响应性聚合物的合成、组装动力学过程及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
响应性聚合物由于具有良好的水溶性和可调控表面活性而成为科学研究的热点之一。它一般由化学性质不同的两个或多个嵌段组成。在适当的条件下,每一个嵌段都具有水溶性;但是当受到外界环境的刺激,比如pH值、温度、离子强度、光、电/磁场、生物分子、特殊的分子识别基元发生改变的时候,响应性聚合物会在亲/疏水平衡以及整体的结构上发生显著的变化。正是由于具有这种独特的外部环境响应性,这种聚合物在传感器、药物传输体系、组织工程以及其他生物材料方面等领域中具有重要的应用价值。这篇论文主要集中研究响应性聚合物在传感器方面的应用,同时对响应性聚合物组装过程的动力学进行了初步探讨。具体来说,本论文的工作包括以下几个方面:
     1.通过使用可逆-加成断裂链转移(RAFT)的聚合方法合成了三种不同嵌段比的聚合物:聚甲基丙烯酸缩水甘油酯-b-聚(N-异丙基丙烯酰胺) (PGMA-b-PNIPAM),并研究了它们在水和DMF混合溶剂中的自组装行为。实验结果表明,通过改变亲水段(PNIPAM)和疏水段(PGMA)的长度比例,可以得到不同形貌的组装结果,当亲水段较长时,该两亲性聚合物组装成胶束;当亲水段较短时,则组装成囊泡。同时由于含有PNIPAM嵌段,组装得到的胶束和囊泡均具有温度响应性。
     2.构筑了一种基于温度敏感全亲水性嵌段共聚物的多色荧光比例型pH和温度探针。该嵌段聚合物:聚(N-异丙基丙烯酰胺)-b-聚(寡聚(乙二醇)单甲醚甲基丙烯酸酯) (PNIPAM-b-POEGMA)是通过RAFT的聚合方法合成,使得PNIPAM链段和POEGMA链段分别标记上荧光素异硫氰酸酯(FITC)和具有pH开关荧光发射性质的罗丹明B衍生物单体(RhBAM)。由于FITC的荧光强度会随着pH值的变大而增强,而pH对RhBAM的影响则恰恰相反,使得这种类型的DHBC对pH是超灵敏响应的,在pH变化的时候显示出多色转变,并且这种pH响应的灵敏度在较高的温度下会有进一步的增强。
     3.通过RAFT的聚合方法,合成了分别含有苯硼酸基元和葡萄糖基元的聚(N-异丙基丙烯酰胺)-b-聚(丙烯酰胺基苯硼酸) (PNIPAM-b-PAPBA)和聚(N-异丙基丙烯酰胺)-b-聚(丙烯酰葡萄糖胺) (PNIPAM-b-PAGA)二嵌段聚合物。由于苯硼酸和葡萄糖基元之间在弱碱性条件下(pH 9.3)形成硼酸酯共价键,两种二嵌段聚合物的水溶液混合后能自发形成以PAPBA/PAGA络合物为核,PNIPAM为壳层的高分子复合物胶束。由于硼酸酯共价键在pH值和葡萄糖浓度改变时能可逆形成和断裂,以及胶束PNIPAM壳层的温敏性,所制备的基于苯硼酸/葡萄糖可逆共价键的高分子复合物胶束对pH、葡萄糖和温度具有多重响应性。
     4.通过自由基乳液共聚的方法在温敏性的PNIPAM微凝胶中共价连接能够识别葡萄糖的APBA基团,以及荧光共振能量转移(FRET)给体染料,4-(2-丙烯酰氧基氨乙基)- 7-硝基苯并-2-氧杂-1,3-二唑(NBDAE),和基于罗丹明B的受体染料(RhBEA)。在一定的pH和温度条件下,加热引起的微凝胶塌缩和葡萄糖引起的微凝胶溶胀可以用来调控FRET受体与给体之间的空间距离。通过检测NBDAE和RhBEA之间的FRET效率来监控温度诱导的微凝胶塌缩和葡萄糖诱导的微凝胶溶胀过程。在pH = 8时,P(NIPAM-APBA-NBDAE-RhBEA)微凝胶在37 oC可以作为葡萄糖荧光比率探针,且相比于25 oC时有显著的灵敏度提升。MTT比色实验进一步表明,浓度高达1.6 g/L的温敏性微凝胶仍几乎是没有细胞毒性的。这些结果表明,P(NIPAM-APBA-NBDAE-RhBEA)微凝胶在细胞内条件下可以应用为多功能的检测,细胞成像或控制释放的纳米载体。
     5.采用停流光谱的分析手段研究了聚(乙烯基苯甲酸)-b-聚(N-乙基吗啉甲基丙烯酸酯) (PVBA-b-PMEMA)两性离子聚合物的“Schizophrenic”的胶束化行为。在没有盐存在、高pH值的情况下,该聚合物在水溶液中是单分子溶解的状态,在低pH值的条件下,该聚合物在水溶液中将形成以PVBA为核,PMEMA为壳层的胶束;另一方面,在含有0.8 M Na2SO4存在的情况下,酸性和碱性条件时,该聚合物在水溶液中会分别形成以PVBA为核的胶束和以PMEMA为核的胶束。研究的动力学过程主要包括:pH诱导的PVBA为核的胶束形成与解离的过程;pH = 10状态下盐诱导的PMEMA为核的胶束形成过程,及其稀释诱导的胶束解离过程;0.8 M Na2SO4存在下的PVBA为核的胶束与PMEMA为核的胶束之间结构反转过程。
     6.通过RAFT的聚合方法合成了一种新型的全亲水性嵌段共聚物聚(N-乙基吗啉甲基丙烯酸酯)-b-聚(N-乙烯基苄基吡啶乙磺酸) (PMEMA-b-PSVBP)。该嵌段聚合物两嵌段均具有盐敏的性质。在水溶液中,当Na2SO4的浓度大于0.6 M的时候,PMEMA段就会变的不溶解,而在NaBr > 0.2 M的条件下PSVBP链段可以很好的溶解。通过在水溶液中调节加入的盐的种类和浓度得到三种不同的状态——单链、PMEMA为核的胶束、PSVBP为核的胶束。利用光散射(LLS)和核磁共振H谱(1H NMR)来表征两种胶束的平衡态结构;同时采用停流光谱的技术来研究盐诱导的两种胶束的胶束形成以及结构反转的动力学过程。
