丙烯酸酯橡胶合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用乳液聚合法制备丙烯酸酯橡胶(ACM),探讨了引发剂体系对聚合反应速率的影响及反应条件对凝胶形成的影响;首次采用双螺杆脱挥连续溶液聚合法制备ACM,研究了聚合主单体的组成和脱挥条件对ACM生胶性能的影响;进行了ACM硫化工艺的优化,考察了硫化剂及炭黑用量对硫化胶性能的影响;采用了表面改性白炭黑填充环氧型ACM,对比了不同改性方法的白炭黑在橡胶基体中的分散性及对其力学性能的影响;探讨了环氧型ACM对尼龙6(PA6)的改性,主要研究热性能、结晶性能及力学性能方面的改性。具体包括以下几个方面:
     1、乳液聚合法制备ACM:将丙烯酸丁酯(BA)与甲基丙烯酸缩水甘油酯(GMA)进行乳液共聚合以制备环氧型ACM,通过对聚合反应速度和生胶性能的研究,探讨了聚合反应的方法及工艺参数;并通过对聚合物中凝胶含量及环氧基团开环率的对比研究,探讨不同反应条件对凝胶含量的影响。实验结果表明,在反应体系中加入一定量的第二单体丙烯酸乙酯(EA),选择氧化还原复合引发体系,同时将反应温度控制在25-30℃并在饥饿状态下投料可抑制BA的分子内转移和GMA中的环氧基开环,最终可以使聚合物中凝胶含量控制在2.9%以下,达到国外同类产品的水平。
     2、连续溶液聚合法制备ACM:分别采用以BA和EA为聚合主单体合成ACM,研究主单体组成和脱挥条件的变化对ACM生胶性能的影响。改变聚合主单体的组成对分子量及分布和脱挥后残留的挥发份影响不大,但随着聚合主单体组成的变化,ACM的玻璃化温度发生变化。脱挥温度和脱挥挤出机转速的变化引起ACM分子量、玻璃化转变温度和脱挥后残留的挥发份的变化,脱挥温度提高,ACM的分子量有所增加,分子量分布宽度变宽,玻璃化转变温度升高;改变脱挥挤出机转速提高,ACM的分子量略有降低,分子量分布稍有变宽,玻璃化转变温度变化不大。脱挥温度和脱挥挤出机转速均使脱挥后残留的挥发份含量下降。
     3、ACM硫化技术和配方的研究:从橡胶的硫化机理及填充补强机理入手,将硫化体系和填充体系对ACM的性能进行研究和实验对比。结果表明硫化剂和炭黑用量对ACM的性能有预期的影响,其中邵尔硬度随着硫化剂用量和炭黑用量的增加而增加;耐油性随着硫化剂的引入量的增加而增加;硫化剂和炭黑用量对ACM拉伸强度和断裂伸长率的影响规律基本是一致的,随硫化剂和炭黑用量的增加拉伸强度呈先增加后下降的趋势,而断裂伸长率随硫化剂和炭黑用量的增加呈线性下降;硫化剂与促进剂表现为一种硫化协同效应,硫磺用量有一定的临界值,低于临界值0.5(质量百分数),环氧型ACM不能硫化。实验结果表明硫化剂的最佳用量为2%,炭黑用量为50%。
     4、表面改性白炭黑填充ACM性能的研究:将环氧型ACM用不同表面改性的白炭黑进行填充补强,并对其性能进行研究,实验结果表明,在四种不同表面改性白炭黑填充的ACM中,分散剂与偶联剂联合处理的白炭黑和接枝GMA的白炭黑在橡胶基体中分散性较好,且接枝GMA的白炭黑粒子与橡胶基体发生化学作用,粒子被橡胶基体包覆;而力学性能方面则是用接枝GMA的白炭黑填充的ACM性能最好,当白炭黑用量为40%时,其拉伸强度为10.87MPa。
     5、环氧型ACM改性尼龙6的性能研究:将环氧型ACM与尼龙6共混并通过差示扫描量热仪(DSC)、X-射线(WAXD)和偏光显微镜(PLM)对环氧型ACM/PA6共混物的热性能和结晶行为及晶体形貌进行研究。结果表明,随着ACM含量的增加,共混体系的融熔温度(Tm)和结晶温度(Tc)都略有下降;PA6的晶型由于环氧型ACM的加入,也由γ晶型转化为α晶型,并且随着橡胶加入量的增加,结晶度逐渐下降,晶粒尺寸逐渐变小,结晶也越来越不完善。力学性能的实验表明,ACM的加入也使得PA6的缺口冲击强度明显提高。
In this dissertation, studies are mainly focused on the copolymerization, vulcanization and the modification of acrylate rubber prepared by emulsion copolymerization and continuous solution polymerization, including the effect of initiator system on the copolymerization rate, influence of the reactive conditions on the gel content; influence of main monomer composition and off volatile condition on raw rubber performance; the optimization of acrylic rubber vulcanization process, including the influence of cure agent and carbon content on vulcanized rubber properties; and also the modification of acrylic rubber with the addition of grafted silica, including the additive dispersion and mechanical properties of the rubber prepared. Furthermore, the systems of nylon6modified with different concentration of acrylic rubber are also studied in the paper, including the thermal dynamics, crystallization behaviors and mechanical properties. The main contents of studies are shown as the following aspects:
     1. Emulsion copolymerization of acrylate rubber:The epoxy ACM were prepared by emulsion copolymerization of BA and GMA. The reaction conditions and their effect on the gel content of product are discussed by investigating the influence of initiator system on copolymerization rate and comparing of a series of gel contents and epoxy-opening ratios acquired by different reaction parameters. The results show that the gel content can be less than2.9%, reach the level of foreigh similar product, by the feeding of EA as secondary monomer in a "starve" state in the organic redox complex initiating system, temperature of25-30℃, because the intermolecular transferring of BA and ring-opening of epoxy groups of GMA can be restrained successfully.
