精确点位作业机器人系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人作为20世纪最具有代表性的高技术产品,自问世以来,倍受世界各国的关注,并广泛应用于各行各业。本文在点位控制系统理论的指导下,以实现机器人的点位作业为目的,对机器人的机械本体机构、运动学与动力学、驱动系统的设计及作业功能的实现等关键技术进行了深入地探讨,成功研制一种集移动、越障功能于一体的点位作业机器人。
     首先对点位机器人系统的机械本体机构进行了分析,并对机械本体结构进行了具体设计和研究,在Pro/E软件中运用三维建模技术建立了三维实体模型。对模型进行质量、间隙和干涉检测,验证总体机构设计的正确性与合理性,为点位机器人的运动学和动力学仿真提供正确的虚拟样机模型。同时,对机器人的关键承载部件进行有限元分析,包括静力学分析以及模态分析,确保结构部件满足刚度和强度要求。
     其次对机器人的驱动系统进行设计,为了能更好的设计机器人的驱动系统,本文根据机器人的作业要求,对机器人的运动进行轨迹规划并研究机器人点位作业功能的实现方法。利用线性段及抛物线混合的轨迹规划方法,结合机器人的实际运行特点,分析并计算机器人的运动规划参数,然后根据轨迹规划中的直线加速度特性,计算驱动电机的参数。
     为了保证机器人的稳定性作业,分别对机器人在实现行走及作业功能时的吸附力进行可靠性分析,建立了临界约束条件。同时为了提高机器人的控制性能,对机器人进行了运动学分析,并建立了机器人的姿态矢量与控制量之间的关系。
     为了实现机器人的精确点位作业,本文对点位控制系统的几种控制形式进行了分析,然后提出一种适合本作业特点并能实现其精确点位作业的控制形式-闭环控制。为了验证该系统的优越性,针对扭转谐振现象对系统的影响进行了建模和仿真分析。
     利用ADAMS仿真软件对点位机器人系统进行了运动学和动力学仿真,通过机构的运动来判断有限空间内的相互干涉情况;通过设置要求的运动参数,分析了点位机器人系统的动力学性能,提供了必要的动力学参数。根据对受力零部件的动力学分析结果,合理的选择了驱动电机、轴承等关键部件。
Robot as the 20th century,the most representative high-tech,since its inception, has been the concern of all countries in the world and is widely used in all walks of life.In this paper,the control point system,under the guidance of the theory in order to achieve the robot point operations for the purpose of developing a set of mobile,the more impaired function of the points in one robot,a mechanical robot body and institutions,kinematics and dynamics,drive system design and operation functions of the key technologies to achieve an in-depth to explore.
     First point of the mechanical robot system to carry out an analysis of body organs, body structure and mechanical design and study specific.In Pro / E three-dimensional modeling software to use technology to build a three-dimensional solid model,and model of quality,space and interference detection,the overall design to verify the correctness and reasonableness of the robot as a point of kinematics and dynamics provide accurate simulation of the virtual prototype model.At the same time,the robot carrying the key components of the finite element analysis,including static analysis and modal analysis to ensure that the structural components to meet the requirements of stiffness and strength.
     Then the drive system of the robot design,in order to better design of robot drive system operating in this article in accordance with the requirements of the robot,the movement of the robot trajectory planning and research robot points to achieve the operating functions.Paragraph and the use of linear mixed parabolic trajectory planning method,combined with the characteristics of the actual use of robots,analyze and calculate the parameters of the robot motion planning,trajectory planning based on the characteristics of straight-line acceleration to calculate the parameters of electric drive.
     In order to ensure the stability of robot operations,were walking in the realization of the robot and operating features of the absorption edge reliability analysis,and the establishment of a critical condition.At the same time in order to improve the control of robot performance,robot kinematic analysis carried out,the establishment of the robot posture vector and control the relationship between the volume.
