热固性树脂纳米尺度上微结构的形成及其材料相关性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文运用可逆加成-裂解链转移自由基聚合(RAFT),原子转移自由基聚合(ATRP),开环聚合(ROP)以及点击化学(click chemistry)相结合的方法,设计合成了一系列具有不同组成的AB型两嵌段共聚物以及不同拓扑结构的ABC型三嵌段共聚物,用核磁共振(NMR)和凝胶渗透色谱(GPC)对其进行表征。然后将其分别与不同的热固性聚合物的预聚体共混,固化,最终得到了一系列具有有序/无序纳米结构的热固性树脂,通过原子力显微镜(AFM)、小角X射线散射(SAXS)、差热分析(DSC)、红外光谱(FTIR)、扫描电子显微镜(SEM)、动态力学分析(DMA)等技术对样品的微结构以及热力学性能进行了研究,利用表面元素分析、静态接触角分析等技术对热固性共混体系的表面性能进行了研究。主要研究结果如下:
     1.经自组装方法形成的纳米尺度上微结构的研究
     运用RAFT聚合方法,设计合成了一系列不同组成的AB型两嵌段共聚物,聚丙烯酸三氟乙酯-b-聚氧乙烷(PTFEA-b-PEO)、聚甲基丙烯酸缩水甘油酯-b-聚丙烯的酸三氟乙酯(PGMA-b-PTFEA),再将这些嵌段共聚物与环氧树脂共固化。研究发现:嵌段共聚物PTFEA-b-PEO和PGMA-b-PTFEA在环氧树脂中通过自组装机理形成了有序的纳米结构。此外,低表面能的PTFEA链段随着固化反应的进行,会发生表面迁移现象,因此,含氟嵌段共聚物改性后的环氧树脂表面疏水性能得到了很好的改善。通过对含嵌段共聚物PGMA-b-PTFEA的环氧树脂的应力场强度因子的测定,发现改性后材料的韧性得到了很好的改善。
     2.固化剂类型对纳米结构形成的影响
     结合RAFT、ROP以及点击化学方法,设计合成了星型杂臂聚氧乙烯-b-聚己内酯-b-聚苯乙烯[star(PEO-b-PCL-b-PS)]。再将其与环氧热固性树脂共混,分别在两种不同的固化剂,3, 3’-二氯-4,4’-二氨基二苯基甲烷(MOCA)和4, 4’-二氨基二苯砜(DDS),固化。通过用原子力显微镜(AFM)和小角X散射(SAXS)研究发现,共混体系中出现了不同的纳米结构,当MOCA作为固化剂时,得到的是球形粒子和层状结构,当而在DDS为固化剂时,体系中呈现出囊泡结构。
     3.自组装纳米结构存在条件下的反应诱致相分离的研究
     首先运用两步ATRP聚合方法,成功地制备了两端呈线性,中间呈刷状的ABC三嵌段共聚物,聚己内酯-b-刷型聚二甲基硅氧烷-b-聚苯乙烯(PCL-b-brush-PDMS-b-PS)。接着将该嵌段共聚物与环氧树脂共固化。用AFM和SAXS技术对改性后环氧树脂的形态结构进行研究。研究结果表明,PCL-b-brush-PDMS-b-PS在环氧树酯中形成了囊泡结构。根据嵌段共聚物中各链段与环氧树脂的相容性可知:这种纳米结构的形成机理是在自组装存在条件下的反应诱致相分离机理。
     4.运用热固性树脂中纳米结构形成方法制备多孔性材料研究
     首先设计合成了嵌段共聚物聚甲基丙烯酸甲酯-b-聚四乙烯基吡啶(PMMA-b-P4VP),将其与酚醛树脂共混,研究发现嵌段共聚物在共混体系中能通过反应诱致相分离的机理形成纳米结构。将具有纳米结构的酚醛树脂在氮气氛围下高温炭化,可以得到结构均一的具有纳米孔的炭材料。接着根据嵌段共聚物在热固性树脂交联网络中可以形成纳米结构的方法,通过RAFT聚合方法设计合成了带有反应性官能团(环氧基)的嵌段共聚物聚甲基丙烯酸缩水甘油酯-b-聚苯乙烯(PGMA-b-PS),再将该嵌段共聚物与氨丙基三甲氧基硅烷反应,使PGMA链段上的环氧基变为甲氧基硅烷,最后加入正硅酸乙酯,在酸性条件下水解缩合,溶胶-凝胶后,在空气氛围下高温烧结,最终得到了孔径均一,分布均匀的纳米孔二氧化硅材料。当嵌段共聚物PGMA-b-PS含量为40wt%时,二氧化硅材料的比表面积达到了405 m2 /g。
     5.化学交联聚合物水凝胶中具有纳米尺度疏水微区的形成及其凝胶行为研究
     通过化学方法,将疏水性的聚苯乙烯(PS)链段均匀地接枝到聚异丙基丙烯酰胺(PNIPAAm)水凝胶的交联网上。由于PNIPAAm链段与PS链段不相容,因此,PS链段在PNIPAAm-g-PS的交联网络会形成纳米微区。通过溶胀,去溶胀和再溶胀试验研究发现:与纯PNIPAAm水凝胶相比,改性后的水凝胶具有快速响应性和较好的机械性能。
A series of AB-type diblock copolymers and ABC triblock copolymers were synthesized via combination of reversible addition-fragmentation transfer polymerization (RAFT), atom transfer radical polymerization (ATRP), ring-opening polymerization (ROP) and click chemistry. Nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC) were employed to characterize these block copolymers. These block copolymers were incoporated into thermosetting polymers to access ordered and disordered nanostructures via self-assembly and reaction-induced micrphase separation mechanism. The morphorlogy and thermomechanical properties of the nanostructured thermosets were investigated by means of atomic force microscopy (AFM), scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Fourier transform infrared spectroscopy (FTIR). The surface properties were examined by means of surface elemental analysis, static contact angle analysis and energy dispersive X-ray spectroscopy (EDS). The main results are being summarized as below:
     1. Formation of nanostructures in epoxy thermosets via self-assembly mechanism
     Several AB-type diblock copolymers such as poly(2,2,2 -trifluoroethyl acrylate)-block-poly(ethylene oxide) (PTFEA-b-PEO), poly(glycidyl methacrylate)-block-poly(2,2,2-trifluoroethyl acrylate) (PGMA-b-PTFEA) were defigned and synthesized through the approach of RAFT polymerization. These block copolymers were incoporated into epoxy resin to access the nanostructures in the thermosets via self-assembly mechanism. The nanostructured thermosets were obtained via non-reactive and/or reactive mixing of the block copolymers with the epoxy matrices. It was found that the formation of the nanostructures in thermosets can optimize the interactions between epoxy matrix and the modifiers and thus the fracture toughness of the materials were significantly improved. In addition, the enhancement in surface hydrophobicity of the thermosets was obtained with the inclusion of the amphiphilc block copolymers. The improved surface properties have been interpretated on the basis of the surface migration of the hydrophobic blocks of the copolymers.
     2. Effect of curing agent on nanostructured thermosets containing star miktoarm terpolymers poly(ethylene oxide)-block-poly(ε-caprolacton- -e)-block-polystyrene (star (PEO-b-PCL-b-PS))
     The star miktoarm terpolymer, star (PEO-b-PCL-b-PS) was firstly synthesized by the combination of RAFT polymerization, ROP and click chemistry. The block copolymers and DGEBA were cured with 4, 4’-methylenebis (2-chloroaniline) (MOCA) or 4, 4’-diaminodiphenylsul- -fone (DDS) as curing agent, respectively. The morphology of the thermosets was examined by means of atomic force microscopy (AFM) and small angle X-ray scattering (SAXS). It is found that different nanostructure appeared in all the samples. Spherical and lamellar structures appeared when MOCA as hadener, while vesicles were obtained when the the curing agent was DDS. The dependence of morphological structures on the types of aromatic amines for epoxy and star (PEO-b-PCL-b-PS) thermosetting blends were interpreted on the basis of the difference in hydrogen bonding interactions resulting from the structure of the curing.
     3. Study on the reaction-induced microphase separation in the present of self-organized nanostructure
     Poly(ε-caprolactone)-block-brush-poly(dimethylsiloxane)-block- polystyrene (PCL-b-brush-PDMS-b-PS) terpolymers were synthesized via sequential ATRP, Then the terpolymers was incorporated into epoxy to obtain nanostructure.The morphology of the thermosets was examined by AFM and SAXS.The results of the AFM and SAXS indicated that vesicles were formed in the thremosets.According to the miscibility between terpolymer and thermosets, it was judged that the nanostructure was obtained by the mechanism of the reaction-induced microphase separation in the present of self-organized nanostructure.
     4. Preparationof nanoporous materials according to the mechanism of reaction-induced microphase separation reported in thermosets
     Firstly, Poly (methyl methacrylate)-block-poly (4-vinylpyridine) (PMMA-b-P4VP) block copolymer was synthesized by RAFT polymerization. Secondly, PMMA-b-P4VP was mixed with phenolic resin. It was found that nanostructure was formed via the reaction-induced microphase separation mechanism. The nanostructure thermosets were then carbonized under nitrogen atmosphere, and uniform nanoporous carbon materials were obtained. In addition, nanoporous silica material was prepared too. Firstly, poly (glycidyl methacrylate)-block-polystyrene (PGMA-b-PS) were synthesized through RAFT polymerization. Secondly, the triethoxysilane group was clicked to the PGMA segment by the reaction of PGMA-b-PS block copolymers with 3-aminopropyl-triethoxysilane. Thirdly, the improved block copolymer PGMA-b-PS, TEOS was blended and hydrolyzed under acidic conditions. After condensation, sol-gel and pyrolysised, the nanoporous silica material with uniform distribution were finally prepared.
     5. Formation of hydrophobic microphase-separated morphology and study of thermo-responsive properties of PS block-containing PNIPAAm hydrogels
     RAFT polymerization was employed to prepare the crosslinked poly (N-isopropylacrylamide)-graft-polystyrene copolymer networks (PNIPAAm-g-PS). Due to the immiscibility of PNIPAAm with PS, the PNIPAAm-g-PS crosslinked copolymers displayed the microphase-separated morphology. While the PNIPAAm-g-PS copolymer networks were subjected to the swelling experiments, it is found that the PS block-containing PNIPAAm hydrogels significantly exhibited faster response to the external temperature changes according to swelling, deswelling, reswelling experiments than the conventional PNIPAAm hydrogels. The improved thermo-responsive properties of hydrogels have been interpreted on the basis of the formation of the specific microphase-separated morphology in the hydrogels, i.e., the PS chains pendent from the crosslinked PNIPAAm networks were selfassembled into the highly hydrophobic nanodomains, which behave as the microporogens and thus promote the contact of PNIPAAm chains and water.
引文
[1] May, C.A., Tanaka, G.Y. Epoxy Resin Chemistry and Technology. New York. 1973.
    [2] Bauer, B.J., Hadjichristidis, N., Quack, G., Vitus, J., Fetters, L. The synthesis and characterization of model 8- and 12-arm star-shaped polyisoprenes. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry). 1979, 20(2): 126-129.
    [3]王德中.环氧树脂生产与应用.北京:化学工业出版社. 2001: 60-67.
    [4]屈泽华.有机硅改性环氧树脂的研究.南京工业大. 2004: 97-102.
    [5]王德中.环氧树脂生产与应用.化学工业出版社. 2002: 38-56.
    [6] Laible, R.C., McGarry, F.J. Toughening of high-temperature resistant epoxy-resins. Polymer-plastics technology and engineering. 1976, 7(l): 27-47.
    [7] Sultan, J.N., McGarry, F.J. Effect of rubber particle-size on deformation mechanisms in glassy epoxy. Polymer Engineering and science 1973, 13(l): 29-34.
    [8] Pearson, R.A.,Yee, A.F. Influence of Particle size and particle-size distribution on toughening mechanisms in rubber-modified epoxies. Joumal of materials science 1991, 26(14): 3828-3844.
    [9] Chen, T.K., Jan, Y.H. Toughening mechanism for a rubber-toughened epoxy-resin with rubber matrix interfacial modifieation. Joumal of materials science 1991, 26(21): 5848-5858.
    [10] Iijima, T., Tomoi, M., Suzuki, A., Kakiuchi, H. Toughening of epoxy-resins by modifieation with reaetive elastomers composed of butyl acrylate and glycidyl (meth) acrylate. European polymer journal.1991, 27(9): 851-858.
    [11] Levita, G., Depetris, S., Marchetti, A., Lazzeri, A. Cross-link density and fracture-toughness of epoxy-resins. Joumal of material science, 1991, 26(9): 2348-2352.
    [12] Bucknall, C.B., Partridge, I.K. Phase separation in epoxy resins containing polyethersulphone. Polymer 1983, 24(5): 639-644.
    [13] Hodgkin, J.H., Simon, G.P., Varley, R.J. Thermoplastic toughening of epoxy resins: a critical review. Polymers for Advanced Technologies, 1998, 9(1): 3-10.
    [14] McGrath J.E., Hedrick, J.C., Hedrick, J.L., Cecere, J.A., Liptak, S.C. An overview on the toughening of epoxy-resin networks with functionalized engineering thermoplastics. Abstracts of papers of the Amercan chemical society 1990, 200(12): 42-49.