Stimuli-responsive polymers have attracted increasing interest due to their ability to undergo reversible or irreversible changes in physical properties and/or chemical structures to an external stimulus including pH, temperature, ionic strength, light irradiation, mechanical forces, electric and magnetic fields, as well as specific analytes and external additives, to name a few, which make them particularly suitable in areas such as drug and gene delivery, tissue engineering, biosensors and separation processes. In this dissertation, applications in sensor based on stimuli-responsive polymers and the kinetics processes for stimuli-responsive polymers self-assembling were investigated in detail. The dissertation includes the following six parts:
     1. The amphiphilic diblock copolymers poly(glycidyl methacrylate)-b-poly(N- isopropyl acrylamide) (PGMA-b-PNIPAM) with three different block ratio were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Their self-assembly behavior in mix solution was studied in detail. Experimental results indicate that the amphiphilic diblock copolymer could assemble to form different aggregates due to the block ratio: when the hydrophilic block was long, it would form micelle; while the hydrophilic block was short, it would form vesicle.
     2. Reported the fabrication of thermoresponsive double hydrophilic block copolymer (DHBC)-based highly sensitive ratiometric fluorescent probe for pH and temperature. This type of fluorescent and responsive DHBC, poly(N-isopropylacrylamide)-b-poly(oligo(ethylene glycol) monomethyl ether methacrylate) (PNIPAM-b-POEGMA) was synthesized via RAFT polymerization with the thermoresponsive PNIPAM block and hydrophilic POEGMA block labeled with fluorescein isothiocyanate (FITC) and rhodamine B-based moieties (RhBAM) possessing pH-switchable emission characteristics, respectively. Since the fluorescence intensity of FITC is increased with the increasing pH value, while the influence of pH on RhBAM is quite in opposition, this type DHBC is highly-sensitive to pH exhibiting multicolor-switch when the pH is changed. Moreover, the pH sensitivity can also be enhanced at elevated temperature.