     In order to achieve the precise point robot operation,the paper point control system for several forms of control are analyzed,and then propose a suitable operating characteristics to achieve the precise point of its forms of control operations closed-loop control.In order to verify the superiority of the system,and finally reverse the resonance phenomenon for the impact on system modeling and simulation analysis.
     The use of simulation software ADAMS point robot system kinematics and dynamics simulation,through the campaign to determine the limited space within the mutual interference;by setting the requested motion parameters,analyze the point of robot system dynamics performance,provided the necessary kinetic parameters.Stress components based on the results of the analysis of the dynamics,it is reasonable to choose drive motor,bearings and other critical components.
引文
[1]蔡鹤皋.机器人将是21世纪技术发展的热点[J].中国机械工程,2000,11(1-2):58-60
    [2]蔡自兴.机器人学的发展趋势和发展战略[J].中南工业大学学报,2003,31(专辑):1-9
    [3]蔡自兴.机器人学[M].北京:清华大学出版社,2000
    [4]Schempf H,Mutschler E,Chemel B.Evolution of Urban Robotic System Developments.In IEEE/ASME International Conference on Advanced Intelligent Mechatronics[J],1999:19-23
    [5]Akeel H A,Holland S W.Product and Technology Trends for Industrial Robots[J].In IEEE Inter.Conf.On Robotics and Automation,2000:696-700
    [6]王炎,周大成.移动式服务机器人的发展现状及我们的研究[J].电气传动,2004,4:3-7
    [7]冯建农,柳明,吴捷.自主移动机器人智能导航研究进展[J].机器人,1997,19(6):468-478
    [8]张文平.基于CAD/CAM桌面型点胶机器人控制系统研制[D].哈尔滨工业大学,2006
    [9]吴宏.运动控制器的现状与发展[J].制造技术与机床,2004,(1):24-27
    [10]李曼珍.伺服系统控制方法研究[J].仪器仪表用户,2005,12(4):8-9
    [11]王宏,于泳,徐殿国.永磁同步电动机位置伺服系统[J].中国电机工程学报,2004,24(7):151-155
    [12]吕亚玲,杨晓红.现代先进制造技术的趋势--精密与超精密[J].机械制造,2004,(10):25-26
    [13]赵慧英.精密加工的发展现状及影响表面质量若干因素的分析[J].紧密测量与微纳技术,2004,(8):31-33
    [14]王海滨.四自由度机器人机械系统的研究[D].哈尔滨工业大学,2006
    [15]A.Nishi,H.Miyagi,A wall climbing robot using thrust force of propeller(Mechanism and control in a strong wind)[J].JSME int.5,Series c37;19 94:172-17
    [16]A.Nishi,H.Miyagi.A wall climbing robot using thrust force of propeller(Mechanism and control in a mild wind)[J].JSME int.3,Series c36;19 93:361-367
    [17]A.Nishi,H.Miyagi.Propeller type wall-climbing robot for inspection use[J].Proc.10~(th) int,symposium on automation and robotics in construction.1993:1 89-196
    [18]A.Nishi,H.Miyagi.M echanism and control of propeller type wall climbing robot[J].Proc.IEEE/RSJ/GIint.conf.Intelligent robots and systems.1994:1724-1729
