底排装置强非稳态燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以降低底部排气弹纵向距离散布为目标,以内弹道学、传热学、燃烧学等学科专业知识为基础,利用瞬态测压系统、高速录像系统等实验设备,重点研究底部排气装置在火炮膛内及出炮口所经历的强非稳态工作过程,针对环境条件瞬态变化对底部排气装置工作性能的影响,从底排内弹道角度,对高氯酸铵/端羟基聚丁二烯(AP/HTPB)复合底排药剂(下文中统一称之为AP复合底排药剂或复合底排药剂)及点火具在出火炮炮口前后经受的瞬态泄压这一强非稳态过程中的燃烧行为及工作特性进行了较为系统的理论与实验研究。
     针对某155mm自行加榴炮底排弹采用的AP复合底排药剂,就其基本特性参量展开了实验研究,利用密闭爆发器测量了该复合底排药剂的火药力和气体余容,并根据实验结果拟合得到了该复合底排药在高压条件下的燃速公式:同时采用低压舱测量得到了亚大气压条件下底排药剂燃速的实验结果,拟合得到了低压条件下燃速公式。从而为模拟底排药剂的点火与燃烧提供了依据。
     设计并采用专门半密闭爆发器,并采用高速录像手段,对底部排气装置开展了非稳态燃烧研究,在模拟炮口压力变化的环境压力突降条件下,发现复合底排药剂的燃烧必将经历失稳-熄灭-复燃的强非稳态过程。并且在实验中首次发现,现有某155mm底排装置,在开始工作最初约560ms内,底排装置的喷口可能出现两次或多次欠膨胀超音速流或临界流动,甚至出现震荡(间歇)燃烧情况。在探索和对比实验基础上,提出了抑制和防范底排装置在高降压速率下燃烧失稳的新技术。
     对某155mm自行加榴炮采用的复合底排药剂在瞬态降压条件下的非稳态燃烧行为与规律开展了比较系统的实验与观察,首次发现,AP复合底排药剂在400~1.12×10~4MPa/s的降压速率范围内,其瞬变燃烧行为表现为三种类型,即自动复燃型、振荡燃烧型(临界型)和永久熄灭型。决定AP复合底排药剂瞬变燃烧行为特性的主要因素是降压时的初始压力和降压速率。初始压力越大,降压速率越小,燃烧越趋于稳定。火炮发射条件下,底排药剂在膛内可以实现点火。底排装置出膛口时的瞬态降压速率,必将致使底排药剂燃烧失稳。
     在研究复合底排药剂强非稳态燃烧行为规律基础上,提出了解释振荡燃烧和永久熄火机理,建立了底排燃烧理论模型,推导得到了影响底排燃烧稳定性的公式,从而为解释底排燃烧行为和指导底排药柱及装置的结构设计提供了理论依据。
     采用半密闭爆发器和高速录像实验装置,对不同类型底排点火具在瞬态降压条件下的工作特性进行了比较系统的实验研究,研究结果表明,在模拟底排弹出炮口时经历的压力瞬态下降过程中,首次观察到点火具射流随环境压力变化而变化,底排点火具本身的燃烧稳定性受到高降压速率的严重影响。点火具这种工作特性,主要与点火药剂成分有关。此外,还发现点火射流对底排药柱存在冲击过度,致使底排药柱局部破碎,产生“掉块”现象。
     底排点火药剂中含有重金属成分,是点火射流在底排药柱的燃烧弧面上造成蚀坑的直接原因,蚀坑的直接作用是增强了底排药柱中、前期燃烧的“增面性”,同时又加剧了后期燃烧的“减面性”,从总体上看,底排燃烧时间缩短了。从而使底排工作特性偏离了设计预想。
     在分析现有的固体含能材料点火理论的基础上,侧重采用固相点火模型,结合复合底排药剂在火炮膛内的具体工况,对底排药剂的不同加热点火模式,运用拉氏变换,得到了不同简化分析解。并采用数值传热学,对不同加热点火模式进行了数值计算。这些工作对估算底排药剂不同加热条件下的点火延迟时间和分析点火延迟时间影响因素具有重要的理论意义和工程参考价值。
To reduce the range dispersion of base bleed projectile, the process and characteristics of transient combustion of AP (Ammonium Perchlorate) composite base bleed charge was systematic, ally investigated in theory and experiment. The key issues of this paper are focused on the studies of the intensive unstable working process of base bleed charge in the instant when the projectile is shoting out of the gun muzzle by the using of transient pressure measurement system and high speed digital video camera. The theoretical model based on interior ballistics, heat transfer, combustion is introduced in the study.