     3. Two types of diblock copolymers containing phenylboronic acid and glucose moieties, respectively, poly(N-isopropylacrylamide)-b-poly(N-acryloyl-3- aminophenylboronic acid) (PNIPAM-b-PAPBA) and poly(N- isopropylacrylamide)-b-poly(acryloyl glucosamine) (PNIPAM-b-PAGA) were synthesized via RAFT polymerization. Due to the formation of borate ester functionalities between phenylboronic acid and glucose moieties under slightly alkaline conditions (pH 9.3), mixed solution of PNIPAM-b-PAPBA and PNIPAM-b-PAGA diblock copolymers can spontaneously form interpolymer complex micelles consisting of PAPBA/PAGA complex cores and PNIPAM coronas. Since the formation/cleavage of borate ester linkages is highly reversible upon the variation of solution pH and glucose concentrations, and the PNIPAM-shell has temperature sensitivity, the obtained interpolymer complex micelles via reversible covalent bond formation between PAPBA and PAGA exhibit multi-responsiveness to pH, glucose, and temperature.
     4. Multifunctional ratiometric probes for glucose and temperatures based on thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgels covalently incorporated with glucose-recognizing moieties, N-acryloyl-3- aminophenylboronic acid (APBA), fluorescence resonance energy transfer (FRET) donor dyes, 4-(2-acryloyloxyethylamino)-7-nitro-2,1,3-benzoxadiazole (NBDAE), and rhodamine B-based FRET acceptors (RhBEA) were prepared. P(NIPAM-APBA-NBDAE-RhBEA) microgels containing FRET pairs and APBA were synthesized via free radical emulsion copolymerization. The spatial proximity of FRET donors and acceptors within microgels can be tuned via thermo-induced microgel collapse or glucose-induced microgel swelling at appropriate pH and temperatures, leading to the facile modulation of FRET efficiencies. APBA moieties within P(NIPAM-APBA-NBDAE-RhBEA) microgels can bind with glucose at appropriate pH to form cyclic boronate moieties, which can decrease the pKa of APBA residues and increase the volume phase transition (VPT) temperature of microgels. The gradual addition of glucose into fluorescent microgel dispersions at intermediate temperatures, i.e., between microgel VPT temperatures in the absence and presence of glucose, respectively, can lead to the re-swelling of initially collapsed microgels. Thus, P(NIPAM-APBA-NBDAE-RhBEA) microgels can serve as dual ratiometric fluorescent probes for glucose and temperatures by monitoring the changes in fluorescence emission intensity ratios. Moreover, P(NIPAM-APBA-NBDAE- RhBEA) microgels at pH 8 and 37 oC can serve as a ratiometric fluorescent glucose sensor with improved detection sensitivity as compared to that at 25 oC. MTT assays further revealed that thermoresponsive microgels are almost non-cytotoxic up to a concentration of 1.6 g/L. These results augur well for the application of P(NIPAM-APBA-NBDAE-RhBEA) microgels for multifunctional purposes such as sensing, imaging, and triggered-release nanocarriers under in vivo conditions.
     5. A zwitterionic poly(4-vinylbenzoic acid-b-N-(morpholino)ethyl methacrylate) (PVBA-b-PMEMA) diblock copolymer was prepared. This diblock copolymer exhibit interesting‘schizophrenic’micellization behavior in aqueous solutions. At a low pH value, PVBA-core micelles are formed, while at a high pH value, the diblock copolymer can be dissolved as unimers. In the presence of sufficient Na2SO4, PVBA-core micelles are formed in acidic media and well-defined PMEMA-core micelles are formed in alkaline one. Thus, if dissolved in the presence of 0.8 M Na2SO4, the zwitterionic diblock copolymer can be switched from PVBA-core micelles to PMEMA-core micelles (and vice versa) simply by manipulating the solution pH. The micelle formation and micelle reversion kinetics of this PVBA-b-PMEMA diblock copolymer was studied by making use of a stopped-flow light scattering technique.