     2. Continuous solution polymerization of acrylate rubber:In order to obtain the influences of main composition monomer and off volatile condition on raw rubber performance, ACM were prepared by continuous solution polymerization with the main composition monomer of BA and EA, respectively. The molecular weights and distributions obtained are almost the same with different aggregate of main composition monomers, while the glass transition temperature (Tg) of the product varies obviously. The variety of the off-volatile temperature and the revolutions speed results in changes of glass transition temperature (Tg) and molecular weight. The higher temperature off volatile are together with increased molecular weight and widen distribution as well higher glass transition temperature(Tg), while, higher off-volatile revolutions speed leads to lower molecular weight and also wider distribution, as the glass transition temperature(Tg) does not change. The variety of the off-volatile temperature and the revolutions speed results in the droping off-volatile components.
     3. Optimization of acrylic rubber cure process parameter and technique formula: Comparison performed among a series of vulcanization and additive systems designed based on the vulcanization and filling strengthen mechanism. From the experiments results it shows that the vulcanization agent and carbon black volume added are related to the acrylic rubber performance as expected, the more vulcanization agent and carbon black added, the higher Shore hardness and the better oil resistance property obtained, while the tensile strength first increases after declining. The break elongation rate keeps droping. The effect of vulcanization agent and accelerant show a cooperation action and the volume of sulfur shows a critical value of0.5shares. From the experimental results, it is shown that the best usage of vulcanization is2%, carbon black volume is50%.
     4. The effect of grafted silica reinforcing fillers on the performance of acrylic rubber: Experiments of reinforcing the acrylic rubber by the grafted silica with four kinds of different surface modification performed in order to get the information of the effect of the additive on the acrylic rubber mechanical properties. The result indicates that the dispersion property of the GMA grafted silica modified with dispersant and coupling agent is better and more homogeneous, in which there is some chemical reaction between the GMA grafted silica and the rubber substrate, and the particles are covered by the rubber substrate perfectly; in the meantime, the mechanical properties of the grafted silica filled acrylic rubber is best among the four different modified silica-filled rubbers. When the amount of silica is40%, the tensile strength reaches10.87MPa.