     The essential characteristics of AP/Hydroxyl-Terminated Polybutadiene (HTPB) composite base bleed propellant were studied experimentally by a closed bomb. The propellant force and the covolume of the composite grains were measured, and the combustion rate equation of base bleed propellant under high pressure was fitted based on the experiment data. Furthermore, the combustion rate equation under low pressure was fitted based on the data obtained by using a low pressure capsule.
     The special designed semi-closed bomb and a high speed digital video camera system were used to investigate the unstable combustion of base bleed unit. The results show that, under abrupt depressurization, the combustion of composite base bleed charge consequentially experiences a successive process, which is instability, extinguishment, and reignition. A new phenomenon was found first time in this experiment, the underexpanded flow or critical flow appears in the nozzle of base bleed unit twice or more during initial 560ms under depressurization. Based on comparative tests, a new technology was proposed to control the combustion of base bleed grain and avoid burning unstably under high speed depressurization.
     A systematic observation and investigation on the performance and law of unstable combustion of base bleed charge were carried out, and some phenomena were observed for the first time. In the range of depressurization rate from 400MPa/s to 1.12×1O~4MPa/s, there are three kinds of transient combustion of composite base bleed charge, which are reignition, critical combustion (oscillation combustion), and irreversible extinguishment. The initial pressure and the depressurization rate are the key factors which determine the transient combustion of composite base bleed charge. If the initial pressure is higher or the depressurization rate is lower, the combustion is more stable. The base bleed charge can be ignited in bore during gun fire, the transient depressurization rate nearby the gun muzzle makes the combustion unstable. Based on the study, the mechanism to explain oscillation combustion and irreversible extinguishment was proposed, and a combustion model of base bleed charge was established, and a formula about the influence factors of combustion was conducted. Besides, the phenomenon that the over impingement of ignition jet stream to base bleed grain was found in the experiment, then part of base bleed charge is broken and blown out of base bleed chamber.
     To study the transient combustion characteristics and performance of different kinds of igniters under the depressurization, an experiment was performed, by using a semi-closed bomb and a high speed digital video camera. The results show that, the igniter jet stream varies according to the environment pressure and the stability of igniter combustion is affected by the depressurization. The performance of igniter is relevant to the component of ignition powder. Jet stream of igniter produces ablation holes on the circular arc burning surface of base bleed grain because of the heavy metal component in ignition powder. The direct effect of ablation intensifies progressive burning in earlier and intermediate stages of combustion, and intensifies degressive burning in late stage of combustion. In general, combustion time reduces. Consequently, the performance of base bleed unit deviates designation.
     Based on the analysis of ignition theory of solid energetic material, by adopting solid-phase ignition model mainly and taking working condition of composite base bleed charge in-bore into account, a simplified analytical solutions of various heat ignition models of base bleed charge were conducted with Laplace transform. Numerical calculation of heat ignition was processed also. These works are important in theory and can be applied to estimate ignition delay time and analyze the factors that affect ignition delay in various heat conditions.
引文
[1]郭锡福.底部排气弹外弹道学[M].北京:国防工业出版社,1995
    [2]郭锡福,赵子华,张峰.底排装置点火性能对外弹道性能的影响[J].兵工学报弹箭分册,1991,(1):11-15
    [3]Gibeling H J, Buggeln R C. Projectile base bleed technology Part 1:Analysis and Results[R]. AD-A258459, Glastonbury, CT:Scientific Research Associates, Inc., 1992.
