2):174-175.
    22.王景山.紫草注射液治疗银屑病的疗效观察.中华皮肤科杂志,1981,14(1):40
    23.王雅娟,石景伟,董西林,等.紫草活血汤治疗银屑病的疗效及对血液流变学的影响.西安交通大学学报,2003,24(3):275-277.
    24.朱树宽,郭新.紫草重用善治银屑病.中医杂志,1996,37(8):454-455
    25.张统冉.紫柏牡丹汤为主治疗重症银屑病18例.浙江中医杂志,1995,30(8):439.
    26.徐连英.紫草汤加减治疗皮肤病60例.河北中医,1994,16(1):23.
    27.赵守讯,黄泰康,丁志遵,等,主编.紫草.中药辞海(第三卷).北京:中国医药科技出版 社,1997.831-839.
    28.郑虎台,董泽宏,佘靖,主编.紫草.中药现代研究与应用(第五卷).北京:学苑出版社,1998.4370-4392.
    29.孔祥梅,韩清,赵习德.紫草善治带状疱疹.中医杂志,1996,37(8):453.
    30.秦发中.三紫汤治疗缠腰火丹84例.中医杂志,1984,25(4):325-326.
    31.侯新安.紫草凉血汤治疗结节性红斑30例.陕西中医.2006,34(12):39
    32.李加宁.紫草用于瘀热型过敏性紫癜.中医杂志,1996,37(4):199
    33.丁宁,王亚苓.紫草治疗过敏性紫癜.中医药信息,1997,14(3):
    34.黄道生.紫草治疗网状青斑.中医杂志,1996,37(8):454
    35.周延萌,高允生.中药紫草的药理作用于临床应用.医药导报.2008,27(7):786-788.
    1.Christophers E. Psoriasis--epidemiology and clinical spectrum. Clin Exp Dermatol 2001;26(4):314-320.
    2.丁晓岚,王婷琳,沈佚葳等.中国六省市银屑病流行病学调查.中国皮肤性病学杂志.2010,24(7):598-601
    3. Nograles KE,Davidovici B,Krueger JG. New insights in the Immunologic Basis of Psoriasis. Semin Cutan Med Surg.2010,29(1):3-9.
    4.Uyemura K. Yamamura M. Fivenson D F,et al. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol 1993; 101:701-705
    5.Nograles K E. Zaba L C. Guttman-Yassky E etal. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways.Br. J.Dermatol.2008:159(5):1092-1102
    6. Dumoutier L, Louahed J, Renauld JC. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 2000; 164:1814-1819.
    7.Xie MH, Aggarwal S, Ho WH, et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptorrelated proteins CRF2-4 and IL-22R. J Biol Chem 2000; 275:31335-9.
    8.Kotenko SV, Izotova LS, Mirochnitchenko OV, et al. Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 2001; 166:7096-103.
    9.Xu W, Presnell SR, Parrish-Novak J, et al. A soluble class Ⅱ cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc Natl Acad Sci U S A 2001; 98:9511-9516.
    10.Wolk K, Kunz S, Asadullah K, Sabat R. Cutting edge:immune cells as sources and targets of the IL-10 family members? J Immunol 2002; 168:5397-402.
    11.Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6: 1123-1132.
    12. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6:1133-1141.
    13. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008; 28:454-467.
    14. Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203:2271-9.
    15 Zheng Y, Danilenko D, Valdez P, et al.Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007; 445:648-651.
    16. Mangan PR, Harrington LE, O'Quinn DB, et al.Transforming growth factor-beta induces development of the T(H)17 lineage.Nature 2006;441:231-234.
    17. Goto M, Murakawa M, Kadoshima-Yamaoka K, et al. Murine NKT cells produce Th17 cytokine interleukin-22. Cell Immunol 2009; 254:81-84.