     5. The thermal behaviors of nylon6/acrylate rubber (ACM)) blends:Nylon6/acrylate rubber (ACM)) blends are prepared by melt processing and the thermal behaviors have been investigated by differential scanning calorimetry (DSC), The DSC result indicates that the melting temperature, Tm, and the crystallization temperature, Tc, of blends decrease slightly with the increasing of ACM concentration in the blends. The crystallization behavior of the blends studied by wide angle X-ray diffraction (WAXD), and it is revealed that a y→a crystal phase transformation occurs upon addition of ACM into the nylon6, and the crystallinity and crystal size decrease with addition of more ACM into the nylon6. Furthermore, morphologies of nylon6and nylon6/ACM blends are also observed by Polarizing microscope (PLM). It was found that crystal size of nylon6/ACM becomes smaller and crystals of nylon6/ACM are not so perfect any more while the content of ACM increases in the blends. Mechanical experiments show that the notched impact strength of Nylon6/acrylate rubber (ACM)) blends are also enhanced by the addition of modified rubber plastic.
引文
[1]黄兴,林原.新世纪密封技术面临的问题及其发展趋势.润滑与密封.2002,(1):76-78
    [2]Marek G. On frietion reduetion in rubber lip seals for rotating shafts. Sealing Teehnology.1997,40(5):8-11
    [3]张庆虎.汽车用橡胶油封的性能及材料选择.世界橡胶工业.2002,29(1):27-36
    [4]林孔勇,金最娟,梁星宇.橡胶工业手册,第六分册,工业橡胶制品.北京:化学工业出版社,1993:125-146
    [5]唐坤明,黄克俊,李成奇.石墨在聚丙烯酸酯橡胶中的应用.橡胶工业.1995,4(12):723-725
    [6]张在利,曾子敏,李嘉.氟橡胶性能、应用及我国氟橡胶工业发展现状.新型材料.2003,31(2):9-12
    [7]李振环,李妍,法锡涵等.氢化丁睛橡胶性能及其在机械密封中的应用.流体机械.2003,31(9):26-29
    [8]高福年.硅橡胶骨架油封的研制.橡胶工业.2002,49(5):289-291
    [9]Okada O, KeskkulaH, Paul D R.. Fracture toughness of nylon-6 blends with maleated rubbers. Journal of Polymer Science Part B:Polymer Physics.2004,42(9):1739-1758
    [10]Majumdar B, KeskkulaH, Paul D R. Effect of the nature of the polyamide on the properties and morphology of compatibilized nylon/acrylonitrile-butadiene-styrene blends. Polymer.1994,35(25):5468-5477
    [11]孙树林,徐新宇,杨海东等.二元乙丙橡胶的环氧官能化及其增韧尼龙6的研究.高分子学报.2005,1(3):368-373
    [12]赵志正.丙烯酸酯橡胶的耐热性和耐油性.世界橡胶工业.2009,36(11):5-8
    [13]陈启宏,谢军,高燕等.环氧充油型丙烯酸酯橡胶的合成及特性.化工新型材料.2005,8(33):31-34
    [14]Coran A Y, Lee S. New elastomers by reactive processing. Part Ⅱ:Dynamic vulcanization of blends bytrans-esterification. Rubb Chem Technol.1992,65(1):231-344
    [15]梁诚.丙烯酸酯橡胶的生产、改性与应用.化工新型材料.2004,32(4):18-21
    [16]吉静,单绍峰.丙烯酸酯橡胶的研究与应用.橡胶工业.1999,46(7):399-403
    [17]金彰礼,张旭之,陶志华等.丙烯衍生物工学.北京:化工出版社.1995,235-358
    [18]鲍爱华.世界合成橡胶工业进展.现代化工.1990,9(4):17-22
    [19]潘广勤,李克友.丙烯酸酯橡胶的改性及硫化技术.合成橡胶工业.1995,18(6):379-382
    [20]李超英.日本瑞翁公司合成橡胶的发展.现代化工.1991,7(1):44-48