    [4]Lieske R F. Determination of aerodynamic drag and exterior ballistic trajectory simulation for the 155mm, DPICM, M864 Base-Burn Projectile[R]. AD-A209510, Maryland:Ballistic Research Laboratory Aberdeen Proving Ground,1989.
    [5]张炎清,赵子华.底排弹射击密集度的试验研究[J].弹道学报,1991,(1):48-54.
    [6]谭俊杰,赵润祥,崔龙波,臧国才.底部排气弹的初步数值模拟[A].中国兵工学会火箭导弹学会论文集[C].1998
    [7]张炎清,赵子华.底部排气弹底排装置点火过程对距离散布的影响[J].弹道学报,1994,(1):53-56.
    [8]张峰.底部排气弹点火具特性对底排工作影响的分析[J].弹道学报,1991,(4):70-75.
    [9]郭锡福.底部排气弹增程率的确定[J].弹道学报,1992,(1):40-45.
    [10]丁则胜,罗荣,陈少松,等.尾部外形对底部排气弹减阻性能的影响[J].弹道学报,1994,(3):74-79
    [11]张炎清,赵子华.某底部排气弹提高射程途径的探讨[J].弹箭与制导学报,1995,(3):50-53.
    [12]华东工学院情报室和弹道研究所.“第一届国际底排弹技术研讨会”译文集[C].1989.
    [13]丁则胜,陈少松,刘亚飞,等.环境温度对底排效应的影响[J].弹道学报,2003,15(1):37-40.
    [14]Bournot H, Daniel E, and Cayzac R. Improvements of base bleed effct using reactive particles[J]. International Journal of Thermal Sciences,2006,1052-1065.
    [15]Kuehner J P, Auderson B B, and Flittner J G. Characteristics of central bleed jet in supersonic axisymmetrie base flow[J]. Journal of Spacecraft and Rockets,2007,44(2): 347-354.
    [16]郭锡福.底部排气弹散布分析[J].兵工学报,1991,(1):82-85
    [17]郭锡福.底排技术发展概况[J].兵工学报弹箭分册,1991,(2):85-94.
    [18]曾仕伦,李迎九.底排弹后体阻力的优化设计[J].弹道学报,1996,(2):60-63.
    [19]丁则胜,刘亚飞,赵子华,等.提高底排减阻增程率的途径[J].弹道学报,1998,10(1):35-40.
    [20]丁则胜,邱光纯,刘亚飞,等.固体燃料底部排气空气动力研究[J].空气动力学学报,1991(3):300-307.
    [21]Sahu J, Nietubicz C J. Navier-Stokes computations of projectile base flow with and without mass injection[R]. AIAA 83-0224, Maryland:U.S. Army Ballistic Research Lab., Aberdeen Proving Ground,1983.
    [22]Herrin J L, Dutton J C. Supersonic base flow experiments in the near-wake of a cylindrical afterbody[R]. AIAA 93-2924, Urbana, Illinios:University of Illinois at Urbana-Chanpaign,1993.
    [23]Kayser L D, Kuzan J D, and Vazquez D N. Ground testing for base-burn projectile systems[R]. AD-A201107, Maryland:Ballistic Research Laboratory, Aberdeen Proving Ground,1988.
    [24]Simon F, Deck S, and Guillen P. Numerical simulation of projectile base flow[A]. 44th AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada:the American Institute of Aeronautics and Astronautics, Inc.2006. AIAA 2006-1116.
    [25]苗会龙,郭锡福.底排火箭混合增程的可行性初探[J].兵工学报弹箭分册,1992(4):1-6
    [26]谭凤岗.改进底排弹质点弹道模拟[J].弹箭技术,1994(4):15-21
    [27]Danberg J E. Analysis of the flight performance 155mm M864 base burn projectile[R]. ADA222624, Maryland:Ballistic Research Laboratory, Aberdeen Proving Ground, 1990.