    [15] Hedrick, J.L., Yilgor, I., Jurek, M., Hedrick, J.C., Wilkes, G.L., Mcgrath, J.E. Chemical modification of matrix resin networks with engineering thermoplastics. 1. Synthesis, morphology, physical behavior and toughening mechanisms of poly(arylene ether sulfone)modified epoxy network[J]. Polymer 1991, 32(11): 2020-2032.
    [16] Hedrick, J.C., Patel, N.M., Mcgrath, J.E. Toughening of epoxy-resin networks withfunctionalized engneering thermoplastics. Advances in chemistry series 1993, 233: 293-304.
    [17] Bucknall, C.B., Gilbert, A.H. Toughening tetrafunctional epoxy resins using polyetherimide. Polymer 1989, 30(2): 213-217.
    [18] Gilbert, A.H., Bucknall, C.B. Epoxy-resin toughened with thermoplastic. Makromolekulare Chemie-Macromolecular Symposia 1991, 45: 289-298.
    [19] Cui, J., Yu, Y.F.,Li, S.J. Studies on the phase separation of polyetherimide-modified epoxy resin. 3. Morphology development of the blend during curing. Macromol. Chem. Phys. 1998, 199(3): 1645-1649.
    [20] Pierre, G., De, G. Possibilities offered by polymer crosslinking in the presence of a liquid crystal. Physics Letters A. 1969, 28(11): 725-726.
    [21] De, G., Pierre, G. Scale Concepts in Polymer Physics. Cornell University Press: Ithaca, NY. 1979.
    [22] Ruiz-Perez, L., Royston, G.J., Fairclough, J. P. A., Ryan, A.J.Toughening by nanostructure. Polymer 2008, 49(1): 4475-4485.
    [23] Buchholz, U., Muelhaupt, Rolf. Branched polysiloxane block copolymers as epoxy toughening agents. Polymer Preprints. 1992, 33(1): 205-206.
    [24] Konczol, L., Doll, W., Buchholz, U., Mülhaupt, R. Ultimate properties of epoxy resins modified with a polysiloxane-polycaprolactone block copolymer. Journal of Applied Polymer Science 1994, 54(6): 812-826.
    [25] Guo, Q., Liu, J., Chen, L., Wang, K. Nanostructures and nanoporosity in thermoset epoxy blends with an amphiphilic polyisoprene-block-poly(4-vinyl pyridine) reactive diblock copolymer. Polymer 2008, 49(16): 1737-1750..
    [26] Girard-Reydet, E., Pascault, J.P., Bonnet, A., Court, F., Leibler, L. A new class of epoxy thermosets. Macromolecular Symposia 2003, 198(14): 309-322.
    [27] Maiez-Tribut, S., Pascault, J.P., Soule, E.R., Borrajo, J., Williams, R.J.J. Nanostructured epoxies based on the self-assembly of block copolymers:a new miscible block that can be tailored to different epoxy formulations. Macromolecules 2007, 40(13): 1268-1275.
    [28] Hillmyer, M.A., Lipic, P.M., Hajduk, D.A., Almdal, K., Bates, F.S. Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites. J. Am. Chem. Soc. 1997, 119(3): 2749-2750.
    [29] Lipic, P.M., Bates, F.S., Hillmyer, M.A. Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures. J. Am. Chem. Soc. 1998, 120(12): 8963-8970.
    [30] Dean, J.M., Verghese, N.E., Pham, H.Q., Bates, F.S. Nanostructure toughened epoxy resins, Macromolecules. 2003, 36(12): 9267-9270.
    [31] Lodge, T.P., Pudil, B., Hanley, K.J. The full phase behavior for block copolymers in solvents of varying selectivity. Macromolecules 2002, 35(13): 4707-4717.
    [32]范文春.嵌段共聚物的拓扑结构对热固性共混物纳米形态结构的影响及相关性能的研究.上海交通大学博士论文. 2007.
    [33] Xu, Z., Zheng, S. Reaction-Induced microphase separation in epoxy thermosets containing poly(ε-caprolactone)-block-poly(n-butyl acrylate) diblock copolymer. Macromolecules 2007, 40(7): 2548-2558.
    [34] Xu, Z., Zheng, S. Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly (ε-caprolactone)-block-polydimethylsiloxane -block-poly (ε-caprolactone) triblock copolymer. Polymer 2007, 48(20): 6134-6144.
    [35] Meng F., Zheng S., Zhang W., Li H., Liang Q., Nanostructured thermosetting blends of epoxy resin and amphiphilic poly( -caprolactone)-block-polybutadiene-block-poly( -caprolactone) triblock copolymer, Macromolecules, 2006, 39, 711-719
    [36] Meng F., Zheng S., Li H., Liang Q., Liu T., Formation of ordered nanostructures in epoxy thermosets: A mechanism of reaction-induced microphase separation, Macromolecules, 2006, 39, 5072-5080
    [37] Meng, F., Xu, Z., Zheng, S. Microphase separation in thermosetting blends of epoxy resin and poly (ε-caprolactone)-block-polystyrene block copolymers. Macromolecules 2008, 41(4): 1411-1420.
    [38] Schmitz I., Schreiner M., Friedbacher G. Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces, Appl. Surf. Sci., 1997, 115, 190-198
    [39] Magonov S. N., Elings V., Whangbo M. H., Phase imaging and stiffness in tapping-mode atomic force microscopy, Surf. Sci., 1997, 375, L385-L391
    [40] Tamayo A., Garcia R., Deformation, Contact time, and phase contrast in tapping mode scanning force microscopy, Langmuir, 1996, 12, 4430-4435
    [41] Chen X., McGurk S. L., Davies M. C., Roberts C. J., Shakesheff K. M., Tendler S. J. B., Williams P. M., Davies J., Dawkes A. C., Domb A. Chemical and morphological analysis of surface enrichment in a biodegradable polymer blend by phase-detection imaging atomic force microscopy, Macromolecules, 1998, 31, 2278-2283
    [42] Gong, W., Zeng, K., Wang, L., zheng, S. Poly (hydroxyether of bisphenol A)-block-polydimethylsiloxane alternating block copolymer and its nanostructured blends with epoxy resin. Polymer 2008, 49(15): 3318-3326.
    [43] Larra?aga M.,Gabilondo N., Kortaberria G., Serrano E., Remiro P., Riccardi C. C., Mondragon I. Micro- or nanoseparated phases in thermoset blends of an epoxy resin andPEO–PPO–PEO triblock copolymer, Polymer 2005, 46, 7082-7093.
    [44] Serrano E., Tercjak A., Kortaberria G., Pomposo J. A., Mecerreyes D., Zafeiropoulos N. E., Stamm M., Mondragon I. Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers. Effect of epoxidation degree, Macromolecules, 2006, 39, 2254-2261
    [45] Sinturel C., Vayer M., Erre R., Amenitsch H. Nanostructured polymers obtained from polyethylene-block-poly(ethylene oxide) block copolymer in unsaturated polyester, Macromolecules, 2007, 40, 2532-2538
    [46] Ocando C., Serrano E., Tercjak A., Pena C., Kortaberria G., Calberg C., Grignard B., Jerome R., Carrasco P. M., Mecerreyes D., Mondragon I. Structure and properties of a semifluorinated diblock copolymer modified epoxy blend, Macromolecules, 2007, 40, 4068-4097.
    [47] Serrano, E., Martin, M.D., Tercjak, A., Pomposo, J.A., Mecerreyes, D., Mondragon, I. Nanostructured thermosetting systems from epoxidized styrene butadiene block copolymers. Macromolecular Rapid Communications 2005, 26(12): 982-985.
    [48] Maiez-Tribut S., Pascault J. P., Soule E. R., Borrajo J., Williams R. J. J. Nanostructured epoxies based on the self-assembly of block copolymers: A new miscible block that can be tailored to different epoxy formulations, Macromolecules, 2007, 40, 1268-1273.
    [49] Fan, W., Zheng, S. Reaction-induced microphase separation in thermosetting blends of epoxy resin with poly(methyl methacrylate)-block-polystyrene block copolymers: Effect of topologies of block copolymers on morphological structures .Polymer. 2008, 49(13): 3157-3167.
    [50] Meng, F., Zheng, S., Liu, T. Epoxy resin containing poly (ethylene oxide)-block-poly (ε-caprolactone) diblock copolymer: Effect of curing agents on nanostructures. Polymer 2006, 47(12): 7590-7603.
    [51] Stein R. S.,散射和双折射方法在高聚物织构研究中的应用,科学出版社,1983,84-102.
    [52] Dingenouts N., Ballauff M. Small-angle x-ray analysis of latex particles using contrast variation, Acta Polymer, 1993, 44, 178-183
    [53] Dingenouts N., Ballauff M. Assessment of spatial order in dried latexes by small-angle x-ray scattering, Macromolecules, 1998 31, 7423-7429
    [54] Pederson J. S, 1999 Current Opinion in Colloid & Interface Science, 4190
    [55]胡家璁.高分子X射线学,科学出版社,2003,392-451
    [56] Luo, X., Zheng, S., Zhang, N., Ma, D. Miscibility of epoxy resins/poly(ethylene oxide) blends cured with phthalic anhydride. Polymer 1994, 35(15): 2619-2651.
    [57] Zheng, S., Zhang, N., Luo, X., Ma, D. Epoxy resin/poly(ethylene oxide) blends cured with aromatic amine. Polymer 1995, 36(12): 3609-3614.
    [58] Serrano, E., Larranaga, M., Remiro, P.M., Mondragon, I., Carrasco, P.M., Pomposo, J.A.,Mecerreyes, D. Synthesis and characterization of epoxidized styrene-butadiene block copolymers as templates for nanostructured thermosets. Macromolecular Chem. and Phy. 2004, 205(15): 987-996.
    [59] Wu, J., Thio, Y.S., Bates, F.S. Structure and properties of PBO-PEO diblock copolymer modified epoxy. Journal of Polymer Science, Part B: Polymer Physics. 2005, 43(15): 1950-1965.
    [60] Fan, W., Wang, L., Zheng, S. Nanostructures in thermosetting blends of epoxy resin with polydimethylsiloxane-block-poly(ε-caprolactone)-block-polystyrene ABC triblock copolymer . Macromolecules. 2009, 41(1): 327-336.
    [61] Fang, Y., Zheng, S., Liu, T. Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer. J. Phys. Chem. 2009, 113: 1857-1868
    [62] Guo, Q., Thomann, R., Gronski, W., Staneva, R., Ivanova, R., Stulhn, B. Nanostructures, Semicrytalline Morphology, and Nanoscale Confinement Effect on the Crystallization Kinetics in Self-Organized Block Copolymer/Thermoset Blends. Macromolecules 2003, 36(21): 3635-3642.
    [63] Guo, Q., Chen, F., Wang, K., Chen, L. Nanostructured thermoset epoxy resin templated by an amphiphilic poly(ethylene oxide)-block-poly(dimethylsiloxane) diblock copolymer. Journal of Polymer Science, Part B: Polymer Physics. 2006, 44(21): 3042-3052.
    [64] Q. Guo, K. Wang, L. Chen, S. Zheng, P. J. Halley. Phase behavior, crystallization, and nanostructures in thermoset blends of epoxy resin and amphiphilic star-shaped block copolymers.J Polym Sci Part B: Polym Phys, 2006, 44(6): 975-985.
    [65] Pascault, J.P., Williams, R.J.J. In Polymer Blends (Eds. D. R. Paul, C. B.Bucknall) Wiley: New York, 2000, 1: 379 ~ 415.
    [66] Meng, F., Zheng, S., Zhang, W. Nanostructured thermosetting blends of epoxy resin and amphiphilic poly(ε-caprolactone)-block-polybutadiene-block-poly(ε-caprolactone) triblock Copolymer. Macromolecules 2006, 39(2): 711-719.
    [67] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler, L., Pascault, J.P. ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets. Macromolecules 2002, 35(14): 6245-6254.
    [68] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler, L., Pascault J.P. ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules 2003, 36(12): 118-126.
    [69] Bates, F.S., Fredrickson, G.H. Block copolymers-Designer soft materials. Phys. Today. 1999, 52: 32-38
    [70] Pascault, J.P., Williams, R.J.J. In Polymer Blends (Eds. D. R. Paul, C. B.Bucknall) Wiley: New York. 2000, 12(1): 379-415.
    [71] Miller, S.A., Kim, E., Gray, D.H., Gin, Douglas, L. Heterogeneous catalysis with cross-linked lyotropic liquid crystal assemblies: organic analogues to zeolites and mesoporous sieves. Angewandte Chemie, International Edition. 1999, 38(20):3022-3026.
    [72] Ding, J.H., Gin, D.L., Catalytic, P.D. Nanoparticles Synthesized Using a Lyotropic Liquid Crystal Polymer Template. Chem. Mater. 2000, 12(l): 22-24.
    [73] Gin, D.L., Gu, W.Q. Nanoporous catalytic materials with organic frameworks. Advanced Materials. 2001, 13(18): 1407-1410.
    [74] Reppy, M.A., Gray, D.H., Pindzola, B.A., Smithers, J.L., Gin, D.L. A New Family of Polymerizable Lyotropic Liquid Crystals: Control of Feature Size in Cross-Linked Inverted Hexagonal Assemblies via Monomer Structure. J. Am. Chem. Soc. 2001, 123(3): 363-371.
    [75] Lee, J., Hirao, A., Nakahama, S. Polymerization of monomers containing functional silyl groups: Synthesis of new porous membranes with functional groups. Macromolecules. 1988, 21(13): 274-276.