    [21]焦书科.丙烯酸酯橡胶生产技术及其发展.合成橡胶工业.1991,6(5):313-317
    [22]Singa D. Tobing. Andrew Klein. Molecular parameters and their relation to the adhesive performance of emulsion acrylic Pressure-sensitive adhesives. Ⅱ. Effectofcrosslinking. Journal of Applied Polymer Scienee.2001,79(8): 2558-2564
    [23]李克友,徐伟.丙烯酸醋橡胶制品的研制与应用.特种橡胶制品.1991,12(3):30-33
    [24]焦书科,姜健,余鼎声.丙烯酸乙酯与a-烯烃共聚胶的合成.合成橡胶工业.1986,9(1):25-29
    [25]赵震.国外丙烯酸醋橡胶发展概况.合成橡胶工业.1989,12(2):136-141
    [26]吴绍吟,马文石.丙烯酸酯橡胶的加工与性能.特种橡胶制品.1999,20(3):1-5
    [27]唐坤明.国产AR200型ACM的性能及加工工艺研究.特种橡胶制品.1998,(1):14-20
    [28]唐坤明.丙烯酸酯橡胶的生产和应用开发.化工新型材料.1992,11(6):14-18
    [29]Rainer Lichienberger and Hans P Merkle. Intrinsic diffusion coefficients of drugs in pressure-sensitive adhesive polymer masses. International Journal of Pharmaceuties.1990.64(2):117-126
    [30]Rohinton Toddywala and Yie W Chien. Evaluation of silieone-based Pressuresensitive adhesives for transdermal drug delivery. Journal of Controlled Release.1990,14(1):29-41
    [31]成煦,何其佳,张爱民.氯化钙对尼龙6无定形转变过程的在位红外研究.光谱学与光谱分析.2004,24(3):295-298
    [32]Yizhuang Xu, Wenxiu Sun, Weihong Li, et al. Investigation on the interaction between polyamide and lithium salts. Journal of Applied Polymer Science.2000,77(12):2685-2690
    [33]罗毅.改性尼龙6工程塑料的现状和发展趋势.中国塑料.1998,12(5):9-15
    [34]张吉林.尼龙改性研究进展.工程塑料应用.1998,26(1):28-30
    [35]Oshinski, A.J., Keskkula, H. and Paul, D.R.. Rubber toughening of polyamides with functionalized block copolymers:2. Nylon-6. Polymer.1992,33(2):284-293.
    [36]Premphet-Sirisinha K., Chalearmthitipa S. Study on composition and charactieristics of maleated ethylene-octene copolymer prepared by reactive extrusion on themorphology and properties of polyamide6/ethylene-octenecopolymer blends. Polym.Eng.and&Sci.2003,43(2):317-328.
    [37]Wu, S. Phase structure and adhesion in polymer blends:a criterion for rubber toughening. Polymer.1985,43(5): 1855-1866
    [38]Oshinski, A.J., Keskkula, H.and Paul, D.R. Rubber toughening of polyamides with functionalized block copolymers:1.Nylon-6. Polymer.1992,33(2):264-273
    [39]R J MBorggreve, R J Gaymans. ImPact behaviour of nylon-rubberblends:4.Effect of the coupling agent,maleic anhydride. Polymer.1989,30(1):63-70
    [40]唐德敏,许晓秋,冯建新等PA6/EPDM共混体系界面与韧性的研究.天津大学学报.1999.32(2):224-228
    [41]汪晓东,金东吉,金日光.增容剂对尼龙6/乙,烯-醋酸乙烯酯共聚物共混合金的亚微态与力学性能的影响.材料研究学报.1996,10(1):85-89
    [42]汪晓东.多相高分子材料高强超韧化机理与群子标度间相关性的研究:[博士论文].北京化工大学.1996
    [43]邵昉,冯连芳等EPDM异氰酸酯官能化与EPDM/PA6的增容.功能高分子学报.2008,21(3):260-265
    [44]汪晓东,金日光.尼龙6超韧化.合成树脂及塑料.1996,13(4):48-52.
    [45]周伟平,刘先珍等PA6/SEBS/PP-g-MAH的共混改性.高分子材料科学与工程.2004,20(6):203-206
    [46]冯威,罗欣,武德珍等.尼龙6/乙烯-1-辛烯共聚物接枝马来酸酐共混体系的亚微相态与性能.北京化工大学学报.1999,26(1):11-14.