    [28]单长胜.底排弹弹道计算的一种新方法[J].弹箭技术,1995,(2):20-23
    [29]魏应彬.蒙特卡洛方法在底部排气弹散布计算中的应用[J].弹道学报,1995,7(3):75-79
    [30]魏应彬,赵子华,徐坚,崔俊岭.底部排气弹射程标准化方法研究[J].弹道学报,1996,(2):64-68.
    [31]王树魁,贝静芬.影响底部排气弹增程性能的若干因素[J].现代兵器,1989,(2):29-31
    [32]商国云,吴玉斌,李奎武.底排装药在高速旋转状态下燃速数学模型的探讨[J].弹箭与制导学报,1993,(1):52-58.
    [33]潘功配,李毅,张炎清.AP./HTPB底排药柱点火试验研究[J].含能材料,2001,9(2): 8-10.
    [34]崔艳丽,马宏伟,张炎清等.利用X光高速摄影研究底排药剂燃烧特性[J].弹道学报,2002,14(2):93-96.
    [35]王健,马宏伟,张炎清.底排药柱点火燃烧特性研究[J].弹箭与制导学报,2004,24(2):40-43.
    [36]Matthew Stephens, Rodolphe Carro, Steven Wolf, et al. Performance of AP-basee composite propellant containing nanoscale aluminum[A].41~(st) AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit[C]. Tucson, Arizona:the American Institute of Aeronautics and Astronautics, Inc.,2005. AIAA 2005-4470.
    [37]Makoto Kohga, Saeko Yoshida. Burning rate characteristics of AP-based composite propellant using bimodal AP[A].42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit[C]. Sacramento, California:the American Institute of Aeronautics and Astronautics, Inc.,2006. AIAA 2006-4924.
    [38]Muhammad Mazhar Iabal, and Wang Liang. Modeling of composite porpellant properties based on polymer rheology[A].42~(nd) AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit[C]. Sacramento, California:the American Institute of Aeronautics and Astronautics, Inc.,2006. AIAA 2006-5252.
    [39]杨邦翔,郭锡福.复杂两相流动对底部排气弹底部减阻性能影响的数值分析[J].南京理工大学学报(自然科学版),2001,25(1):28-31.
    [40]Jeong-Yeol Choi, Edward Shin. Numerical study of base-bleed projectile with external combustion[A].41~(st) AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit[C]. Tucson, Arizona:the American Institute of Aeronautics and Astronautics,Inc.,2005.AIAA 2005-4352.
    [41]Frank Simon, Sebastien Deck, Philippe Guillen. Numerical simulations of projectile base flow[A].44~(th) AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada: the American Institute of Aeronautics and Astronautics, Inc.,2006. AIAA 2006-1116.
    [42]Boggs T L. Surface structure of ammonium perchlorate composite propellants[J]. AIAA Journal,1970,8:370-372.
    [43]陆春义,周彦煌,余永刚.高降压速率下复合底排药剂瞬变燃烧特性研究[J].含能材料,2007,15(6):587-591.
    [44]内弹道学[M].南京:华东工程学院103教研室.1978.
    [45]王伯羲,冯增国,杨荣杰.火药燃烧理论[M].第1版.北京:北京理工大学出版 社,1997
    [46]内弹道学[M].南京:华东工学院801教研室.1986.
    [47]官汉章,邹瑞荣.实验内弹道学[M].北京:兵器工业出版社,1997.
    [48]肖育民,李葆萱,刘建琦.密闭燃烧器法测推进剂燃速——两种不同热损失修正方法的比较[J].弹箭技术,1997,(2):14-17.
    [49]胡松启,李葆萱,李逢春等.密闭燃烧器法测高压下推进剂燃速研究[J].含能材料,2005,13(6):189-191.