     6. A novel sulfobetaine block copolymer, poly(N-(morpholino)ethyl methacrylate)-b-poly(4-(2-sulfoethyl)-1-(4-vinylbenzyl) pyridinium betaine) (PMEMA-b-PSVBP), was synthesized via RAFT polymerization. It exhibits intriguing‘schizophrenic’micellization behavior in aqueous solution, taking advantage of the fact that the PMEMA block gets insoluble at >0.6 M Na2SO4, and the PSVBP block is only molecularly soluble in the presence of >0.2 M NaBr. Thus, PMEMA-core and PSVBP-core micelles can respectively form in aqueous solution due to the selective water solubility of both blocks, depending on the concentration and type of added salts. 1H NMR and laser light scattering (LLS) were employed to characterize the equilibrium structures of the two types of purely salt-induced micelles. Furthermore, the kinetics of the salt-induced formation/dissociation of PMEMA-core and PSVBP-core micelles, and the structural inversion between these two types of micelles were investigated by using stopped-flow apparatus equipped with a light scattering detection.
引文
1. Gillies, E. R.; Jonsson, T. B.; Frechet, J. M. J. 2004, Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers[J]. Journal of the American Chemical Society 126 (38), 11936-11943.
    2. Lee, M.; Lee, S. J.; Jiang, L. H. 2004, Stimuli-responsive supramolecular nanocapsules from amphiphilic calixarene assembly[J]. Journal of the American Chemical Society 126 (40), 12724-12725.
    3. Zhang, Y. F.; Hao, L.; Hu, J. M.; Li, C. H.; Liu, S. Y. 2009, Synthesis and Aggregation Behavior of Multi-Responsive Double Hydrophilic ABC Miktoarm Star Terpolymer[J]. Macromolecular Rapid Communications 30 (11), 941-947.
    4. Colfen, H. 2001, Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers[J]. Macromolecular Rapid Communications 22 (4), 219-252.
    5. Peng, Z. P.; Sun, Y. L.; Liu, X. X.; Tong, Z. 2010, Nanoparticles of Block Ionomer Complexes from Double Hydrophilic Poly(acrylic acid)-b-poly(ethylene oxide)-b-poly(acrylic acid) Triblock Copolymer and Oppositely Charged Surfactant[J]. Nanoscale Research Letters 5 (1), 89-95.
    6. Dou, H. J.; Kang, S. 2005, Double-hydrophilic block copolymers and their self-assembly[J]. Progress in Chemistry 17 (5), 854-859.
    7. Xu, J.; Ge, Z. S.; Zhu, Z. Y.; Luo, S. Z.; Liu, H. W.; Liu, S. Y. 2006, Synthesis and micellization properties of double hydrophilic A(2)BA(2) and A(4)BA(4) non-linear block copolymers[J]. Macromolecules 39 (23), 8178-8185.
    8. Debuigne, A.; Willet, N.; Jerome, R.; Detrembleur, C. 2007, Amphiphilic poly(vinyl acetate)-b-poly(N-vinylpyrrolidone) and novel double hydrophilic poly(vinyl alcohol)-b-poly(N-vinylpyrrolidone) block copolymers prepared by cobalt-mediated radical polymerization[J]. Macromolecules 40 (20), 7111-7118.
    9. Wurm, F.; Nieberle, J.; Frey, H. 2008, Double-hydrophilic linear-hyperbranched block copolymers based on poly(ethylene oxide) and poly(glycerol)[J]. Macromolecules 41 (4), 1184-1188.
    10. Zhou, Y. M.; Jiang, K. Q.; Song, Q. L.; Liu, S. Y. 2007, Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide[J]. Langmuir 23 (26),13076-13084.
    11. Fernandez-Trillo, F.; van Hest, J. C. M.; Thies, J. C.; Michon, T.; Weberskirch, R.; Cameron, N. R. 2009, Reversible Immobilization onto PEG-based Emulsion-templated Porous Polymers by Co-assembly of Stimuli Responsive Polymers[J]. Advanced Materials 21 (1), 55-59.