    [76] Xu, T., Kim, H.C., DeRouehey, J., Seney, C., Levesque, C., Martin, P., Stafibrd, C.M, Russell,T.P. The influence of molecular weight on nanoporous polymer films. Polymer. 2001, 42(21): 9091-9095.
    [77] Mecerreyes, D., Huang, E., Magbitang, T., Volksen, W., Hawker, C.J., Lee, V.Y., Miller, R.D., Hedriek, J.L. Application of hyperbranched block copolymers as templates for the generation of nanoporous organosilicates. High Performance Polymers. 2001, 13(2): S11-S19.
    [78] Thurn-Albrecht, T., Steiner, R., DeRouchey, J., Stafford, C.M., Huang, Elbert., Bal, Mustafa., Tuominen, Mark., Hawker, Craig, J., Russell, T.P. Nanoscopic templates from oriented block copolymer films. Adv Mater. 2000, 12(11): 787-790.
    [79] Chan, V.Z.H., Hoftman, J., Lee, V.Y., Lee, H.I. Ordered Bicontinuous Nanoporous and Nanorelief Ceramic Films from Self Assembling Polymer Precursors. Science. 1999, 286(5445): 1716-1719.
    [80] Liu, G.J., Ding, J.F., Hashimoto, T., Kimishima, K., Winnik, F.M., Nigam, S. Thin Films with Densely, Regularly Packed Nanochannels: Preparation, Characterization, and Applications. Chem. Mater. 1999, 11(8): 2233-2240.
    [81] Zalusky, A.S., Olayo-Valles, R., Taylor, C.J., Hillmyer, M.A. Mesoporous Polystyrene Monoliths. J. Am. Chem. Soc. 2001, 123(7): 1519- 1520.
    [82] Zalusky, A.S., Olayo-Valles, R., Wolf, J.H., Hillmyer, M.A. Ordered Nanoporous Polymers from Polystyrene-Polylactide Block Copolymers. J. Am. Chem. Soc. 2002, 124(43): 12761-12773.
    [83] Lee, K.T., Oh, S.M. Novel synthesis of porous carbons with tunable pore size by surfactant-templated sol–gel process and carbonisation. Chem. Commun. 2002, 22(15):2722-2723.
    [84] Liang, C.D., Hong, K.L., Guioehon, G.A., Mays, J.W., Dai, S. Nanoporous films: Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angewandte Chemie, International Edition. 2004, 43(43): 5785-5789.
    [85] Jiang, P., Hwang, K.S., Mittleman, D.M., Bertone, J.F., Colvin, V.L. Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids. J. Am. Chem. Soc. 1999, 121(50): 11630-11637.
    [86] Beck J.S., Vartuli J.C., Roth W.J. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J.Am.Chem.Soc.1992, 114: 10834-10843
    [87] Kresge C.T., Leonowicz M.E., Roth W.J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,Nature.1992,359:710-712.
    [88] Attard G.S., Glyde J.C., Goltner C.G. liquid-crystalline phases for the synthesis of mesoporous silica, Nature.1995, 378:366-368.
    [89] Goltner C.G.,Henke S.,Weissenberger M.C. mesoporous silica fromlyotropic polymer templates,Angew chem Int Ed.1998,37:613-616.
    [90] Goltner C.G.,Antonietti M. Mesoporous materials by templating of liquid crystalline phase, Adv Mater.1997, 9:431-440.
    [91] Jun S., Joo S.H., Ryoo R. Synthesis of New, Nanoporous Carbon withHexagonally Ordered Mesostructure,J.Am.Chem.Soc.2000,122:10712-10713.
    [92] Ryoo R., Joo S.H., Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediatiated structural transformation, J.Phys.Chem.B.1999, 103:10021-10031.
    [93] Chen C.Y.,Burkette S.L.,Li H.X. Studies on mesoporous materials.ⅡSynthesis mechanism of MCM-41,Microporous Mater.1993,2:27-3498.
    [94] Chen C.Y., Li H.X., Davis M.E. Studies on mesoporous materials.ⅠSynthesis and characterization of MCM-41, Microporous Mater,1993,2:17-26.
    [95] Stucky G.D., Huo Q.S., Firouzi A. Directed synthesis of organic/inorganic composite structures, progress in Zeolite and microporous materials, 1997:3-38.
    [96] Firouz A.,Atef F.,Oertli A.G. Alkaline lyotropic silicate-surfactant liquid crystals,J Am Chem Soc.1997,119:3596-3610.
    [97] Chen X.Y., Ding G.Z., Chen H.Y. Formation at low surfactant concentrations and characterization of mesoporous MCM-41,Sci China SerB-Chem.1997,40:278-285.
    [98] Yu, C.Z., Fan, J., Tian, B.Z., Zhao, D.Y., Stucky, G.D. High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Advanced Materials. 2002, 14(23): 1742-1745.
    [99] Tanaka, S., Nishiyama, N., Egashira, Y., Ueyama, K. Synthesis of ordered mesoporouscarbons with channel structure from an organic–organic nanocomposite. Chem. Commun. 2005, 16(5): 2125-2127.
    [100] Ryoo, R., Joo, S.H., Kluk, M., Jaroniec, M. Ordered mesoporous carbons. Advanced Materials. 2001, 13(9): 677-681.
    [101] Ryoo, R., Joo, S.H., Jun, S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. J. Phys. Chem. B. 1999, 103(37): 7743-7746.
    [102] Kim, J.Y., Yoon, S.B., Kooli, F, Yu, J.S. Synthesis of highly ordered mesoporous polymer networks. Journal of Materials Chemistry. 2001, 11(12):2912-2914.
    [103] Yang, H.F., Shi, Q.H., Tian, B.Z., Xie, S.H., Zhang, F.Q., Yan, Y., Tu, B., Zhao, D.Y. A Fast Way for Preparing Crack-Free Mesostructured Silica Monolith. Chem. Mater. 2003, 15(2):536-541.
    [1] Pascault, J.P., Williams, R.J.J., Paul, D.R., Bucknall, C. B. In Polymer Blends. Wiley: New York. 2000, 1: 379-415.
    [2] Hillmyer, M.A., Lipic, P.M., Hajduk, D.A., Almdal, K.; Bates, F. S. Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites. Journal of the American Chemical Society 1997, 119(11): 2749-2750.
    [3] Lipic, P.M., Bates, F.S., Hillmyer, M.A. Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures. Journal of the American Chemical Society 1998, 120(35): 8963-8970.
    [4] De Gennes, P.G. Scaling Concepts in Polymer Physics. Cornell University Press: Ithaca, NY. 1979, 324.
    [5] De Gennes, P.G. Possibilities offered by polymer crosslinking in the presence of a liquid crystal. Physics Letters A. 1969, 28(11): 725-726.
    [6] Ruiz-Perez, L., Royston, G.J., Fairclough, J.P.A. Toughening by nanostructure. Polymer 2008, 49(21): 4475-4488.
    [7] Yorkgitis, E.M., Eiss, N.S., Tran, C., Wilkes G. L., McGrath J. E. Siloxane-modified epoxy resins, Am. Chem. Soc.. Adv. Polym. Sci. 1985, 72: 79-109.
    [8] Meijerink, J.I., Eguchi, S., Ogata M., Ishii T., Amagi S., Numata S., Sashima H. The influence of siloxane modifiers on the thermal expansion coefficient of epoxy resins. Polymer 1994, 35: 179-186.
    [9] Zheng, S., Wang, H., Dai, Q., Luo X., Ma D. Morphology and structure of organosilicon polymer-modified epoxy resins. Macromol. Chem. & Phys. 1995, 196: 269-278.
    [10] Kemp, T.J., Wilford, A., Howarth, O.W., Lee T. C. P. Structural and materials properties of a polysulphide-modified epoxide resin. Polymer 1992, 33: 1860-1871.
    [11] Bussi, P., Ishida H. Dynamic mechanical properties of epoxy resin/epoxidized rubber blends: Effect of phase separated rubber. J. Polym. Sci., PartB: Polym. Phys. 1994, 32: 647-657.
    [12] Mijovic, J., Shen, M., Sy, J. W., Mondragon I. Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 2000, 33: 5235-5244
    [13] Guo, Q., Thomann, R., Gronski, W. Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin andamphiphilic poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) triblock copolymers. Macromolecules 2002, 35: 3133-3144.
    [14] Guo, Q., Thomann, R., Gronski, W. Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends. Macromolecules 2003, 36: 3635-3645.
    [15] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler L., Pascault J. P. ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets. Macromolecules 2002, 35: 6245-6254.
    [16] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler L., Pascault J. P. ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules, 2003, 36: 118-126.
    [17] Kosonen, H., Ruokolainen, J., Nyholm P., Ikkala O. Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly (2-vinylpyridine)-block-poly (isoprene). Macromolecules, 2001, 34: 3046-3049.
    [18] Kosonen, H., Ruokolainen, J., Nyholm, P., Ikkala O. Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends. Polymer, 2001, 42: 9481-9486.
    [19] Grubbs, R.B., Dean, J.M., Broz, M.E., Bates F. S. Reactive block copolymers for modification of thermosetting epoxy. Macromolecules, 2000, 33: 9522-9534.
    [20] Rebizant, V., Abetz, V., Tournihac, T., Court F., Leibler L. Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks, Macromolecules. 2003, 36: 9889-9896
    [21] Dean, J.M., Verghese, N.E., Pham, H.Q., Bates F. S. Nanostructure toughened epoxy resins, Macromolecules, 2003, 36: 9267-9270.
    [22] Rebizant, V., Venet, A.S., Tournillhac, F., Girard-Reydet E., Navarro C., Pascault J. P., Leibler L. Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules 2004, 37: 8017-8027.
    [23] Dean, J.M., Grubbs, R.B., Saad, W., Cook R. F., Bates F. S. Mechanical properties of block copolymer vesicle and micelle modified epoxies. J. Polym. Sci., Part B: Polym. Phys. 2003, 41: 2444-2456.
    [24] Wu, J., Thio, Y.S., Bates, F.S. Structure and properties of PBO-PEO diblock copolymer modified epoxy. J. Polym. Sci., Part B: Polym. Phys. 2005, 43: 1950-1965.
    [25] Guo, Q., Chen, F., Wang, K., Chen L. Nanostructured thermoset epoxy resin templated by an amphiphilic poly (ethylene oxide)-block-poly (dimethylsiloxane)diblock copolymer. J. Polym. Sci., Part B: Polym. Phys. 2006, 44: 3042-3052.
    [26] Xu, Z., Zheng, S. Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly (ε-caprolactone) - block-polydimethysiloxane-block- poly (ε-caprolactone) triblock copolymer. Polymer 2007, 48: 6134-6144.
    [27] Gong, W., Zeng, K., Wang, L., Zheng S. Poly (hydroxyether of bisphenol A)-block-polydimethylsiloxane alternating block copolymer and its nanostructured blends with epoxy resin. Polymer 2008.49(15):3318-3326.
    [28] Rabolt, J.F., Russell, T.P., Tweig, R.J. Structural studies of semifluorinated n-alkanes. 1. Synthesis and characterization of F (CF2) n (CH2) mH in the solid state. Macromolecules 1984, 17(12): 2786-2794.
    [29] Feast, W.J., Munro, H.S., Richarsa, R.W. Polymer Surface and Interface, II. John Wiley & Sons: Chichester, U.K.1993.
    [30] Iyengar, D.R., Perutz, S.M., Dai, C.A., Ober, Chistopher K.; Kramer, Edward J. Surface Segregation Studies of Fluorine-Containing Diblock Copolymers. Macromolecules 1996, 29(4): 1229-1234.
    [31] Messori, M., Toselli, M., Pilati, F., Tonelli, C. Unsaturated polyester resins modified with poly (ε-caprolactone)-perfluoropolyethers block copolymers. Polymer 2001, 42(25): 09877-09885.
    [32] Affrossman, S., Bertrand, P., Hartshorne, M., Kiff, T.; Leonard, D.; Pethrick, R. W. Surface segregation in blends of polystyrene and per (fluorohexane) double end capped polystyrene studied by static SIMS, ISS, and XPS. Macromolecules 1996, 29(16): 5432-5437.
    [33] Youngblood, J.P., McCarthy, T.J. Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma. Macromolecules 1999, 32(20): 6800-6806.
    [34] Li, X., Andruzzi, L., Chiellini, E., Galli, Giancarlo, Ober, Christopher K.,Hexemer, Alexander,Kramer, Edward J., Fischer, Daniel A. Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers: Bulk Structure and Surface Orientation Studies. Macromolecules 2002, 35(21): 8078-8087.
    [35] Hirao, A., Koide, G., Sugiyama, K. Synthesis of Novel Well-Defined Chain-End- and In-Chain-Functionalized Polystyrenes with One, Two, Three, and Four Perfluorooctyl Groups and Their Surface Characterization. Macromolecules 2002, 35(20): 7642-7651.
    [36] Muisener, P.A.V., Jalbert, C.A., Yuan, C. Measurement and Modeling of End Group Concentration Depth Profiles for Fluorosilane Polystyrene and Its Blends. Macromolecules 2003, 36(8): 2956-2966.
    [37] (a)Turri, S., Levi, M. Structure, Dynamic Properties, and Surface Behavior of Nanostructured Ionomeric Polyurethanes from Reactive Polyhedral Oligomeric Silsesquioxanes. Macromolecules 2005, 38(13): 5569-5574. (b) Oaten, M. Choudhury, N.R. Silsesquioxane-Urethane Hybrid for Thin Film Applications. Macromolecules 2005, 38(15): 6392-6401.