    [50]Ciepluch C C. Spontaneous reignition of previously extinguished solid propellantsfR]. NASATN D-2167, Washington:NASA,1964.
    [51]陆春义,周彦煌,余永刚,陆欣.底排装置低频振荡燃烧和永久熄灭[J].南京理工大学学报(自然科学版),2009,33(1):112-116.
    [52]Hermance C E, Shinnar R, Summerfield M. Ignition of evaporating fuel in a hot stagnant gas containing an oxidizer[A]. Solid propellant rocket conference[C]. Palo Alto, California:AIAA,1965.
    [53]Price E W, Bradley H H Jr., Dehority G L, et al. Theory of ignition of solid propellants[A].3~(rd) Aerospace Sciences Meeting[C]. New York:AIAA,1966.
    [54]Kulkarni A K, Kumar M, Kuo K K. Review of solid propellant ignition studies[R]. AIAA 80-1210, University Park, Pa:Pennsylvania State University,1980.
    [55]Keller J A, Baer A D, Ryan N W. Ignition of ammonium perchlorate composite propellants by convective heating[R]. AIAA 66-65, Salt Lake City:University of Utah,1966.
    [56]Linan A, and Williams F A. Theory of a reactive solid by constant flux[J]. Combustion Science and Technology,1971,3:91-98.
    [57]Linan A, and Williams F A. Radiant ignition of a reactive solid with in-depth absorption[J]. Combust and Flame,1972,18:85-97.
    [58]Waldman C H, Summerfield M. Theory of propellant ignition by heterogeneous reaction[J]. AIAA Journal,1969,7(7):1359-1361.
    [59]Waldman C H. Theory of heterogeneous ignition[J]. Combustion Science and Technology,1970,2:81-93.
    [60]Andersen W H. Model of transient ignition to self-sustained burning[J]. Combustion Science and Technology,1972,5(2):75-81.
    [61]Niioka T. Hetergeneous ignition of a solid fuel in a hot stagnation point flow[J]. Combustion Science and Technology,1978,18(5-6):207-215.
    [62]Kumar R K, and Hermance C E. Gas phase ignition theory of a hetergeneous solid propellant exposed to a hot.oxidizing gas[J]. Combustion Science and Technology, 1972,4:191-196.
    [63]Kumar R K, and Hermance C E. Role of gas-phase reactions during radiant ignition of solid propellants[J]. Combustion Science and Technology,1976,14(4-6):169-175.
    [64]Ritchie S, Thynell S, and Kuo K K. Modeling and experiments of laser-induced ignition of nitramine propellants[A].31~(st) AIAA/ASEM/SAE/ASEE Joint Propulsion Conference and Exhibit[C]. San Diego, CA:AIAA,1995.
    [65]Chu W W, Yang V. Combustion of AP-based composite propellant in a rocket motor flow environment[A].32~(nd) AIAA/ASME/SAE/ASEE Joint Propulsion Conference[C]. Lake Buena Vista, FL:AIAA,1996.
    [66]Guirao C, and F A Williams. A model for ammonium perchlorate deflagration between 20 and 100 atm[J]. AIAA Journal.1971,9(7):1345-1356.
    [67]Summerfield, et al. The burning mechanism of ammonium perchkorate propellants. ARS progress in astronautics and rocketry, Vol. I[M]:Solid Propellants Rocket Reseach, Academic Press, New York,1960:141-182.
    [68]Hermance C E, Shinnar R, and Summerfield M. Ignition of an evaporating fuel in a hot oxidizing gas, including the effect of heat feedback[J]. Astronautica Acta,1966, 12(2):95-112.
    [69]Beckstead M W, Derr R L, Price C F. A model of composite solid-propellant combusion based on multiple flame[J]. AIAA Journal,1970,8(12):2200-2207.
    [70]Jeppson M B, Beckste M W, Jing Q. A kinetic model for the premixed combustion of a fine AP/HTPB composite propellants. AIAA Preprint,1997.