    12. Angelopoulos, S. A.; Tsitsilianis, C. 2006, Thermo-reversible hydrogels based on poly(N,N-diethylacrylamide)-block-poly(acrylic acid)-block-poly(N,N-diethylacrylamide) double hydrophilic triblock copolymer[J]. Macromolecular Chemistry and Physics 207 (23), 2188-2194.
    13. Zhang, W. Q.; Shi, L. Q.; Gao, L. C.; An, Y. L.; Wu, K. 2005, Formation of core-shell-corona micellar complexes through adsorption of double hydrophilic diblock copolymers into core-shell micelles[J]. Macromolecular Rapid Communications 26 (16), 1341-1345.
    14. Xu, Y. Y.; Yuan, J. Y.; Fang, B.; Drechsler, M.; Mullner, M.; Bolisetty, S.; Ballauff, M.; Muller, A. H. E. 2010, Hybrids of Magnetic Nanoparticles with Double-Hydrophilic Core/Shell Cylindrical Polymer Brushes and Their Alignment in a Magnetic Field[J]. Advanced Functional Materials 20 (23), 4182-4189.
    15. Chu, L. Y.; Yamaguchi, T.; Nakao, S. 2002, A molecular-recognition microcapsule for environmental stimuli-responsive controlled release[J]. Advanced Materials 14 (5), 386-389.
    16. Fu, Q.; Rao, G. V. R.; Ista, L. K.; Wu, Y.; Andrzejewski, B. P.; Sklar, L. A.; Ward, T. L.; Lopez, G. P. 2003, Control of molecular transport through stimuli-responsive ordered mesoporous materials[J]. Advanced Materials 15 (15), 1262-1263.
    17. Kim, K. T.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van Hest, J. C. M. 2009, A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli-Responsive Block Copolymers[J]. Advanced Materials 21 (27), 2787-+.
    18. Meng, F. H.; Zhong, Z. Y.; Feijen, J. 2009, Stimuli-Responsive Polymersomes for Programmed Drug Delivery[J]. Biomacromolecules 10 (2), 197-209.
    19. Ge, Z. S.; Xie, D.; Chen, D. Y.; Jiang, X. Z.; Zhang, Y. F.; Liu, H. W.; Liu, S. Y. 2007, Stimuli-responsive double hydrophilic block copolymer micelles with switchable catalytic activity[J]. Macromolecules 40 (10), 3538-3546.
    20. Cheng, C.; Wei, H.; Shi, B. X.; Cheng, H.; Li, C.; Gu, Z. W.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. 2008, Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target[J]. Biomaterials 29 (4), 497-505.
    21. Yazici, D. T.; Askin, A.; Butun, V. 2008, GC investigation of the solubility parameters of water-soluble homopolymers and double-hydrophilic diblock copolymers[J]. Chromatographia67 (9-10), 741-747.
    22. Zintchenko, A.; Dautzenberg, H.; Tauer, K.; Khrenov, V. 2002, Polyelectrolyte complex formation with double hydrophilic block polyelectrolytes: Effects of the amount and length of the neutral block[J]. Langmuir 18 (4), 1386-1393.
    23. Pispas, S. 2011, Self-assembled nanostructures in mixed anionic-neutral double hydrophilic block copolymer/cationic vesicle-forming surfactant solutions[J]. Soft Matter 7 (2), 474-482.
    24. Ge, Z. S.; Liu, S. Y. 2009, Supramolecular Self-Assembly of Nonlinear Amphiphilic and Double Hydrophilic Block Copolymers in Aqueous Solutions[J]. Macromolecular Rapid Communications 30 (18), 1523-1532.
    25. Li, C. H.; Ge, Z. S.; Fang, J.; Liu, S. Y. 2009, Synthesis and Self-Assembly of Coil-Rod Double Hydrophilic Diblock Copolymer with Dually Responsive Asymmetric Centipede-Shaped Polymer Brush as the Rod Segment[J]. Macromolecules 42 (8), 2916-2924.
    26. Hao, J. K.; Yuan, G. C.; He, W. D.; Cheng, H.; Han, C. C.; Wu, C. 2010, Interchain Hydrogen-Bonding-Induced Association of Poly(acrylic acid)-graft-poly(ethylene oxide) in Water[J]. Macromolecules 43 (4), 2002-2008.