    [38] Ocando, C., Serrano, E., Tercjak, A., Pena, C.; Kortaberria, G., Calberg, C., Grignard, B., Jerome, R., Carrasco, P. M., Mecerreyes, D., Mondragon, I. Structure and Properties of a Semifluorinated Diblock Copolymer Modified Epoxy Blend. Macromolecules 2007, 40(11): 4068-4074.
    [39] Luo, X., Zheng, S., Zhang, N., Ma, D. Miscibility of epoxy resins/poly (ethylene oxide) blends cured with phthalic anhydride. Polymer 1994, 35(12): 2619-2623.
    [40] Zheng, S., Zhang, N., Luo, X., Ma, D. Epoxy resin/poly (ethylene oxide) blends cured with aromatic amine. Polymer 1995, 36(18): 3609-13.
    [41] Horng, T., Woo, E.M. Effects of network segment structure on the phase homogeneity of crosslinked poly (ethylene oxide)/epoxy networks. Polymer 1998, 39(17): 4115-4122.
    [42] Meng, F., Zheng, S., Zhang, W. Nanostructured thermosetting blends of epoxy resin and amphiphilic poly (ε-caprolactone)-block-polybutadiene-block-poly (ε-caprolactone) triblock copolymer. Macromolecules 2006, 39(2): 711-719.
    [43] Janardhanan, S., Pillai, P.M.B., Jacob, J., Kutty, K. N.; Wattamwar, S. B.; Mehta, S. K. Radiation protection aspects in the metallurgical examination of irradiated fuel elements. Bulletin of Radiation Protection 1981, 4(3): 15-24.
    [44] Hong, C.Y., You, Y.Z., Pan, C.Y. Synthesis and characterization of well-defined diblock and triblock copolymers of poly(N-isopropylacrylamide) and poly(ethylene oxide). Journal of Polymer Science, Part A: Polymer Chemistry. 2004, 42(19): 4873-4881.
    [45] Ishizone, T., Sugiyama, K., Sakano, Y., Mori, H., Hirao, A., Nakahama, S. Anionic polymerizations of perfluoroalkyl methacrylates and synthesis of well-defined ABC triblock copolymers of methacrylates containing hydrophilic, hydrophobic, and perfluoroalkyl groups. Polymer 1999, 31(11): 983-988.
    [46] Krupers, M., Moller, M. Semifluorinated diblock copolymers. Synthesis, characterization, and amphiphilic properties Macromolecular Chemistry and Physics1997, 198(7):2163-2179.
    [47] Yang, S., Wang, J.G., Ogino, K., Valiyaveettil, S., Ober, C. K. Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements. Chemistry of Materials 2000, 12(1): 33-40.
    [48] Matsumoto, K., Mazaki, H., Matsuoka, H. Fluorinated Amphiphilic Vinyl Ether Block Copolymers: Synthesis and Characteristics of Their Micelles in Water. Macromolecules 2004, 37(6): 2256-2267.
    [49] Hopken, J., Moller, M., Lee, M., Myongsoo, Percec, V. Synthesis of poly(vinyl ethers) with perfluoroalkyl pendant groups. Makromolekulare Chemie. 1992, 193(1): 275-84.
    [50] Lacroix-Desmazes, P., Andre, P., and Desimone, J.M. Macromolecular surfactants for supercritical carbon dioxide applications: Synthesis and characterization of fluorinated block copolymers prepared by nitroxide-mediated radical polymerization. Journal of Polymer Science, Part A: Polymer Chemistry. 2004, 42(14): 3537-3552.
    [51] Borkar, S., Jankova, K., Siesler, H.W., Hvilsted, S. New highly fluorinated styrene-based materials with low surface energy prepared by ATRP. Macromolecules 2004, 37(3): 788-794.
    [52] Radhakrishnan, K., Switek, K.A., Hillmyer, M.A. Synthesis of semifluorinated block copolymers by atom transfer radical polymerization. Journal of Polymer Science, Part A: Polymer Chemistry. 2004, 42(4): 853-861.
    [53] Borkar, S., Sen, A. Novel Fluoroalkene-Methyl Acrylate Copolymers by Atom Transfer Radical Polymerization. Macromolecules 2005, 38(7): 3029-3032.
    [54] Rixens, B., Severac, R., Boutevin, B., Lacroix, D.P. Migration of additives in polymer coatings: fluorinated additives and poly(vinylidene chloride)-based matrix. Polymer 2005, 46(11): 3579-3587.
    [55] Xu, J., Ni, P., Mao, J. Synthesis and characterization of a novel triblock copolymer containing double-hydrophilic blocks and poly(fluoroalkyl methacrylate) block via oxyanion-initiated polymerization. E-Polymers 2006, No pp. given.
    [56] Hong, C., You, Y., Pan, C. Synthesis and characterization of well-defined diblock and triblock copolymers of poly(N-isopropylacrylamide) and poly(ethylene oxide). Journal of Polymer Science, Part A: Polymer Chemistry. 2004, 42(19): 4873-4881.
    [57] Yamanaka, K., Takagi, Y., Inoue, T. Reaction-induced phase separation in rubber-modified epoxy resins. Polymer 1989, 30(10): 1839-44.
    [58] Sanja, Z.N., Kupehela, L. Polym. Eng. Sci.. 1976, 28(12): 1149-1153.
    [59] Ochi, M., Iesako, H., Shimbo, M. Relaxation mechanism of epoxide resin cured with acid anhydrides. III. Effect of alkyl side chains on mechanical and dielectric relaxations. Journal of Polymer Science, Part B: Polymer Physics. 1986, 24(6): 1271-82.
    [60] Kaelble, D. H. Dispersion-polar surface tension properties of organic solid. Journal of Adhesion 1970, 2(4): 66-81.
    [61] Kaelble, D.H. Physical Chemistry of Adhesion. Wiley-Interscience: New York, 1971.
    [63] Adamson, A.W. Physical Chemistry of Surface, 5th ed. Wiley-Interscience: New York. 1990.
    [64] Barthlott, W., Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202(1): 1-8.
    [65] Feng, L., Li, S.H., Li, Y.S., Li, H.J., Zhang, L.J., Zhai, J., Song, Y.L., Liu, B.Q., Jiang, L., Zhu, D.B. Super-hydrophobic surfaces: from natural to artificial. Advanced Materials 2002, 14(24): 1857-1860.
    [66] Gao, X. F., Jiang, L. Biophysics: water-repellent legs of water striders. Nature 2004, 432(7013): 36-38.
    [67] Onda, T., Shibuichi, S., Satoh, Tsujii, K. Super-Water-Repellent Fractal Surfaces. Langmuir 1996, 12(9): 2125-7.
    [68] Han, J.T., Xu, X.R., Cho, K.W. Diverse Access to Artificial Superhydrophobic Surfaces Using Block Copolymers. Langmuir. 2005, 21(15):6662-6665.
    [69] Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C. C. Intrinsically Superhydrophobic Organosilica Sol-Gel Foams. Langmuir. 2003, 19(14):5626-5631.
    [70] Liu, H., Fu, Y., Wang, Z.Q., Jiang, L., Li, X.Y. Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface. Journal of the American Chemical Society 2004, 126(10):3064-3065.
    [71] Feng, J., Jiang, L. Design and creation of superwetting/antiwetting surfaces. Advanced Materials 2006, 18(23): 3063-3078.
    [1] May, C.A., Tanaka, G.Y.“Epoxy Resin Chemistry and Technology”. Marcel Dekker. New York, 1973.
    [2] Bauer, R.S.“Advances in Chemistry”. Vol. 114, American Chemical Society. Washington DC. 1979.
    [3] Guo, Q., Thomann, R., Gronski, W. Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers. Macromolecules 2002, 35: 3133-3144.
    [4] Guo, Q., Thomann, R., Gronski, W. Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends. Macromolecules 2003, 36: 3635-3645.
    [5] Manson, J.A., Hertzberg, R.W., Connelly, G.M., Hwang, J.“Advances in Chemistry Series 211,“Multi-component Polymer Materials”. D. R. Paul, L. M. Sperling. 1986, p.300.
    [6] Riew, C.K., Rowe, E.H., Siebert, A.R. Toughness and brittleness of plastics. Am. Chem. Soc., Adv. Chem. Ser. 1976, 154: 326-343.
    [7] Yee, A.F., Pearson, R.A. Toughening mechanisms in elastomer-modified epoxy part 1: Mechanical studies. J. Mater. Sci. 1986, 21: 2462-2474.
    [8] Yorkgitis, E.M., Eiss, N.S., Tran, C., Wilkes, G.L., McGrath, J.E. Siloxane-modified epoxy resins. Am. Chem. Soc., Adv. Polym. Sci. 1985, 72: 79-109.
    [9] Meijerink, J.I., Eguchi, S., Ogata, M., Ishii, T., Amagi, S., Numata, S., Sashima, H. The influence of siloxane modifiers on the thermal expansion coefficient of epoxy resins. Polymer1994, 35: 179-186.
    [10] Zheng, S., Wang, H., Dai, Q., Luo, X., Ma, D. Morphology and structure of organosilicon polymer-modified epoxy resins. Macromol. Chem. & Phys. 1995, 196: 269-278.
    [11] Kemp, T.J., Wilford, A., Howarth, O.W., Lee, T.C.P. Structural and materials properties of a polysulphide-modified epoxide resin. Polymer 1992, 33: 1860-1871.
    [12] Bussi, P., Ishida, H. Dynamic mechanical properties of epoxy resin/epoxidized rubber blends: Effect of phase separated rubber. J. Polym. Sci., PartB: Polym. Phys. 1994, 32: 647-657.
    [13] Bucknall, C.B., Patridge, I.K. Phase separation in epoxy resins containing polyethersulphone. Polymer 1983, 24: 639-644.
    [14] Bucknall, C.B., Gilbert, A.H. Toughening tetrafunctional epoxy resins using polyetherimide. Polymer 1989, 30: 213-217.
    [15] Hourston, D.J., Lane, J.M. The toughening of epoxy resins with thermoplastics. 1. Trifunctional epoxy resin-poly(ether imide) blends. Polymer 1992, 33: 1379-1383.
    [16] Hedrick, J.H., Yilgor, I., Jurek, M., Hedrick, J.C., Wilkens, G.L., McGrath, J.E. Chemical modification of matrix resin networks with engineering thermoplastics: 1. Synthesis, morphology, physical behaviour and toughening mechanisms of poly(arylene ether sulphone) modified epoxy networks. Polymer 1991, 32: 2020-2032.
    [17] Raghava, R.S. Development and characterization of thermosetting-thermoplastic polymer blends for applications in damage-tolerant composites. J. Polym. Sci., PartB: Polym. Phys. 1988, 26: 65-81.
    [18] Gilbert, A.H., Bucknall, C.B. Epoxy resin toughened with thermoplastic. Macromol. Chem. & Phys., Macromol. Symp. 1991, 45: 289-298.
    [19] Cho, J.B., Hwang, J.W., Cho, K., An, J.H., Park, C.E. Effects of morphology on toughening of tetrafunctional epoxy resins with poly(ether imide). Polymer 1993, 34: 4832-4836.
    [20] Iijima, T., Tochiomoto, T., Tomoi, M. Modification of epoxy resins with poly(aryl ether ketones), J. Appl. Polym. Sci. 1991, 43: 1685-1692.
    [21] Zheng, S., Wang, J., Guo, Q., Wei, J., Li, J. Miscibility, morphology and fracture toughness of epoxy resin/poly(styrene-co-acrylonitrile) blends. Polymer 1996, 37: 4667-4673.
    [22] Takahashi, T., Nakajima, N., Saito, N. in“Rubber-Toughened Plastics”, Adv. Chem. Ser., 222, (C. K. Riew, ed). Am. Chem. Soc., Washington D. C. 1989, p. 243.
    [23] Pascault, J.P., Williams, R.J.J. In Polymer Blends (Eds. Paul D. R., Bucknall C. B.) Wiley: New York. 2000, Vol. 1, pp 379-415.
    [24] Hillmyer, M.A., Lipic, P.M., Hajduk, D.A., Almdal, K., Bates, F.S. Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J. Am. Chem. Soc..1997, 119: 2749-2750.
    [25] Lipic, P.M., Bates, F.S., Hillmyer, M.A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J. Am. Chem. Soc.. 1998, 120:8963-8970.
    [26] Hillmyer, M.A., Lipic, P.M., Hajduk, D.A., Almdal, K., Bates, F.S. Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J. Am. Chem. Soc. 1997, 119: 2749-2750.
    [27] Lipic, P.M., Bates, F.S., Hillmyer, M.A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J. Am. Chem. Soc. 1998, 120: 8963-8970.
    [28] Mijovic, J., Shen, M., Sy, J.W., Mondragon I. Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 2000,33: 5235-5244.
    [29] Guo, Q., Thomann, R., Gronski, W. Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers. Macromolecules 2002, 35: 3133-3144.
    [30] Guo, Q., Thomann, R., Gronski, W. Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends. Macromolecules 2003, 36: 3635-3645.
    [31] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler, L., Pascault, J.P. ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets. Macromolecules 2002, 35: 6245-6254.
    [32] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler, L., Pascault, J.P. ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules 2003, 36: 118-126
    [33] Kosonen, H., Ruokolainen, J., Nyholm, P., Ikkala, O. Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene). Macromolecules 2001, 34: 3046-3049.