    [71]Liau Y C, Kim E S, Yang V. A comprehensive analysis of laser-induced ignition of RDX monopropellant[A]. JANNAF 37th Combustion Subcommittee Meeting[C], Vol. 1,2000:325-348.
    [72]Knott G M, Brewster M Q. A two-dimensional model of composite propellants flame structure and burning[A], JANNAF 37th Combustion Subcommittee Meeting[C], Vol. I,2000:427-440.
    [73]Parr T P, Hanson-Parr D M. AP/Gaseous fuel diffusion flame studies[A]. JANNAF, 37th Combustion Subcommittee Meeting[C], Vol.1,2000:441-450.
    [74]Salvo R Di, Ferederick R A, Moser M D. Effect of oxidizer particle size on response propellants[A],37th Combustion Subcommittee Meeting[C], Vol. I,2000:615-626.
    [75]Cai W, Yang V. Transient combustion response of AP/HTPB composite solid propellant to acoustic oscillations in a rocket motor[A],37th Combustion Subcommittee Meeting[C], Vol.I,2000:759-786.
    [76]Massa L, Jackson T L, Backmaster J D, et al. The three-dimensional combustion of heterogeneous solid propellants[A],38th Combustion Subcommittee Meeting[C], Vol. 1:99-106,2002.
    [77]Kohga M, Yoshida S. Burning rate characteristics of AP-ased composive propellant using bimodal AP[A].42nd AIAA/ASME/SAF/ASEE Joint Propulsion Conference and Exhibit[C]. Sacramento, Califonia:AIAA,2006. AIAA 2006-4924.
    [78]Gol'dshleger U I, Barzykin V V, and Merzhanov A G. Mechanism and laws of ignition of condensed systems by a two-phase flow[J]. Combustion, Explosion, and Shock Waves,1971,7:277-286.
    [79]Gol'dshleger U I, Barzykin V V and Ivleva T P. Ignition of condensed explosive by a hot spherical particle[J]. Combustion, Expolsion, and Shock Waves,1973,9: 642-647.
    [80]Ineropera F P and Dewitt D P. Fundamentals of heat and mass transfer[M]. New York, John Wiley and Sons.
    [81]沈永欢,梁在中,许履瑚,蔡蒨蒨.实用数学手册[M].北京:科学出版社.1992.
    [82]雷柯夫.B热传导理论[M].北京:高等教育出版社,1955.
    [83]周彦煌,张明安,王升晨.火箭装药床中气固相间换热系数的实验研究[J].兵工学报,1992(2):19-23.
    [84]Ritchie S T. The thermal ignition behavior of nitramine-based solid propellants[D]. The Pennsylvania State University,1994.
    [85]陆春义,周彦煌,余永刚,等.底排装置在压力跃变条件下的燃烧控制[J].弹道学报,2007,19(1):37-40.
    [86]周彦煌,王升晨.实用两相流内弹道学[M].北京:兵器工业出版社,1990.
    [87]陆春义,周彦煌,余永刚.底排点火具在高降压速率下燃烧特性的实验研究[J].含能材料,2008,16(5):629-632.
    [88]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001
    [89]同济大学计算数学教研室.数值分析基础[M].上海:同济大学出版社,1998.
    [90]金志明,袁亚雄.内弹道气动力原理[M].第1版.北京:国防工业出版社,1983
    [91]金志明,袁亚雄,宋明.现代内弹道学[M].北京:北京理工大学出版社,1992
    [92]金志明,翁春生.高等内弹道学[M].第1版.北京:高等教育出版社,2003
    [93]金志明.枪炮内弹道学[M].北京:北京理工大学出版社,2004
    [94]曲作家,张振铎,孙思诚.燃烧理论基础[M].北京:国防工业出版社,1989.
    [95]高树滋,赵润祥,马大为.火炮流体力学数值方法[M].北京:兵器工业出版社, 1995.