    [47]宋波.聚酰胺6/无机刚性粒子/POE-g-MAH超韧化研究:[博士论文]四川大学.2004
    [48]欧玉春,于中振.尼龙6/高岭土界面相互作用对其复合材料力学性能和流变行为的影响.高分子学报.1992,1(6):736-741
    [49]宋波,黄锐,魏刚.尼龙6-蒙脱土纳米复合材料用POE-g-MAH改性及性能研究.现代化工.2004,24(1):36-39
    [50]徐娜,唐凯等.PA6/PP/SEBS-g-MAH共混物的相容性研究.工程塑料应用.2006,34(9):49-51
    [51]李笃信,贾德民.聚丙烯熔融接枝马来酸二丁酯增容聚丙烯/尼龙6的研究.塑料工业.1998,26(6):7-11
    [52]黄伯芬,邹修文等.PTW反应型增容剂对PA6/PP合金性能的影响.塑料工业.2006,34(12):49-52
    [53]杨红钧,宋波.尼龙6超韧化研究进展.国外塑料.2008,29(9):60-63
    [54]李积迁,何和智.塑料科技尼龙6改性研究进展.2009,37(6):82-85
    [55]Coran A Y, Lee S. New elastomers by reactive processing. Part II:Dynamic vulcanization of blends by trans-esterification. Rubb Chem Technol.1992,65(1):231-344.
    [56]Acrylate rubber vulcanizable compositions. Inventor:Roger E. Morris. Cuyahoga Falls, Ohio. USP:3875092
    [57]郭济中.BA型丙烯酯酯橡胶的制备与硫化.化工新型材料.1996,11(2):20-24
    [58]史新波,何冬学,吴长英等.BJ系列丙烯酸酯橡胶的性能.弹性体.1996,6(2):26-30
    [59]唐坤明,唐坤珍,唐坤平.国产AR-300型丙烯酸酯橡胶的性能研究.橡胶工业.2001,48(12):719-725
    [60]唐坤明,唐坤珍,唐坤平.国产AR-400型超耐寒级丙烯酸酯橡胶的性能研究.特种橡胶制品.2001,22(1):25-30
    [61]许临,李效玉等.环氧型低温丙烯酸酯橡胶的合成及表征.弹性体.1999,8(2):7-11
    [62]陈启宏,谢军等.环氧充油型丙烯酸酯橡胶的合成及特性.化工新型材料.2005,33(8):31-34
    [63]夏宇正,刘文利等.活性氯型丙烯酸酯橡胶的热可逆共价交联及力学性能.合成橡胶工业.2002,27(2):73-77
    [64]C.Plessis, G.Arzamendi, J.R.Leiza. Seeded Semibatch Emulsion Polymerization of n-Butyl Acrylate Kinetics and Structural Properties. Macromolecules.2000,33(6):5041-5047.
    [65]许临,李效玉,夏宇正等.丙烯酸乙酯与甲基丙烯酸缩水甘油酯凝胶含量的形成与控制.高分子学报.1998,12(5):580-585.
    [66]潘广勤,李克友.丙烯酸共聚物中凝胶含量的控制.成都科技大学学报.1966,90(2):73-79
    [67]王作龄编译.丙烯酸酯橡胶及其配方技术.世界橡胶工业.1999,26(5):50-55
    [68]TUNCunc Y, Hasirci N, YESILADA, Et al.Comonomer effects on binding performances and morphology of acrylate-based imprinted polymer. Polymer.2006,47 (20):6931-6940.
    [69]岛司,近藤理,坂井正人Production of acrylic copolymer rubber.日特开:平5-262831.
    [70]藤信一郎,岩永伸一郎,泽田幸广.acrylic copolymer rubber and production日特开:平3-160008.
    [71]东林利也,龟泽光博,官川泰道acrylic copolymer elastomer cyanogroup.日特开:平4-198310.
    [72]古田和美,佐藤正喜,龟泽光博elastomer copolymer日特开:平5-105713.