    18 Trifari S, Kaplan CD, Tran EH,et al. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17,T(H)1 and T(H)2 cells. Nat. Immunol.2009.10:864-871
    19. Wolk K, Kunz S, Witte E, et al. IL-22 increases the innate immunity of tissues. Immunity 2004; 21:241-254.
    20. Ouyang W, Valdez P. IL-22 in mucosal immunity. Mucosal Immunol,2008,1:335-338.
    21.Lejeune D, Dumoutier L, Constantinescu S, et al. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAPKinase Pathways in a Rat Hepatoma Cell Line. J Biol Chem,2002,277(37):33676-33682
    22. Zhu XF,Li ZL,Pan WY,et al. Participation of Gabl and Gab2 in IL-22-mediated keratinocyte proliferation,migration, and differentiation Mol cell Miochem,2012,369(1-2):255-266
    23. Wolk K, Haugen HS, Xu WF,et al. IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med,2009,87(5):523-536.
    24. Iversen L,Johansen C,Kragballe K. Signal transduction pathways in human epidermis. Eur J Dermatol 2005; 15(1):4-12
    25.Nakaoka Y,Komuro I. Gab Docking Proteins in Cardiovascular Disease,Cancer, and inflammation.Int J Inflam,2013, impress, Article ID 141068,10 pages
    26. Neel BG, Gu H, Pao L. The'Shp'ing news:SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci.2003,28:284-293
    27.Cunnick JM, Dorsey JF, Munoz-Antonia T, et al. Requirement of SHP2 binding to Grb2-associated binder-1 for mitogen-activated protein kinase activation in response to lysophosphatidic acid and epidermal growth factor.J. Biol. Chem,2000,275:13842-13848
    28. Maroun CR, Naujokas MA, Park M. Membrane targeting of Grb2-associated binder-1 (Gab1) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell 2003; 14:1691-708.
    29. Cai T, Nishida K, Hirano T, et al.Gabl and SHP-2 promote Ras/MAPK regulation of epidermal growth and differentiation.J Cell Biol,2002,159:103-112.
    30 Meng SS, Chen ZM, MUNOZ-ANTONIA T, et al. Participation of both Gabl and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochem J,2005,391:143-151
    31. Meng SS, Gui Q, Qing X, et al. Association of Shp2 with phosphorylated IL-22R1 is required for interleukin-22-induced MAP kinase activation.J Mol Cell Biol,2010,2(4):223-230
    32. Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mtor pathway-beyond rapalogs. Oncotarget 2010; 1:530-43.
    33.Lizcano JM, Alessi DR. The insulin signalling pathway. Curr Biol 2002; 12:R236-238.
    34.Mitra A.,Raychaudhuri SK, Raychaudhuri SP.IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine,2012,60(1):38-42.
    35. Wolk K, Witte E, Wallace E,et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes:a potential role in psoriasis. Eur. J. Immunol.2006.36:1309-1323
    36.Sa SM, Valdez PA, Wu J, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 2007; 178:2229-2240.
    37. Sano S, Chan KS, Carbajal S, et al.Sata3 links activated keratinocytes and immunocytes required for development for Psorasis in a novel transgenic mouse model. Nat Med, 2005,11(1):43-49
    38. Boniface K, Bernard FX, Garcia M, et al.IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 2005; 174:3695-3702.
    39. Wolk K, Witte E, Wallace E, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, andmobility in keratinocytes:a potential role in psoriasis Eur. J. Immunol.2006.36:1309-1323
    40. Sabat R, Wolk KResearch in practice:IL-22 and IL-20:significance for epithelial homeostasis and psoriasis pathogenesis. J Dtsch Dermatol Ges,2011,9(7):1153-1163.
    41. Ouyang W.Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease Cytokine & Growth Factor Reviews 2010,21:435-441.
    42. Yeilding N, Szapary P, BrodmErkel C, et al. Development of the IL-12/23 antagonist ustekinumab in psoriasis:past, present, and future perspectives.Ann N Y Acad Sci,2011,1222:30-39
    43. Mitra A,Fallen RS,Lima HC.Cytokine-Based Therapy in Psoriasis.Clinic Rev Allerg Immunol.2012,DOI 10.1007/s12016-012-8306-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700