    [96]克里尔H,塞墨费尔特M.现代枪炮内弹道学[M]。北京:国防工业出版社,1985.
    [97]莱兹别格A等.固体火箭系统工作过程的理论基础[M].北京:国防工业出版社,1984.8
    [98]方丁酉,张为华,杨涛.固体火箭发动机内弹道学[M].第1版.北京:国防科技大学出版社,1997.
    [99]董师颜,张兆良.固体火箭发动机原理[M].第1版.北京:北京理工大学出版社,1996.
    [100]武晓松,陈军,王栋.固体火箭发动机气体动力学[M].第1版.北京:国防工业出版社,2005.
    [101]约翰D安德森.计算流体力学基础及其应用.北京:机械工业出版社,2007.
    [102]浦发.外弹道学[M].北京:国防工业出版社,1980
    [103]臧国才,李树常.弹箭空气动力学[M].北京:兵器工业出版社,1989
    [104]沈仲书,刘亚飞.弹丸空气动力学[M].北京:国防工业出版社,1984
    [105]李庆扬,关治,白峰杉.数值计算原理[M].北京:清华大学出版社,2000.
    [106]Kuo K K,萨默菲尔德M.固体推进剂燃烧基础[M].北京:宇航出版社,1994.
    [107]谢蔚民.固体火箭发动机不稳定燃烧[M].空军工程学院,1984.
    [108]张铁茂,丁建国.试验设计与数据处理[M].北京:兵器工业出版社,1990.
    [109]Peter D Gilbert, Chris R Zaseck, Roberto L Nazario, et al. An investigation of novel metal complexes as composite propellant burn rate modifiers [A].44~(th) AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit[C]. Hartford, CT: AIAA,2008.
    [110]Y-K Lee, S Raghunathan, H-D Kim, et al. Computations of the supersonic flow over an aferbody with base bleed[A].43~(rd) AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada:AIAA,2005.
    [111]Masafumi Tanaka and Kazunori Nakaji. An experimental study on low-frequency combustion instability of composite propellants[A].34~(th) AIAA/ASME/SAE/ASEE Joint Propusion Conference & Exhibit[C]. Cleveland, OH:AIAA,1998.
    [112]Jae-Ryul Shin, Doek-Rae Cho, Su-Hee Won, et al. Hybrid RANS/LES study of base-bleed flows in supersonic mainstream[A].15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference[C]. Dayton, Ohio: AIAA,2008.
    [113]Pramod Subbareddy and Graham V Candler. Detached eddy simulation of supersonic base flow with bleed[A].42~(nd) AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada:AIAA,2004.
    [114]赵承庆,姜毅.气体射流动力学[M].北京:北京理工大学出版社,1998.
    [115]Spalding D B.燃烧理论基础[M].北京:国防工业出版社,1964.
    [116]陈义良.燃烧原理[M].北京:航空工业出版社,1992.
    [117]威廉斯F A.燃烧理论:化学反应流动系统的基础理论[M].北京:科学出版社,1976.
    [118]张福祥.火箭燃气射流动力学[M].哈尔滨:哈尔滨工程大学出版社,2005.
    [119]吴子牛.空气动力学[M].北京:清华大学出版社,2007.
    [120]严传俊,范玮.燃烧学[M].西安:西北工业大学出版社,2005.
    [121]王保国,刘淑艳,黄伟光.气体动力学[M].北京:北京理工大学出版社[等],2005.
    [122]White F M. Fluid Mechanics[M].北京:清华大学出版社,2004.
    [123]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.
    [124]周力行.燃烧理论和化学流体力学[M].北京:科学出版社,1986.
    [125]赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    [126]孙维申.固体火箭发动机不稳定燃烧[M].北京:北京工业学院出版社,1988.
    [127]王伯羲.火药燃烧理论[M].北京:北京理工大学出版社,1997.
    [128]张柏生.火药燃烧导论[M].南京:华东工学院,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700