    [73]梁诚.丙烯酸酯橡胶的生产、应用与市场.中国橡胶.2007,36(6):34-36
    [74]Maxwell.I. A.. Napper. D.H., Gilbert.R.G. Emulsion Polymerizatio n o f Butyl Acrylae. Journal of Chemical Society Faraday Transactions I.1987,43(83):1449-1467.
    [75]高分子实验技术.复旦大学化学系高分子教研组编.上海复旦大学出版社.1983,275-276
    [76]任秀艳,吴广峰,孙树林等.聚合反应条件对甲基丙烯酸缩水甘油酯/丙烯酸丁酯乳液共聚体系凝胶的影响.高分子材料科学与工程.2012,28(2):57-59
    [77]刘忠强.丙烯酸酯橡胶溶液聚合法的研究:[硕士论文]长春工业大学.2010
    [78]G.Mathew, J.M.Rhee, Y.S.Lee, D.H.Park, C.Nah.Cure kinetics of ethylene acrylate rubber/clay nanocomposites. Journal of Industrial and Engineering Chemistry.2008,14(8):60-65
    [79]栗付平,张洪雁.丙烯酸酯橡胶硫化特性的研究.弹性体.1997,(1):16-19
    [80]潘啟聪,罗权焜,徐珊.炭黑对ACM硫化胶性能的影响.特种橡胶制品.2008,29(3):6-10.
    [81]米新艳,刘艳礼等.带甲基侧基的环氧树脂增容剂对炭黑在丁苯橡胶中分散度的影响.高等化学学报.2006,27(10):1991-1995
    [82]王有道.聚丙烯酸酯橡胶加工技术.特种橡胶制品.1992,13(6):47-50
    [83]潘广勤,李克友.聚丙烯酸酯橡胶合成与共混的进展.弹性体.1996,6(3):38-43
    [84]MitsuruKishineTsuyoshiNogychi. Heat-resistantelastomers. Rubber World.1999,219(5):40-47
    [85]高培之.丙烯酸酯橡胶新型硫化剂TCY.原材料.1996,23(3):16-19
    [86]唐坤明.硫化剂TCY在活性氯型聚丙烯酸酯橡胶胶料中的应用研究.橡胶工业.1999,46(10):594-598
    [87]谢军.充油乳聚丙烯酸酯橡胶的合成及其性能研究:[硕士论文].北京化工大学.2003
    [88]万学太摘译.丙烯酸酯类橡胶结构的设计.橡胶译丛.1993,8(1):38-45
    [89]Edwards D C. Polymer-filler interaction in rubber reinforcement. Journal of Materials Science.1990,25(6):4175-4185.
    [90]Wolff S, et al. Filler-elastomer interactions Part Ⅶ Studyon bound rubber.Rubber Chemistry and Technology.1993, 66(2):163-177.
    [91]张立群,贾德民.橡胶的纳米增强技术与理论.2004国际橡胶会议论文集[C].2004,57-66.
    [92]吴友平,贾清秀,刘力等.橡胶增强的理论研究.合成橡胶工业.2004,27(1):1-5.
    [93]关兵峰,魏海捷,马国富等.炭黑填充橡胶补强机理的研究进展.特种橡胶制品.2010,31(2):59-64
    [94]Y.Bomal, R.P.Recherches. Influence of Specific Surface Area and Quantity of Precipitated Silica on The Properties of A Precipitated Silica Filled Natural Rubber. Rubb.Chem.Technol.1993,66(8):685-692
    [95]A.F.Blanchad, Applied Science of Rubber, London,1961
    [96]F.Bueche, Reinforcement of Elastomers, Interscience Publishers,1965
    [97]E.M.Dannenberg. Effects of Surface Chemical Interactions On the Properties of Filler Reinforced Rubbers. Rubber Chemistry and Technology.1975,48(8):410-418
    [98]藤本邦彦.日本プム协会志.1964,37(8):602-605
    [99]Ou YC, Yu Z Z, A.VIDAL, J.B.DONNET. Effects of alkylation of silicafilleron rubber reinforcement. Rubber chemistry and Technology.1994,67(5):834-844
    [100]武卫莉,孙佳俊.新型白炭黑改性橡胶研究.弹性体.2009,19(4):44-47
    [101]姜其斌.炭黑和白炭黑与偶联剂Si-69的相互作用.合成橡胶工业.2003,26(6):362-364
    [102]李光亮.SiO填料对硅橡胶性能的影响.合成橡胶工业.1991,14(6):433-436.