    27. Hu, J. M.; Li, C. H.; Liu, S. Y. 2010, Hg2+-Reactive Double Hydrophilic Block Copolymer Assemblies as Novel Multifunctional Fluorescent Probes with Improved Performance[J]. Langmuir 26 (2), 724-729.
    28. Gu, L.; Shen, Z.; Feng, C.; Li, Y. G.; Lu, G. L.; Huang, X. Y.; Wang, G. W.; Huang, J. L. 2008, Synthesis of PPEGMEA-g-PMAA densely grafted double hydrophilic copolymer and its use as a template for the preparation of size-controlled superparamagnetic Fe3O4/polymer nano-composites[J]. Journal of Materials Chemistry 18 (36), 4332-4340.
    29. Huang, J. H.; Wang, Y. M. 2007, Control of aggregation of nanoparticles by double-hydrophilic block copolymers: A dissipative particle dynamics study[J]. Journal of Physical Chemistry B 111 (27), 7735-7741.
    30. Zhang, Y. F.; Wu, T.; Liu, S. Y. 2007, Micellization kinetics of a novel multi-responsive double hydrophilic diblock copolymer studied by stopped-flow pH and temperature jump[J]. Macromolecular Chemistry and Physics 208 (23), 2492-2501.
    31. Ge, Z. S.; Cai, Y. L.; Yin, J.; Zhu, Z. Y.; Rao, J. Y.; Liu, S. Y. 2007, Synthesis and 'Schizophrenic' micellization of double hydrophilic AB(4) miktoarm star and AB diblock copolymers: Structure and kinetics of micellization[J]. Langmuir 23 (3), 1114-1122.
    32. Wang, J. S.; Matyjaszewski, K. 1995, Controlled Living Radical Polymerization - Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(Ii) Redox Process[J]. Macromolecules 28 (23), 7901-7910.
    33. Oh, J. K.; Dong, H.; Zhang, R.; Matyjaszewski, K.; Schlaad, H. 2007, Preparation of nanoparticles of double-hydrophilic PEO-PHEMA block copolymers by AGET ATRP in inverse miniemulsion[J]. Journal of Polymer Science Part a-Polymer Chemistry 45 (21), 4764-4772.
    34. Feng, C.; Li, Y. J.; Yang, D.; Li, Y. G.; Hu, J. H.; Zhai, S. J.; Lu, G. L.; Huang, X. Y. 2010, Synthesis of Well-Defined PNIPAM-b-(PEA-g-P2VP) Double Hydrophilic Graft Copolymer via Sequential SET-LRP and ATRP and Its "Schizophrenic" Micellization Behavior in Aqueous Media[J]. Journal of Polymer Science Part a-Polymer Chemistry 48 (1), 15-23.
    35. Matyjaszewski, K.; Xia, J. H. 2001, Atom transfer radical polymerization[J]. Chemical Reviews 101 (9), 2921-2990.
    36. Tsarevsky, N. V.; Matyjaszewski, K. 2007, "Green" atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials[J]. Chemical Reviews 107 (6), 2270-2299.
    37. Teodorescu, M.; Matyjaszewski, K. 1999, Atom transfer radical polymerization of (meth)acrylamides[J]. Macromolecules 32 (15), 4826-4831.
    38. Davis, K. A.; Matyjaszewski, K. 2000, Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers[J]. Macromolecules 33 (11), 4039-4047.
    39. Destarac, M.; Matyjaszewski, K.; Silverman, E.; Ameduri, B.; Boutevin, B. 2000, Atom transfer radical polymerization initiated with vinylidene fluoride telomers[J]. Macromolecules 33 (13), 4613-4615.
    40. Matyjaszewski, K.; Pintauer, T.; Gaynor, S. 2000, Removal of copper-based catalyst in atom transfer radical polymerization using ion exchange resins[J]. Macromolecules 33 (4), 1476-1478.
    41. Matyjaszewski, K.; Shipp, D. A.; Qiu, J.; Gaynor, S. G. 2000, Water-borne block and statistical copolymers synthesized using atom transfer radical polymerization[J]. Macromolecules 33 (7), 2296-2298.