    [34] Kosonen, H., Ruokolainen, J., Nyholm, P., Ikkala, O. Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends. Polymer 2001, 42: 9481-9486.
    [35] Grubbs, R.B., Dean, J.M., Broz, M.E., Bates, F.S. Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 2000, 33: 9522-9534.
    [36] Rebizant, V., Abetz, V., Tournihac, T., Court, F., Leibler, L. Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks. Macromolecules 2003, 36: 9889-9896.
    [37] Dean, J.M., Verghese, N.E., Pham, H.Q., Bates, F.S. Nanostructure toughened epoxy resins.Macromolecules 2003, 36: 9267-9270.
    [38] Rebizant, V., Venet, A.S., Tournillhac, F., Girard-Reydet, E., Navarro, C., Pascault, J.P. Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules 2004, 37: 8017-8027.
    [39] Dean, J.M., Grubbs, R.B., Saad, W., Cook, R.F., Bates, F.S. Mechanical properties of block copolymer vesicle and micelle modified epoxies. J. Polym. Sci., Part B: Polym. Phys. 2003, 41: 2444-2456.
    [40] Wu, J., Thio, Y.S., Bates, F.S. Structure and properties of PBO-PEO diblock copolymer modified epoxy. J. Polym. Sci., Part B: Polym. Phys. 2005, 43: 1950-1965.
    [41] Guo, Q., Chen, F., Wang, K., Chen, L. Nanostructured thermoset epoxy resin templated by an amphiphilic poly(ethylene oxide)-block-poly(dimethylsiloxane) diblock copolymer. J. Polym. Sci., Part B: Polym. Phys. 2006, 44: 3042-3052.
    [42] Maiez-Tribut, S., Pascault, J.P., Soule, E.R., Borrajo, J., Williams, R.J.J. Nanostructured epoxies based on the self-assembly of block copolymers: A new miscible block that can be tailored to different epoxy formulations. Macromolecules 2007, 40, 1268-1273.
    [43] Larra?aga, M., Gabilondo, N., Kortaberria, G., Serrano, E., Remiro, P., Riccardi, C.C., Mondragon, I. Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer. Polymer 2005, 46: 7082-7093.
    [44] Meng, F., Zheng, S., Zhang, W., Li, H., Liang, Q. Nanostructured thermosetting blends of epoxy resin and amphiphilic poly(ε-caprolactone)-block-polybutadiene-block-poly(ε-caprolactone) triblock copolymer. Macromolecules 2006, 39: 711-719.
    [45] Meng, F., Zheng, S., Li, H., Liang, Q., Liu, T. Formation of ordered nanostructures in epoxy thermosets: A mechanism of reaction-induced microphase separation. Macromolecules 2006, 39: 5072-5080.
    [46] Meng, F., Zheng, S., Liu, T. Epoxy resin containing poly(ethylene oxide)-block-poly( -caprolactone) diblock copolymer: Effect of curing agents on nanostructures. Polymer 2006, 47: 7590-7600.
    [47] Serrano, E., Tercjak, A., Kortaberria, G., Pomposo, J.A., Mecerreyes, D., Zafeiropoulos, N.E., Stamm, M., Mondragon, I. Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers. Effect of epoxidation degree. Macromolecules 2006, 39: 2254-2261.
    [48] Sinturel, C., Vayer, M., Erre, R., Amenitsch, H. Nanostructured polymers obtained from polyethylene-block-poly(ethylene oxide) block copolymer in unsaturated polyester. Macromolecules 2007, 40: 2532-2538.
    [49] Xu, Z., Zheng, S. Reaction-induced microphase separation in epoxy thermosets containingpoly(ε-caprolactone)-block-poly(n-butyl acrylate) diblock copolymer. Macromolecules 2007, 40: 2548-2558.
    [50]孟凡良.热固性聚合物中具有纳米尺度上微结构的形成:反应诱致的微相分离机制[博士论文].上海交通大学. 2006.
    [51] Jayalakshmi, R., Ramadas, S.R., Pillai, C.N. Org. Prep. Proced. Int.. 1981, 3:71.
    [52] Huang, P., Zheng, S., Huang, J., Guo, Q., Zhu, W. Miscibility and mechanical properties of epoxy resin/polysulfone blends. Polymer 1997, 38(22): 5565-5571.
    [53] Zhong, Z., Zheng, S., Huang, J., Cheng, X., Guo, Q., Wei, J. Phase behavior and mechanical properties of epoxy resin containing phenolphthalein poly(ether ether ketone). Polymer 1998, 39(5): 1075-1080.
    [54] Rebizant, V., Venet, A.S., Tournillhac, F., Girard-Reydet, E., Navarro, C., Pascault, J.P., Leibler, L. Chemistry and Mechanical Properties of Epoxy-Based Thermosets Reinforced by Reactive and Nonreactive SBMX Block Copolymers. Macromolecules 2004, 37(21): 8017-8027.
    [55] Dean, J.M., Grubbs, R.B., Saad, W., Cook, R.F., Bates, F.S. Mechanical properties of block copolymer vesicle and micelle modified epoxies. Journal of Polymer Science, Part B: Polymer Physics. 2003, 41(20): 2444-2456.
    [56] Wu, J., Thio, Y.S., Bates, F.S. Structure and properties of PBO-PEO diblock copolymer modified epoxy. Journal of Polymer Science, Part B: Polymer Physics. 2005, 43(15):1950-1965.
    [57] Dean, J.M., Lipic, P.M., Grubbs, R.B., Cook, R.F., Bates, F.F. Micellar structure and mechanical properties of block copolymer-modified epoxies. Journal of Polymer Science, Part B: Polymer Physics. 2001, 39(23): 2996-3010.
    [58] Zeng, K., Zheng, S. Nanostructures and surface dewettability of epoxy thermosets containing hepta(3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(ethylene oxide). The journal of physical chemistry. B. 2007, 111(50): 13919-13928.
    [59] Yi, F., Zheng, S., Liu, T. Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer. Journal of Physical Chemistry B. 2009, 113(7): 1857-1868.
    [60] Kaelble, D.H., Uy, K.C. Dispersion-polar surface tension properties of organic solids. J.Adhes. 1970, 2: 50-60.
    [61] Kaelble, D.H., Phys. Chem. of Adhesion. Wiley-Interscience, New York. 1971.
    [62] Wu, S. Polymer Interface and Adhesion. Marcel Dekker, New York. 1982.
    [1] Hillmyer, M.A., Lipic, P.M., Hajduk, D.A., Almdal K., Bates F. S. Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J. Am. Chem. Soc. 1997, 119: 2749-2750.
    [2] Lipic, P.M., Bates, F.S., Hillmyer, M.A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J. Am. Chem. Soc. 1998, 120: 8963-8970.
    [3] Mijovic, J., Shen, M., Sy, J.W., Mondragon I. Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 2000, 33: 5235-5244.
    [4] Guo, Q., Thomann, R., Gronski, W. Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers. Macromolecules 2002, 35: 3133-3144.
    [5] Guo, Q., Thomann, R., Gronski, W. Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends. Macromolecules 2003, 36: 3635-3645.
    [6] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler L., Pascault J. P. ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets. Macromolecules 2002, 35: 6245-6254.
    [7] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler L., Pascault J. P.. ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules 2003, 36: 118-126.
    [8] Kosonen, H., Ruokolainen, J., Nyholm, P., Ikkala O. Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene). Macromolecules 2001, 34: 3046-3049.
    [9] Kosonen, H., Ruokolainen, J., Nyholm, P., Ikkala O. Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends. Polymer. 2001, 42: 9481-9486.
    [10] Grubbs, R.B., Dean, J.M., Broz, M.E., Bates F. S. Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 2000, 33: 9522-9534.
    [11] Rebizant, V., Abetz, V., Tournihac, T., Court F., Leibler L. Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks. Macromolecules 2003, 36: 9889-9896.
    [12] Dean, J.M., Verghese, N.E., Pham, H.Q., Bates F. S.. Nanostructure toughened epoxy resins. Macromolecules 2003, 36: 9267-9270.
    [13] Rebizant, V., Venet, A.S., Tournillhac, F., Girard-Reydet E., Navarro C., Pascault J. P., Leibler L. Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules 2004, 37: 8017-8027.
    [14] Dean, J.M., Grubbs, R.B., Saad, W., Cook R. F., Bates F. S. Mechanical properties of block copolymer vesicle and micelle modified epoxies. J. Polym. Sci., Part B: Polym. Phys. 2003, 41: 2444-2456.
    [15] Wu, J., Thio, Y.S., Bates, F.S. Structure and properties of PBO-PEO diblock copolymer modified epoxy. J. Polym. Sci., Part B: Polym. Phys. 2005, 43: 1950-1965.
    [16] Guo, Q., Chen, F., Wang, K., Chen L. Nanostructured thermoset epoxy resin templated by an amphiphilic poly(ethylene oxide)-block-poly(dimethylsiloxane) diblock copolymer. J. Polym. Sci., Part B: Polym. Phys. 2006, 44: 3042-3052.
    [17] Xu, Z., Zheng, S. Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly(ε-caprolactone)- block-polydimethysiloxane-block- poly(ε-caprolactone) triblock copolymer. Polymer 2007, 48: 6134-6144.
    [18] Gong, W., Zeng, K., Wang, L., Zheng S. Poly(hydroxyether of bisphenol A)-block-polydimethylsiloxane alternating block copolymer and its nanostructured blends with epoxy resin. Polymer 2008, 49: 3318-3326.
    [19] Larra?aga, M., Gabilondo, N., Kortaberria, G., Serrano E., Remiro P., Riccardi C. C. Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO-PPO-PEO triblock copolymer. Polymer 2005, 46: 7082-7093.
    [20] Meng, F., Zheng, S., Zhang, W., Li H., Liang Q.. Nanostructured thermosetting blends of epoxy resin and amphiphilic poly(ε-caprolactone)-block-polybutadiene-block-poly(ε-caprolactone) triblock copolymer. Macromolecules 2006, 39: 711-719.
    [21] Meng, F., Zheng, S., Li, H., Liang Q., Liu T. Formation of ordered nanostructures in epoxy thermosets: A mechanism of reaction-induced microphase separation. Macromolecules 2006, 39: 5072-5080.
    [22] Serrano, E., Tercjak, A., Kortaberria, G., Pomposo J. A., Mecerreyes D., Zafeiropoulos N. E., Stamm M., Mondragon I. Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers. Effect of epoxidation degree. Macromolecules 2006, 39: 2254-2261.
    [23] Xu, Z., Zheng, S. Reaction-induced microphase separation in epoxy thermosets containing poly(ε-caprolactone)-block-poly(n-butyl acrylate) diblock copolymer. Macromolecules 2007, 40: 2548-2558.
    [24] Meng, F., Xu, Z., Zheng, S. Microphase separation in thermosetting blends of epoxy resin and poly(ε-caprolactone)-block-polystyrene block copolymers. Macromolecules 2008, 41: 1411-1420.
    [25] Sinturel, C., Vayer, M., Erre, R., Amenitsch H. Nanostructured polymers obtained from polyethylene-block-poly(ethylene oxide) block copolymer in unsaturated polyester. Macromolecules 2007, 40: 2532-2538.
    [26] Ocando, C., Serrano, E., Tercjak, A., Pena C. Structure and properties of a semifluorinated diblock copolymer modified epoxy blend. Macromolecules 2007, 40: 4068-4070.
    [27] Serrano, E., Larra?aga, M., Remiro, P.M., Mondragon I. Nanostructured thermosetting systems from epoxidized styrene butadiene block copolymers. Macromol. Rapid Commun. 2005, 26: 982-985.
    [28] Maiez-Tribut, S., Pascault, J.P., Soule, E.R., Borrajo J., Williams R. J. J. Nanostructured epoxies based on the self-assembly of block copolymers: A new miscible block that can be tailored to different epoxy formulations. Macromolecules 2007, 40: 1268-1273.
    [29] Fan, W., Zheng, S. Reaction-induced Microphase Separation in Thermosetting Blends of Epoxy Resin with Poly(methyl methacrylate)-block-Polystyrene Block Copolymers: Effect of Topologies of Block Copolymers on Morphological Structures. Polymer 2008, 49: 3157-3168.
    [30] Yi, F., Zheng, S., Liu, T. Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer. Journal of Physical Chemistry B 2009, 113(7): 1857-1868.
    [31] Meng, F., Zheng, S., Li, H., Qi Liang, and T. Liu Formation of Ordered Nanostructures in Epoxy Thermosets: A Mechanism of Reaction-Induced Microphase Separation. Macromolecules 2006, 39(15): 5072-5080.
    [32] Meng, F., Zheng, S., Zhang, W., Li, H. , Liang, Q. Nanostructured thermosetting blends of epoxy resin and amphiphilic poly(ε-caprolactone)-block-polybutadiene-block-poly( ε-caprolactone) triblock copolymer. Macromolecules 2006, 39(2): 711-719.
    [33] Xu, Z., Zheng, S. Reaction-induced microphase separation in epoxy thermosets containing pPoly(ε-caprolactone)-block-poly(n-butyl acrylate) diblock copolymer. Macromolecules 2007, 40(7): 2548-2558.
    [34]范文春.嵌段共聚物的拓扑结构对热固性共混物纳米形态结构的影响及相关性能的研究[博士论文].上海交通大学. 2008.
    [35] Meng, F., Zheng, S., Liu, T. Epoxy resin containing poly(ethylene oxide)-block-poly(ε-caprolactone) diblock copolymer: Effect of curing agents on nanostructures. Polymer 2006, 47: 7590-7600.