    [103]赵丽春.改性白炭黑对天然橡胶和环氧化天然橡胶共混物力学性能的影响.云南化工.2006,33(6):21-24
    [104]Valeeporn Thammathadanukul John H.O'Haver, et.al. Comparison of rubber reinforcement using various surface-modified precipitated silicas. Journal of Applied Polymer Science.1996,59(11):1741-1750
    [105]赵金义,毕雪玲,周丽玲等.硅烷偶联剂改性白炭黑在丁苯橡胶中的应用.青岛科技大学学报.2004,(2):69-71
    [106]黄忠兵,唐芳琼.二氧化硅/聚苯乙烯单分散性核/壳复合球的制备.高分子学报.2004,12(6):835-838
    [107]任秀艳,吴广峰,张希艳.改性接枝白炭黑填充丙烯酸酯橡胶的性能研究.弹性体.2012,22(2):76-79
    [108]周红军.纳米二氧化硅表面功能化及其表征.仲恺农业技术学院学报.2007,20(1):36-41
    [109]张士齐.超细粒子增强NR聚合物的研究.[硕士论文].南京理工大学.2001
    [110]Friedrich J.Injecction Molding Machine[M].Hanser Publishers.Munich Vienne New York,1994
    [111]曹奇,崔蔚,贾红兵.白炭黑表面改性对NR/BR硫化胶性能的影响.橡胶工业.2001,48(7):389-392
    [112]于欣伟,徐广惠,赵国鹏等.白炭黑结构及其与橡胶性能的关系.橡胶工业.1997,45(1):13-16
    [113]Kudva, R.A., Keskkula, H., Paul, D.R. Properties of Compatibilized Nylon 6/ABS Blends: Part 1:Effect of ABS Type. Polymer.2000,41(7):225-237
    [114]Keskkula, H., Paul, D.R. In:Kohan M.I. editor. Nylon plastics handbook. NewYork:Hanser.1995,23(6): 414-434
    [115]Carone, J.E., Kopcak, U., Goncalves, M.C. In Situ Compatibilization of Polyamide 6/Natural Rubber Blend with Maleic Anhydride.Polymer.2000,41(4):5929-5935
    [116]Lu, M., Keskkula, H., Paul, D.R. Acrylic acid containing copolymers as reactive compatibilitzers for toughening nylon 6. Polymer Engineering & Science.1994,34(8):33-41
    [117]Jha, A. and Bhowmick, A.K. RubberChem.Technol.1997,70798-70811
    [118]Lu, M., Keskkula, H., Paul, D.R. Toughening of Nylon~6 with Grafted Rubber Impact Modifiers. J Appl PolymSci.1995,58(4):1175-1188
    [119]Gonzalez-Montiel A., Keskkula H., Paul, D.R. Impact-modified nylon 6/polypropylene blends:1. Morphology-property relationships, polymer.1995,36(2):4587-4603
    [120]Van Duin, M., Borggreve, R.J.M. In:Al~Malaika S, editor. Reactive modifiers for polymers, London: Blackie Academic and Professional.1997,133-142
    [121]Wu, S. Ageneralized criterion for rubber toughening:The critical matrix ligamentthickness, J. Appl Polym Sci.1998,35(9):549-561
    [122]Borggreve, R.J.M., Gaymans, R.J., Schuijer, J. Impact behavior of nylon-rubber blends:6. Influence of structure on voiding processes, toughening mechanism.Polymer.1989,30(5):78-89
    [123]Borggreve, R.J.M., Gaymans, R.J., Schuijer, J.,IngenHousz, J.F. Brittle ductile transition in nylon rubber blends:effect of rubber concentration and particle size. Polymer.1987,28(8):1489-1496.