    [19]Choi,S.H.,Chan,A.M.M.A virtual prototyping system for rapid product development Computer-Aided Design[J].Volume:36,Issue:5,April,2004:401-412
    [20]郝云堂,金烨,季辉.虚拟样机技术及其在ADAMS的实践[J].机械设计与制造,2003,(6):31-35
    [21]张朝晖.ANSYS工程应用范例入门与提高[M].北京:清华大学出版社,2004
    [22]钱平.伺服系统[M].北京:机械工业出版社,2005
    [23]秦忆.现代交流伺服系统[M].武汉:华中理工大学出版社,1995
    [24]孙麟治,张鄂,赵明晶等.小模数精密齿轮传动设计[M].北京:机械工业出版社,1985
    [25]陈维山,赵杰.机电系统计算机控制[M].哈尔滨:哈尔滨工业大学出版社,1999
    [26]商向东等.齿轮加工精度[M].北京:机械工业出版社,2000
    [27]Robert L.Mcintyre,Rex Losee.Industrial motor control Funda-mentals[J].McGraw-Hill,NewYork,1990
    [28]机械设计手册编写组.机床设计手册[M].北京:机械工业出版社,1980
    [29]东北工学院机械设计(制图)教研室.机械零件设计手册[M].北京:冶金工业出版社,1974
    [30]李中杰,宁守信.步进电机应用技术[M].北京:机械工业出版社,1988
    [31]王婕,陈磊,史大光.高速运行步进电机转子动态误差的分析研究[J].济南职业学院学报,2005,(3):34-360
    [32]余红娟,潘松.FPGA在步进电机任意细分驱动中的应用[J].杭州电子科技大学学报,2005,(3):9-12
    [33]赵杰,谷柏峰,樊继壮等.基于有限元分析的不完全消磁机构的优化设计.机械设计与制造[J],2006,(3):1-2
    [34]张福学.机器人技术机器应用[M].北京:电子工业出版社,2000
    [35]唐宗军,陈震,董再励等.一种全方位移动爬壁机器人系统设计[J].机器人技术,2006,(1):33-35
    [36]孙祥,徐流美,吴清.MATLAB 7.0基础教程[M].北京:清华大学出版社,2005
    [37]谈士力,王建成,苏建良等.球形壁面爬行机器人研制[J].机器人,2002,24(6):517-52.
    [38]王以真.实用磁路设计[M].天津:天津科学技术出版社,1991
    [39]刘文俊.水轮机叶片焊接打磨修复机器人电磁研究[D].西安交通大学,2000
    [40]陈德桂.吸盘电磁铁的最佳设计[J].西安交通大学学报,1980,14(2):29-40,
    [41]李昗.细小空间管道约束监测机器人研究[D].上海大学,2003
    [42]潘焕焕.锅炉水冷壁排管清扫监测爬壁机器人及相关技术的研究[D].哈尔滨工业大学,2000
    [43]闫军涛.壁面清洗机器人的运动控制系统设计[D].重庆大学,2007
    [44]张海洪.机器人壁面自动清洗系统的工程研究[D].上海大学,2001
    [45]Dong Sun,Jian zhu,Chiming Lai,S.K.Tso.A visual sensing application to a climbing cleaning robot on the glass surface[J].Mechatronics,2004,(14):1089-1104
    [46]王荣华.爬壁机器人设计及动力性能研究[D].沈阳工业大学,2007
    [47]刘桂珍.爬树机器人机构设计及运动分析[D].哈尔滨工程大学,2006
    [48]郑建荣.ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2003
    [49]郭军刚.船体外板水火成型机器人机械系统设计与研究[D],北京航空航天大学,2004
    [50]师汉民.机械振动系统-分析、测试、建模、对策[M].武汉:华中科技大学出版社,2003
    [51]胡仁喜,郭军,王仁广等.Solidworks 2005中文版机械设计高级应用实例[M].北京:机械工业出版社,2005
    [52]Akira Nishi Faculty of Engineering Miyazaki Universinty Miyazaki 889-21,JAPAN.A WallClimbing Robot Using Propulsive Force of Propell[J].1991 IEEE.320-325
    [53]Akira Nishi and Hiromori Miyagi Faculty of Engineering Miyazaki University Miyazaki 889-21 JAPAN.Control of a Wall-Cleaning robot Using Propulsive Force of Propeller[J].Intelligent Robots and Systems'91.' Intelligence for Mechanical Systems,Proceedings IROS 91.IEEE/RSJ International Workshop on 1561-1567 vol.3
    [54]Mel Siegel etal.Robotic assistance for air inspectors.Industrial robot[J].1998,25(6):389-400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700