    [36] Guo, Q., Wang, Z., Peng, X. The miscibility and morphology of epoxy resin/poly(ethylene oxide) blends. Polymer 1991, 32: 53-57.
    [37] Luo, X., Zheng, S., Zhang, N., Ma D. Miscibility of epoxy resins/poly(ethylene oxide)blends cured with phthalic anhydride. Polymer 1994, 35: 2619-2623.
    [38] Noshay, A., Robeson, L.M. Epoxy/modifier block copolymers. J. Polym. Sci., ParA: Polym. Chem. 1974, 12: 689-705.
    [39] Clark, J.N., Daly, J.H., Garton, A. Hydrogen bonding in epoxy resin/ poly(ε-caprolactone) blends. J. Appl. Polym. Sci. 1984, 29: 3381-3390.
    [40] Chen, J.L., Chang, F.C. Phase separation process in poly(ε-caprolactone) -epoxy blends. Macromolecules 1999. 32: 5348-5356.
    [41] Remiro, P.M., Cortazr, M.M., Calahorra, M.E. Miscibility and crystallization of an amine-cured epoxy resin modified with crystalline poly(ε-caprolactone). Macromol. Chem. Phys.. 2001, 202 : 1077-1988.
    [42] Guo, Q., Harrats, C., Groeninckx, G., Koch M. H. J. Miscibility, crystallization kinetics and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends of epoxy resin and poly(ethylene oxide). Polymer 2001, 42: 4127-4140.
    [43] Guo, Q., Harrats C., Groeninckx, G., Reynaers H., Koch M. H. J. Miscibility, crystallization kinetics and real-time small-angle X-ray scattering investigation of the semicrystalline morphology in thermosetting polymer blends. Polymer 2001, 42: 6031-6041.
    [44] Guo, Q., Groeninckx, G. Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone). Polymer 2001, 42: 8647-8655.
    [45] Zheng, S., Zheng, H., Guo, Q. Epoxy resin/ poly(ε-caprolactone) blends cured with 2,2-bis[4-(4-aminophenosy)phenyl]propane. I. Miscibility and crystallization kinetics. J. Polym. Sci., Par B: Polym. Phys. 2003, 41: 1085-1098.
    [46] Zheng, S., Guo, Q., Chan, C.M. Epoxy resin/ poly(ε-caprolactone) blends cured with 2,2-bis[4-(4-aminophenosy)phenyl]propane. II. Studies by Fourier transform infrared and carbon-13 cross-polarization/magic-angle spinning nuclear magnetic resonance spectroscopy. J. Polym. Sci., Par B: Polym. Phys. 2003, 41: 1099-1111.
    [47] Yin, M., Zheng, S. Ternary thermosetting blends of epoxy resin, Poly(ethylene oxide) and poly(ε-caprolactone). Macromol. Chem. & Phys. 2005, 206: 929-937.
    [48] Horng, T.J., Woo, E.M. Effects of network segment structure on the phase homogeneity of crosslinked poly(ethylene oxide)/epoxy networks. Polymer 1998, 39: 4115-4122.
    [49] Ni, Y., Zheng, S. Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(ε-caprolactone) blends cured with aromatic amines. Polymer 2005, 46: 5828-5839.
    [50] Yuan, Y.Y., Wang, Y.C., Du, J.Z., Wang .J. Synthesis of amphiphilic ABC 3-miktoarm starterpolymer by combination of ring-opening polymerization and“click”chemistry. Macromolecules 2008, 41(22): 8620-8625.
    [51] Bellas, V., Iatrou, H., Hadjichristidis, N. Controlled anionic polymerization of hexamethylcyclotrisiloxane. model linear and miktoarm star co- and terpolymers of dimethylsiloxane with styrene and isoprene. Macromolecules 2000, 33: 6993-6997.
    [52] Mavroudis, A., Hadjichristidis, N. Synthesis of well-defined 4-miktoarm star quarterpolymers (4μ-SIDV) with four incompatible arms: polystyrene (S), polyisoprene-1,4 (I), poly(dimethylsiloxane) (D), and poly(2-vinylpyridine) (V). Macromolecules 2006, 39: 535-540.
    [53] Huckstadt, H., Gopfert, A., Abetz, V. Synthesis and morphology of ABC heteroarm star terpolymers of polystyrene, polybutadiene, and poly(2-vinylpyridine). Macromolecular Chemistry and Physics 2000, 201(3): 296-307.
    [54] Zhao, Y.L., Higashihara, T., Sugiyama, K., Hirao, A. Synthesis of functionalized asymmetric star polymers containing conductive polyacetylene segments by living anionic polymerization. Journal of the American Chemical Society 2005, 127(41): 14158-14159.
    [55] Hirao, A., Higashihara, T., Inoue, K. Successive Synthesis of well-defined asymmetric star-branched polymers up to seven-arm, seven-component ABCDEFG type by an iterative methodology based on living anionic polymerization. Macromolecules 2008, 41(10): 3579-3587.
    [56] Feng, X.S., Pan, C.Y. Block and star block copolymers by mechanism transformation. 7. synthesis of polytetrahydrofuran/poly(1,3-dioxepane)/polystyrene ABC miktoarm star copolymers by combination of CROP and ATRP. Macromolecules 2002, 35(6): 2084-2089.
    [57] Rieger, J., Coulembier, O., Dubois, P., Bernaerts, K. V., Du Prez, F. E.. Jerome, R. Jerome, C. Controlled synthesis of an ABC miktoarm star-shaped copolymer by sequential ring-opening polymerization of ethylene oxide, benzyl-malolactonate, and-caprolactone. Macromolecules 2005, 38(26): 10650-10657.
    [58] He, T., Li, D.J., Sheng, X., Zhao, B. Synthesis of ABC 3-miktoarm star terpolymers from a trifunctional initiator by combining ring-opening polymerization, atom transfer radical polymerization, and nitroxide-mediated radical polymerization. Macromolecules 2004, 37(9): 3128-3135.
    [59] Whittaker, M.R., Urbani, C.N., Monteiro, M.J. Synthesis of 3-miktoarm stars and 1st generation mikto dendritic copolymers by "Living" radical polymerization and "click" chemistry. Journal of the American Chemical Society 2006, 128(35): 11360-11361.
    [60] Urbani, C.N., Bell, C.A., Whittaker, M.R., Monteiro, M. Convergent synthesis of second generation AB-type miktoarm dendrimers using "click" chemistry catalyzed by copper wire. Macromolecules 2008, 41(4): 1057-1060.
    [61] Van, Butsele, K., Stoffelbach, F., Jerome, R., Jerome, C. Synthesis of novel amphiphilic andpH-Sensitive ABC miktoarm star terpolymers. Macromolecules 2006, 39(17): 5652-5656.
    [62] Stenzel, M.H., Davis, T.P. StarPolymer synthesis using trithiocarbonate functional cyclodextr incores (reversible addition-fragmentation chain-transfer polymerization. J. Polym. Sci. PartA: Polym. Chem. 2002, 40: 4498-4512.
    [63] Jesberger, M., Bamer, L., Stenzel, M.H., Malmstrom, E., Davis,T.P, Bamer-Kowollik, C. HyPerbranehed Polymers as affolds for multifunctional reversible addition-fragmentation chain–transfer agents: Aroute to polystyrene-eore-polyesters and polystyrene-block-poly (butylae rylate)-co-polyesters. J. Polym. Sci. PartA: Polym. Chem. 2003, 41: 3847-3861.
    [64] Tsarevsky, N.V., Bencherif, S.A., Matyjaszewski, K. Graft copolymers by a combination of ATRP and two different consecutive click reactions. Macromolecules 2007, 40(13): 4439-4445.
    [65] Dean, J.M., Lipic, P.M., Grubbs, R.B., Cook, R. F., Bates, F. S. Micellar structure and mechanical properties of block copolymer-modified epoxies. Journal of Polymer Science, Part B: Polymer Physics. 2001, 39(23): 2996-3010.
    [66] Yin, M., Zheng, S. Ternary thermosetting blends of epoxy resin, poly(ethylene oxide) and poly(ε-caprolactone). Macromolecular Chemistry and Physics 2005, 206(9): 929-937.
    [67] Horng, T; Woo, E.M. Effects of network segment structure on the phase homogeneity of crosslinked poly(ethylene oxide)/epoxy networks. Polymer 1998, 39(17): 4115-4122.
    [68]孟凡良.热固性聚合物中具有纳米尺度上微结构的形成:反应诱致的微相分离机制[博士论文].上海交通大学. 2006.
    [1] Hillmyer, M.A., Lipic, P.M., Hajduk, D.A., Almdal, K., Bates, F.S. Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J. Am. Chem. Soc. 1997, 119: 2749-2750.
    [2] Lipic, P.M., Bates, F.S., Hillmyer, M.A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J. Am. Chem. Soc. 1998, 120: 8963-8970.
    [3] Mijovic, J., Shen, M., Sy, J.W., Mondragon, I. Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation. Macromolecules 2000, 33: 5235-5244.
    [4] Kosonen, H., Ruokolainen, J., Nyholm, P., Ikkala O. Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene). Macromolecules 2001, 34: 3046-3049.
    [5] Guo, Q., Thomann, R., Gronski, W. Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers. Macromolecules 2002, 35: 3133-3144.
    [6] Guo, Q., Thomann, R., Gronski, W. Nanostructures, semicrytalline morphology, and nanoscale confinement effect on the crystallization kinetics in self-organized block copolymer/thermoset blends. Macromolecules 2003, 36: 3635-3645.
    [7] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler, L., Pascault, J.P. ABC triblock copolymers/epoxy-diamine blends. 1. Keys to achieve nanostructured thermosets. Macromolecules 2002, 35: 6245-6254.
    [8] Ritzenthaler, S., Court, F., Girard-Reydet, E., Leibler, L., Pascault, J.P. ABC triblock copolymers/epoxy-diamine blends. 2. Parameters controlling the morphologies and properties. Macromolecules 2003, 36: 118-126.
    [9] Kosonen, H., Ruokolainen, J., Nyholm, P., Ikkala, O. Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene). Macromolecules 2001, 34: 3046-3049.
    [10] Grubbs, R.B., Dean, J.M., Broz, M.E., Bates, F.S. Reactive block copolymers for modification of thermosetting epoxy. Macromolecules 2000, 33: 9522-9534.
    [11] Rebizant, V., Abetz, V., Tournihac, T., Court, F., Leibler, L. Reactive tetrablock copolymers containing glycidyl methacrylate. Synthesis and morphology control in epoxy-amine networks.Macromolecules 2003, 36: 9889-9896.
    [12] Dean, J.M., Verghese, N.E., Pham, H.Q., Bates, F.S. Nanostructure toughened epoxy resins. Macromolecules 2003, 36: 9267-9270.
    [13] Rebizant, V., Venet, A.S., Tournillhac, F., Girard-Reydet, E., Navarro, C., Pascault, J.P., Leibler, L. Chemistry and mechanical properties of epoxy-based thermosets reinforced by reactive and nonreactive SBMX block copolymers. Macromolecules 2004, 37: 8017-8027.
    [14] Dean, J.M., Grubbs, R.B., Saad, W., Cook, R.F., Bates, F.S. Mechanical properties of block copolymer vesicle and micelle modified epoxies. J. Polym. Sci., Part B: Polym. Phys. 2003, 41: 2444-2456.
    [15] Wu, J., Thio, Y.S., Bates, F.S. Structure and properties of PBO-PEO diblock copolymer modified epoxy. J. Polym. Sci., Part B: Polym. Phys. 2005, 43: 1950-1965.
    [16] Guo, Q., Chen, F., Wang, K., Chen, L. Nanostructured thermoset epoxy resin templated by an amphiphilic poly(ethylene oxide)-block-poly(dimethylsiloxane) diblock copolymer. J. Polym. Sci., Part B: Polym. Phys. 2006, 44: 3042-3052.
    [17] Xu, Z., Zheng, S. Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly(ε-caprolactone)- block-polydimethysiloxane-block- poly(ε-caprolactone) triblock copolymer. Polymer 2007, 48: 6134-6144.
    [18] Gong, W., Zeng, K., Wang, L., Zheng, S. Poly(hydroxyether of bisphenol A)-block-polydimethylsiloxane alternating block copolymer and its nanostructured blends with epoxy resin. Polymer 2008, 49: 3318-3326.
    [19] Larra?aga, M., Gabilondo, N., Kortaberria, G., Serrano, E., Remiro, P., Riccardi, C.C., Mondragon, I. Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO-PPO-PEO triblock copolymer. Polymer 2005, 46: 7082-7093.
    [20] Meng, F., Zheng, S., Zhang, W., Li, H., Liang, Q. Nanostructured thermosetting blends of epoxy resin and amphiphilic poly(ε-caprolactone)-block-polybutadiene-block-poly(ε-caprolactone) triblock copolymer. Macromolecules 2006, 39: 711-719.
    [21] Meng, F., Zheng, S., Li, H., Liang, Q., Liu, T. Formation of ordered nanostructures in epoxy thermosets: A mechanism of reaction-induced microphase separation. Macromolecules 2006, 39: 5072-5080.
    [22] Meng, F., Zheng, S., Liu, T. Epoxy resin containing poly(ethylene oxide)-block-poly(ε-cap- -rolactone) diblock copolymer:effect of curing agents on nanostructures. Polymer 2006, 47: 7590-7600.