    [124]Borggreve, R.J.M., Gaymans, R.J., Schuijer, J. Impact behavior of nylon-rubber blends:6.Influence of structure on voiding processes, toughening mechanism. Polymer.1989,30(5):63-65
    [125]Borggreve, R.J.M., Gaymans, R.J., Schuijer, J. Impact behavior of nylon-rubber blends:6.Influence of structure on voiding processes, toughening mechanism, Polymer.1989,30(5):71-73
    [126]Wu, S. Formation of dispersed phase in incompatible polymer blends:Interfacial and rheological effects. Polym Eng Sci.1987,27(6):335-343
    [127]Abhijit, J., Bhowmick, A. K. Thermal degradation and ageing behaviour of novel thermoplastic elastomeric nylon-6/acrylate rubber reactive blends. Polymer Degradation and Stability.1998,62(5):575-586
    [128]Ren Xiuyan, Wu Guangfeng, Zhang Xiyan. Effect of Acrylate Rubber on Thermal and Crystallization Behavior of Nylon 6. Journalof Elastomers & Plastics.2012,44(1):79-88
    [129]Merz E H, Claver G C, Baer M. Studies on heterogeneous polymeric systems. J.Polym.Sci.1956,,22(10):325-326
    [130]Bucknall C B, Smith R R. Stress-whitening in high-impact polystyrene, polymer.1965,6(8) 437-442
    [131]Newman S, Strella S.Stress-strain behavior of rubber-reinforced galssy polymers. J.Appl.Poly.Sci.1965,9(6): 2297-2302
    [132]Bucknall C B, Clayton D, Keast W E. Rubber-toughening of plastics, Part 2:Creep mechanisms in HIPS/PPO blends. J. Mater, Sci.1972,7(12):1443-1449
    [133]Wu Soheng. Phase structure and adhesion in polymer blends:a criterion for rubber toughening. Polymer.1985, 26(12):1855-1862
    [134]Gaymans R J, Dijkstra K. Comments on percolation model for brittle-tough transition in Nylon/rubber blend. Polymer. 1990,31(5):971-978
    [135]Wu Soheng. A generalized criterion for rubber toughening:the critical matrix ligament thickness. J.Appl.Poly.Sci. 1998,35(2):549-556
    1136]任杰,郑震.弹性体与刚性粒子增韧聚合物的研究进展.建筑材料学报.1988,1(4):354-359
    [137]Hourston D J, SLane, H X Zhang. Toughened thermoplastics:2. Impact properties and fracture mechanisms of rubber modified polybutylene terephthalates. Polymer.1991,32 (3):2215-2220
    [138]Liu. T.X., ChauhariTjiu, W.W., He, C.B., et al. A Processing-Induced Clay Dispersion and Its Effect on the Structure and Properties of Polyamide 6. Polymlnt.2004,53 (6):392-399
    [139]Fornes, T.D., Paul, D.R. Crystallization behavior of nylon 6 nanocomposites. Polymer.2003,44(5):3945-3961
    [140]Murthy, N.S., Aharoni, S.M., Szollosi, A.B. Stable of the y-form and the development a-form in nylon 6. J Polym Sci, Polym Phys Ed.1985,23 (4):2549-2565
    [141]Zhang, C.F., Liu. Y.H., et al. Crystalline behaviors and phase transition during the manufacture of fine denier PA6 fibers.SCIENCE IN CHINA B:CHEM.2009,39 (4):1378-1385
    [142]Murthy, N.S. Metastable crystalline phases in nylon 6. Polym. Commun.1991,32 (2):301-305
    [143]Vasanthan, N. Effect of the microstructure on the dye diffusion and mechanical properties of polyamide-6 fibers. Journal of Polymer Science Part B:Polymer Physics.2007,45 (7):349-357
    [144]Ho, J., Wei, K. Crystal Transformation in Blends of Polyamide 6 and Liquid Crystalline Copolyester. Macromolecules.2000,33 (4):5181-5186
    [145]齐力,林云青,王佛松.高聚物非等温结晶动力学.化学研究与应用.1995,7(2):111-117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700