    [23] Serrano, E., Tercjak, A., Kortaberria, G., Pomposo, J.A., Mecerreyes, D., Zafeiropoulos, N.E., Stamm, M., Mondragon, I. Nanostructured thermosetting systems by modification with epoxidized styrene-butadiene star block copolymers.effect of epoxidation degree. Macromolecules2006, 39: 2254-2261.
    [24] Xu, Z., Zheng, S. Reaction-induced microphase separation in epoxy thermosets containing poly(ε-caprolactone)-block-poly(n-butyl acrylate) diblock copolymer. Macromolecules 2007, 40: 2548-2558.
    [25] Meng, F., Xu, Z., Zheng S. Microphase separation in thermosetting blends of epoxy resin and poly(ε-caprolactone)-block-polystyrene block copolymers. Macromolecules 2008, 41: 1411-1420.
    [26] Sinturel, C., Vayer, M., Erre, R., Amenitsch, H. Nanostructured polymers obtained from polyethylene-block-poly(ethylene oxide) block copolymer in unsaturated polyester. Macromolecules 2007, 40: 2532-2538.
    [27] Ocando, C., Serrano, E., Tercjak, A., Pena, C., Kortaberria, G., Calberg, C., Grignard, B., Jerome, R., Carrasco, P.M., Mecerreyes, D., Mondragon, I. Structure and properties of a semifluorinated diblock copolymer modified epoxy blend. Macromolecules 2007, 40: 4068-4075.
    [28] Serrano, E., Larra?aga, M., Remiro, P.M., Mondragon, I. Nanostructured thermosetting systems from epoxidized styrene butadiene block copolymers. Macromol. Rapid Commun. 2005, 26: 982-985.
    [29] Maiez-Tribut, S., Pascault, J.P., Soule, E.R., Borrajo, J., Williams, R.J.J. Nanostructured epoxies based on the self-assembly of block copolymers: A new miscible block that can be tailored to different epoxy formulations. Macromolecules 2007, 40: 1268-1273.
    [30] Fan, W., Zheng, S. Reaction-induced Microphase Separation in Thermosetting Blends of Epoxy Resin with Poly(methyl methacrylate)–block-Polystyrene Block Copolymers: Effect of Topologies of Block Copolymers on Morphological Structures. Polymer 2008, 49: 3157-3168.
    [31] Lodge, T.P. Block copolymer: Past successes and future challenges. Macromol. Chem & Phys. 2003, 204: 265-273.
    [32] Vasilev, C., Reiter, G., Pispas, S. Crystallization of block copolymers in restricted cylindrical geometries. Polymer 2006, 47: 330-340.
    [33] Weiser, M.S., Thomann, Y., Heinz, L.C., Pasch, H., Muehaupt, R. Living random and block copolymerization of ethene and propene on a tailor-made phenoxyimine catalyst and characterization of the resulting high molecular weight PE-block-P(E-co-P) block copolymers. Polymer 2006, 47: 4505-4512.
    [34] Das, S., Yilgor, I., Yilgor, E., Inci, B., Tezgel, O., Beyer, F.L., Wilkes, G.L. Structure-property relationships and melt rheology of segmented, non-chain extended polyureas: Effect of soft segment molecular weight. Polymer 2007, 48: 290-301.
    [35] Xiong, H., Zheng, J.X., Van Horn, R.M., Jeong, K.U., Quirk, R.P., Lotz, B., Thomas, E.L., Brittain, W.J., Cheng, S.Z.D. A new approach in the study of tethered diblock copolymer surface morphology and its tethering density dependence. Polymer 2007, 48: 3732-3738.
    [36] Siegwart, D.J., Wu, W., Mandalaywala, M., Sarbu, T., Silverstein, M.S., Kowalewski, T., Hollinger, J.O., Matyjaszewski, K. Solvent induced morphologies of poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) triblock copolymers synthesized by atom transfer radical polymerization. Polymer 2007, 48(25): 7279-7290.
    [37]范文春.热固性聚合物中具有纳米尺度上微结构的形成:反应诱致的微相分离机制[博士论文].上海交通大学. 2007.
    [38] Yin, M., Zheng, S. Ternary thermosetting blends of epoxy resin, poly(ethylene oxide) and poly(ε-caprolactone). Macromol. Chem. & Phys. 2005, 206: 929-937.
    [39] Ni, Y., Zheng, S. Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(caprolactone) blends cured with aromatic amines. Polymer 2005, 46: 5828-5839.
    [40] Takahashi, T., Nakajima, N., Saito, N. In“Rubber-Toughened Plastics”, Adv. Chem. Ser., 222, (C. K. Riew, ed). Am. Chem. Soc. Washington D.C. 1989, 243-246.
    [41] Xu, Z., Zheng, S. Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly(ε-caprolactone)- block-polydimethysiloxane-block- poly(ε-caprolactone) triblock copolymer. Polymer 2007, 48: 6134-6144.
    [42] Meng, F., Zheng, S., Li, H., Li, H., Liang, Q., Liu, T. Formation of Ordered Nanostructures in Epoxy Thermosets: A Mechanism of Reaction-Induced Microphase Separation. Macromolecules 2006, 39(15): 5072-5080.
    [43] Hillmyer, M.A., Lipic, P.M., Hajduk, D.A., Almdal, K., Bates, F.S. Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites. J. Am. Chem. Soc. 1997, 119: 2749-2750.
    [44] Lipic, P.M., Bates, F.S., Hillmyer, M.A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mixtures. J. Am. Chem. Soc. 1998, 120: 8963-8970.
    [45]王月欣,李艳星,张倩等. PS-b-PDMS-b-PS三嵌段共聚物改性环氧树脂的研究.塑料工业. 2009,37: 29-31.
    [46] Jalbert, C.J., Koberstein, J.T., Balaji, R., Bhatia, Q., Salvati, L. Jr., Yilgor, I. Surface depletion of end groups in amine-terminated poly(dimethylsiloxane). Macromolecules 1994, 27: 2409-2413.
    [47] Chen, X., Gardella, J., Cohen, R. Surface study of diblock copolymers of poly(dimethylsiloxane) and nylon-6 by electron spectroscopy for chemical analysis. Macromolecules 1994, 27: 2206-2210.
    [48] Fleischer, C.A., Koberstein, J.T., Krukonis, V., Wetmore, P.A. The effect of end groups on thermodynamics of immiscible polymer blends. 1. Interfacial tension. Macromolecules 1993, 26: 4172-4178.
    [49] Viville, P., Lazzaroni, R., Dubois, P., Kotzev, A., Geerts, Y., Borcia, G., Pireaux, J.J. Impactof silicone-based block copolymer surfactants on the surface and bulk microscopic organization of a biodegradable polymer, poly(ε-caprolactone). Biomacromolecules 2003, 4: 696-703.
    [50] Kaelble, D.H., Uy, K.C. Reinterpretation of organic liquid-polytetrafluoroethylene surface interactions. Journal of Adhesion 1970, 2: 50-60.
    [51] Kaelble, D.H. Physical Chemistry of Adhesion. Wiley-Interscience: New York. 1971.
    [52] Adamson, A.W. Physical Chemistry of Surface, 5th ed. Wiley-Interscience: New York. 1990.
    [1] Kosonen, H., Ruokolainen, J., Nyholm, P., Ikkala O. Self-organized thermosets: blends of hexamethyltetramine cured novolac with poly(2-vinylpyridine)-block-poly(isoprene). Macromolecules 2001, 34: 3046-3049.
    [2] Kosonen, H., Ruokolainen, J., Nyholm, P., Ikkala O. Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends. Polymer 2001, 42: 9481-9486.
    [3] Kosonen, H., Ruokolainen, J., Torkkeli M. Serimaa R., Nyholm P., Ikkala O. Micro- and macrophase separation in phenolic resol resin/PEO-PPO-PEO block copolymer blends: effect of hydrogen-bonded PEO length. Macromol. Chem. Phys. 2002, 203: 388-392.
    [4] Meng, F.L., Yi, F.P., Zheng, S.X. Nanostructured thermosetting blends of phenolic thermosets and poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymer. J. Macromol. Sci., Part B: Physics. 2008, 47: 450-462.
    [5] Zhong, Z., Guo, Q.P. The miscibility and morphology of hexamine cross-linked novolac/poly(ε-caprolactone) blends. Polymer 1997, 38: 279-286.
    [6] Zhong, Z., Guo, Q.P. Crosslinkable interpolymer complexes of novolac resin and poly(ethylene oxide). J. Polym. Sci., Part A: Polym Chem. 1998, 36: 401-411.
    [7] Pennacchia, J.R., Pearce, E.M., Kwei, T.K., Bulkin B. J., Chen J.P. Compatibility of substituted phenol condensation resins with poly(methyl methacrylate). Macromolecules 1986, 19: 973-977.
    [8] Zhang, X., Solomon, D.H. Phase structures of hexamine cross-linked novolac blends: 1.Blends with poly(methyl methacrylate). Macromolecules 1994, 27: 4919-4926.
    [9] Knop, A., Pilato, L.A. Phenolic Resins. Springer-Verlag: Berlin. 1985.
    [10] Ryoo, R., Joo, S.H., Kluk, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13(9): 677-681
    [11] Bansanl, C.R., Donnet, J.B., Stoeekli, F. Active Carbon. 1988.
    [12] Sami Valkama, Antti Nyk?nen, Harri Kosonen, Ramasubbu Ramani, Filip Tuomisto, Peter Engelhardt,Gerrit ten Brinke, Olli Ikkala, and Janne Ruokolainen. Hierarchical porosity in self-assembled polymers: post-modification of block copolymer-phenolic resin complexes by pyrolysis allows the control of micro- and mesoporosity. Adv. Funct. Mater. 2007, 17: 183-190.
    [13]孟岩.有序的有机高分子介孔材料的合成与结构[博士论文].上海:复旦大学. 2006.
    [14] Ni, Y., Zheng, S.X. Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(ε-caprolactone) blends cured with aromatic amines. Polymer 2005, 46(15): 5828-5839.
    [15] Pearson, R.A., Yee, A.F. Sources of toughness in modified epoxies. Polym. Mater. Sci. Eng.. 1990, 63: 311-325.
    [16] Zheng, S.X., Han, L., Chen, C.X, Nie, K.M., Guo, Q.P. Epoxy resin/poly(ethylene oxide) (PEO) and poly(ε-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene: miscibility and intermolecular interactions. Colloid. Polym. Sci. 2003, 281(11): 1015-1024.
    [17] Yamanaka, K., Inoue, T. Structure development in epoxy resin modified with poly(ether sulfone). Polymer 1989, 30(4): 662-671.
    [1] Peters, E.C., Svec, F., Peters, J.M.J. Rigid macroporous polymer monoliths. Adv. Mater. 1999, 11(14): 1169-1181.
    [2] Hedrick, J.L., Miller, R.D., Hawker, C.J., Carter, C.J., Volksen,K.R, Yoon,W, Trollsas,D.Y. Templating nanoporosity in thin-film dielectric insulators. Adv. Mater. 1998, 10(13): 1049-1053.
    [3] Kanungo, M., Kumar, A., Contractor, A.Q. Studies on electropolymerization of aniline in the presence of sodium dodecyl sulfate and its application in sensing urea. J. Electroanal. Chem. 2002, 528(1-2): 46-56.
    [4] Peterson, D.S., Rohr, T., Svec, F., Frechet, J.M.J. High-Throughput Peptide Mass Mapping Using a Microdevice Containing Trypsin Immobilized on a Porous Polymer Monolith Coupled to MALDI TOF and ESI TOF Mass Spectrometers. J. Proteome Res. 2002, l (6): 563-568.
    [5] de Boer, B., Stalmach, U., Nijland, H., Hadziioannou, G. Microporous honeycomb-structured films of semiconducting block copolymers and their use as patterned templates. Adv. mater. 2000, 12(21): 1581-1583.
    [6] Estermann, M., McCusker, L.B., Baeriocher, C., Merroche, A., Kessier, H. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature 1991, 352(6333): 320-323.
    [7] Fan, J., Shui, W., Yang, P., Wang, X., Xu, Y.; Wang, H.; Chen, X.; Zhao, D. Mesoporous silica nanoreactors for highly efficient proteolysis. Chems. A Eur. J. 2005, 11(18): 5391-5397.
    [8]索也兵,杜玉成,武海燕.嵌段共聚物及其在制备高比表面积介孔材料中的应用.矿冶. 2004, 13(4): 76-81.
    [9] Yang, P.D., Zhao, D. Y., Margolese, D. I. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396(6707): 152-155.
    [10] Zhao, D.Y., Yang, P.D., Melosh, N. Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater, 1998, 10(16): 1380-1385.
    [11] Hou, X.H., Liu, B.L., Deng, X.B. Covalent Immobilization of Glucose Oxidase onto Poly(styrene-co-glycidyl methacrylate) Monodisperse Fluorescent Microspheres Synthesized by Dispersion Polymerization. Anal. Biochem. 2007, 368: 100-110.
    [12] Bai, Y.X., Li, Y.F., Wang, M.T. Study on Synthesis of a Hydrophilic Bead Carrier Containing Epoxy Groups and Its Properties for Glucoamylase Immobilization. Enzyme Microb. Technol. 2006, 39: 540-547.
    [13] Ar??ca, M.Y., Bayramo?lu, G. Invertase Reversibly Immobilized onto polyethylenimine-grafted poly(GMA–MMA) beads for sucrose hydrolysis. J. Mol. Catal. B:Enzym. 2006, 38: 131-138
    [14] Chung, T.H., Pan, H.C., Lee, W.C. Preparation and Application of Magnetic Poly(styrene-glycidyl methacrylate) Microspheres. J. Magn. Magn. Mater. 2007, 311: 36-40.
    [15] Hérault, D., Saluzzo, C., Duval, R. Enantiopure Beads: A Tool for Asymmetric Heterogeneous Catalysis. J. Mol. Catal. A: Chem. 2002, 182/183: 249-256.
    [16] Rolland, A., Hérault, D., Touchard, F. Enantiopure Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate): A New Material for Supported Catalytic Asymmetric Hydrogen Transfer Reduction. Tetrahedron 2001, 12: 811-815.
    [17] Sun, G.Y., Shi, Q.H., Sun, Y. Novel biporous polymeric stationary phase for high-speed protein chromatography. J. Chromatogr. A. 2004, 1061: 159-165.
    [18] Zhang, S.H., Huang, X., Yao, N. S. Preparation of monodisperse porous polymethacrylate microspheres and their application in the capillary electrochromatography of macrolide antibiotics . J. Chromatogr. A. 2002, 948: 193-201.
    [19] ?enkal, B.F., Bic?k, N. Glycidyl Methacrylate Based Polymer Resins with Diethylene Triamine Tetra Acetic Acid Functions for Efficient Removal of Ca(II) and Mg(II). React. Funct. Polym. 2001, 49: 151-157.
    [20] Liu, C.K., Bai, R.B., Hong, L. Diethylenetriamine-grafted Poly(glycidyl methacrylate) Adsorbent for Effective Copper Ion Adsorption. J. Colloid Interface Sci. 2006, 303: 99-108.
    [21] Horák, D., Rittich, B., Panová, A. Magnetic Microparticulate Carriers with Immobilized Selective Ligands in DNA Diagnostics. Polymer 2005, 46: 1245-1255.
    [22] Choi, S.H., Hwang, Y.M., Lee, K.P. Separation of Proteins on Polymeric Stationary Phases Grafted with Various Amine Groups. J. Chromatogr. A. 2003, 987: 323-330.
    [23] Reis, A.V., Cavalcanti, O.A., Rubira, A.F. Synthesis and Characterization of Hydrogels Formed from a Glycidyl MethacrylateDerivative of Galactomannan. Int. J. Pharm. 2003, 267: 13-25.
    [24] Babazadeh, M. Synthesis and Study of Controlled Release of Ibuprofen from the New Acrylic Type Polymers. Int. J. Pharm. 2006, 316: 68-73.
    [25] Ni, Y., Zheng, S.X. Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(ε-caprolactone) blends cured with aromatic amines. Polymer 2005, 46(15): 5828-5839.
    [26] Yee, A.F., Pearson, R.A. Sources of toughness in modified epoxies. Polym. Mater. Sci. Eng. 1990, 63: 311-314.
    [27] Zheng, S., Hu, Y., Guo, Q., Wei J. Miscibility, morphology, and fracture toughness of epoxy resin/poly(vinyl acetate) blends. Colloid. Polym. Sci. 1996, 274: 410-417.
    [28] Yamanaka, K., Inoue, T. Structure development in epoxy resin modified with poly(ethersulfone). Polymer 1989, 30: 662-667.
    [29] Matos, J., Mercuri, L., Kruk, M., Jaroniec M. Synthesis of large-pore silica with cage-like structure using sodium silicate and triblock copolymer template. Langmuir 2002, 18: 884-890.
    [30] Ryoo, R., KO, C.H., Kruk, M., Antochshuk, V.; Jaroniec, M. Block-Copolymer-Templated Ordered Mesoporous Silica: Array of Uniform Mesopores or Mesopore-Micropore Network. J. Phys. Chem. B. 2000, 14: 11465-11471.
    [1] Lee, K.Y., David, J.M. Hydrogels for Tissue Engineering. Chemical Reviews. 2001, 101(7): 1869-1879.
    [2] Hoffman, A.S. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2002, 54(1): 3-12.
    [3] Rosiak, J.M., Ulanski, P., Rzeznicki, A. Hydrogels for biomedical purposes. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 1995, 105(1-4): 335-339.
    [4] Langer, R. Drug delivery and targeting. Nature 1998, 392(6679, Suppl.): 5-10.
    [5]莫建民,金宝玉,刘东升等.聚丙烯酰胺水凝胶在美容外科的临床应用.中国美容医学2001, 1: 62-68
    [6]徐露,曾庆孝,张立彦. "智能"凝胶的合成及其在生物领域的应用.食品与机械2005, 22: 76-78
    [7]姚康德,尹玉姬.组织工程相关生物材料.北京:化学工业出版社2003, 49-69.
    [8]许凤兰,李玉宝,姚晓明等.纳米羟基磷灰石/聚乙烯醇复合人工角膜材料.复合材料学报2005, 22: 27-31.
    [9] Heskins, M., Guillet, J.E., James, E. Solution properties of poly(N-isopropylacrylamide). Journal of Macromolecular Science, Chemistry 1968, 2(8): 1441-1455.
    [10] Kujawa, P., Tanaka, F., Winnik, F.M. Temperature-dependent properties of telechelic hydrophobically modified poly(N-isopropylacrylamides) in water: evidence from light scattering and fluorescence spectroscopy for the formation of stable mesoglobules at elevated temperatures. Macromolecules 2006, 39(8): 3048-3055.
    [11] Schild, H.G. Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science 1992, 17(2): 163-249.
    [12] Wu, C., Zhou, S. Volume phase transition of swollen gels: discontinuous or continuous. Macromolecules 1997, 30(3): 574-576.
    [13] Wu, C., Zhou S. A comparison between the 'coil-to-globule' transition of linear chains and the "volume phase transition" of spherical microgels. Polymer 1998, 39(19): 4609-4619.
    [14] Kujawa, P., Winnik, F.M. Volumetric studies of aqueous polymer solutions using pressure perturbation calorimetry: A new look at the temperature-induced phase transition of poly(N-isopropylacrylamide) in water and D2O. Macromolecules 2001, 34(12): 4130-4135.
    [15] Takigawa, T., Araki, H., Takahashi, K., Masusa T. Effects of mechanical stress on the volume phase transition of poly(N-isopropylacrylamide) based polymer gels. Journal of Chemical Physics 2000, 113(17):7640-7645.
    [16] Haraguchi, K., Farnworth, R., Ohbayashi, A., Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 2003, 36(15): 5732-5741.
    [17] Nakamoto, C., Motonaga, T., Shibayama, M. Preparation pressure dependence of structure inhomogeneities and dynamic fluctuations in poly(N-isopropylacrylamide) gels. Macromolecules 2001, 34(4): 911-917.
    [18] Yoshida, R., Uchida, K., Kaneko, Y., Sakai K, Kikuchi A, Sakurai Y. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 1995, 374(6519): 240-242.
    [19] Haraguchi, K., Takehisa, T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties. Advanced Materials (Weinheim, Germany) 2002, 14(16): 1120-1124.
    [20] Wu, X., Hoffman, A.S., Yagger, P. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. Journal of Polymer Science, Part A:Polymer Chemistry. 1992, 30(10): 2121-2129.
    [21] Zhang, J.T., Cheng, S.X., Zhuo, R.X. Preparation of macroporous poly(N-isopropylacrylamide) hydrogel with improved temperature sensitivity. Journal of Polymer Science, Part A: Polymer Chemistry 2003, 41(15): 2390-2392.
    [22] Norihiro, K., Yasuzo, S., Shihoko, S. Wide-range control of deswelling time for thermosensitive poly(N-isopropylacrylamide) gel treated by freeze-drying. Macromolecules 2003, 36 (4): 961-963.
    [23] Zhang, X.Z., Yang, Y.Y., Chung, T.S., Ma K-X. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) Hydrogels. Langmuir 2001, 17 (20): 6094-6099.
    [24] Serizawa, T., Wakita, K., Akasika, M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules 2002, 35(1): 10-12.
    [25] Zhang, J., Chu, L.Y., Li, Y.K. Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors. Polymer 2007, 48(6): 1718-1728.
    [26] Dinu, M.V., Ozmen, M.M., Dragan, E.S., Okay O. Freezing as a path to build macroporous structures: Superfast responsive polyacrylamide hydrogels. Polymer 2007, 48(1): 195-204.
    [27] Unal, B., Hedden, R.C. Gelation and swelling behavior of end-linked hydrogels prepared from linear poly(ethylene glycol) and poly(amidoamine) dendrimers. Polymer 2006, 47(24): 8173-8182.
    [28] Zhang, X.Z., Yang, Y.Y., Chung, T.S. Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels. Langmuir 2002, 18(7): 2538-2542.
    [29] Ma, X., Cui, Y., Zhao, X., Zheng S, Tang X. Different deswelling behavior of temperature-sensitive microgels of poly(N-isopropylacrylamide) crosslinked by polyethyleneglycol dimethacrylates. Journal of colloid and interface science 2004, 276(1): 53-59.
    [30] Da Silva, R., De Oliveira, M.G. Effect of the cross-linking degree on the morphology of poly(NIPAAm-co-AAc) hydrogels Regiane da Silva and Marcelo Ganzarolli de Oliveira. Polymer 2007, 48(14): 4114-4122.
    [31] Ju, H.K., Kim, S.Y., Lee, Y.M. PH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer 2001, 42(16): 6851-6857.
    [32] Kubota, N., Matsubara, T., Eguchi, Y. Permeability properties of isometrically temperature-responsive poly(acrylic acid)-graft-oligo(N-isopropylacrylamide) gel membranes. Journal of Applied Polymer Science 1998, 70(5): 1027-1034.
    [33] Annaka, M., Matsuura, T., Kasai, M., Nakahira T, Hara Y, Okano T. Preparation of comb-type N-isopropylacrylamide hydrogel beads and their application for size-selective separation media. Biomacromolecules 2003, 4(2): 395-403.
    [34] Kayaman, N., Kazan, D., Erarslan, A., Okay, O., Baysal, B.M. Structure and protein separation efficiency of poly(N-isopropylacrylamide) gels: effect of synthesis conditions. Journal of Applied Polymer Science 1998, 67(5): 805-814.
    [35] Guiseppi-Elie, A., Sheppard, N.F., Brahim, S., Narinesingh D. Enzyme microgels in packed-bed bioreactors with downstream amperometric detection using microfabricated interdigitated microsensor electrode arrays. Biotechnology and Bioengineering. 2001, 75(4): 475-484.
    [36] Zhang, W., Shi, L., Wu, K., An Y. Thermoresponsive mMicellization of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in water. Macromolecules 2005, 38(13): 5743-5747.
    [37] Zhang, X.Z., Zhuo, R.X. Dynamic properties of temperature-sensitive poly(N-isopropylacrylamide) gel cross-linked through siloxane linkage. Langmuir. 2001, 17(1): 12-16.
    [38] Haraguchi, K., Takehisa, T., Fan, S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 2002, 35(27): 10162-10171.
    [39] Farnworth, R., Ohbayashi, A., Takehisa, T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 2003, 36(15): 5732-5741.
    [40] Mu, J., Zheng, S. Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: Temperature-responsive behavior of hydrogels. Journal of Colloid and Interface Science 2007, 307(2): 377-385.
    [41] Can, V., Abdurrahmanoglu, S., Okay, Q. Unusual swelling behavior of polymer–clay nanocomposite hydrogels. Polymer 2007, 48(17): 5016-5023.
    [42] Gomez, M.L., Fasce, D.P., Williams, R.J.J., Erra-Balsells R, Fatema MK, Nonami H. Silsesquioxane functionalized with methacrylate and amine groups as a crosslinker/co-initiator for the synthesis of hydrogels by visible-light photopolymerization. Polymer 2008, 49(17): 3648-3653.
    [43] Iyer, G., Viranga Tillekeratne, .LM, Coleman, M.R. Equilibrium swelling behavior of thermally responsive metal affinity hydrogels, Part II: Solution effects. Polymer 2008, 49(17): 3744-3750.
    [44] Olabisi, O., Robeson, L.M., Show, M.T. Polymer–polymer miscibility. New York: Academic Press. 1979.
    [45] Utracki, L.A. Polymer blends and alloys. New York: Hanser Publisher. 1989.
    [46] Jayalakshmi, R., Ramadas, S.R., Pillai, C.N. Org. Prep. Proced. Int. 1981, 13: 71-75.
    [47] Schmitz, I., Schreiner, M., Friedbacher, G., Grasserbauer M. Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces. Applied Surface Science 1997, 115(2): 190-198.
    [48] Magonov, S.N., Elings, V., Whangbo, M.H. Phase imaging and stiffness in tapping-mode atomic force microscopy. Surface Science. 1997, 375(2/3): 385-391.
    [49] Tamayo, A., Garcia, R. Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir. 1996, 12(18): 4430-4435.
    [50] Chen, X., McGurk, S.L., Davies, M.C., Roberts, C.J. Chemical and morphological analysis of surface enrichment in a biodegradable polymer blend by phase-detection imaging atomic force microscopy. Macromolecules 1998, 31(7): 2278-2283.
    [51] Clarke, S., Davies, M.C., Roberts, C.J., Tendler S.B, Williams P.M, Lewis A.L. Atomic force microscope and surface plasmon resonance investigation of polymer blends of poly((2-(methacryloyloxy)ethyl)phosphorylcholine-co-lauryl methacrylate) and poly(lauryl methacrylate). Macromolecules 2001, 34(12): 4166-4172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700