    42. Miller, P. J.; Matyjaszewski, K. 1999, Atom transfer radical polymerization of (meth)acrylates from poly(dimethylsiloxane) macroinitiators[J]. Macromolecules 32 (26), 8760-8767.
    43. Cho, H. Y.; Gao, H. F.; Srinivasan, A.; Hong, J.; Bencherif, S. A.; Siegwart, D. J.; Paik, H. J.; Hollinger, J. O.; Matyjaszewski, K. 2010, Rapid Cellular Internalization of Multifunctional Star Polymers Prepared by Atom Transfer Radical Polymerization[J]. Biomacromolecules 11 (9), 2199-2203.
    44. Liu, P.; Wang, T. M. 2007, Preparation of well-defined star polymer from hyperbranched macroinitiator based attapulgite by surface-initiated atom transfer radical polymerizationtechnique[J]. Industrial & Engineering Chemistry Research 46 (1), 97-102.
    45. Matyjaszewski, K.; Miller, P. J.; Pyun, J.; Kickelbick, G.; Diamanti, S. 1999, Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators[J]. Macromolecules 32 (20), 6526-6535.
    46. Liu, X.; Ni, P. H.; He, J. L.; Zhang, M. Z. 2010, Synthesis and Micellization of pH/Temperature-Responsive Double-Hydrophilic Diblock Copolymers Polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] Prepared via ROP and ATRP[J]. Macromolecules 43 (10), 4771-4781.
    47. Pfeifer, S.; Lutz, J. F. 2010, Tailor-Made Soluble Polymer Supports: Synthesis of a Series of ATRP Initiators Containing Labile Wang Linkers[J]. Macromolecular Chemistry and Physics 211 (8), 940-947.
    48. Burdynska, J.; Cho, H. Y.; Mueller, L.; Matyjaszewski, K. 2010, Synthesis of Star Polymers Using ARGET ATRP[J]. Macromolecules 43 (22), 9227-9229.
    49. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. 1998, Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process[J]. Macromolecules 31 (16), 5559-5562.
    50. Whittaker, M. R.; Monteiro, M. J. 2006, Synthesis and aggregation behavior of four-arm star amphiphilic block copolymers in water[J]. Langmuir 22 (23), 9746-9752.
    51. You, Y. Z.; Hong, C. Y.; Pan, C. Y. 2002, A novel strategy for synthesis of multiblock copolymers[J]. Chemical Communications (23), 2800-2801.
    52. Hong, J.; Wang, Q.; Fan, Z. Q. 2006, Synthesis of multiblock polymer containing narrow polydispersity blocks[J]. Macromolecular Rapid Communications 27 (1), 57-62.
    53. Skrabania, K.; Li, W.; Laschewsky, A. 2008, Synthesis of double-hydrophilic BAB triblock copolymers via RAFT polymerisation and their thermoresponsive self-assembly in water[J]. Macromolecular Chemistry and Physics 209 (13), 1389-1403.
    54. Mori, H.; Matsuyama, M.; Endo, T. 2009, Double-Hydrophilic and Amphiphilic Block Copolymers Synthesized by RAFT Polymerization of Monomers Carrying Chiral Amino Acids[J]. Macromolecular Chemistry and Physics 210 (3-4), 217-229.
    55. Maki, Y.; Mori, H.; Endo, T. 2010, Synthesis of Amphiphilic and Double-Hydrophilic Block Copolymers Containing Poly(vinyl amine) Segments by RAFT Polymerization of N-Vinylphthalimide[J]. Macromolecular Chemistry and Physics 211 (1), 45-56.
    56. Nese, A.; Kwak, Y.; Nicolay, R.; Barrett, M.; Sheiko, S. S.; Matyjaszewski, K. 2010,Synthesis of Poly(vinyl acetate) Molecular Brushes by a Combination of Atom Transfer Radical Polymerization (ATRP) and Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization[J]. Macromolecules 43 (9), 4016-4019.
    57. Huang, C. F.; Nicolay, R.; Kwak, Y.; Chang, F. C.; Matyjaszewski, K. 2009, Homopolymerization and Block Copolymerization of N-Vinylpyrrolidone by ATRP and RAFT with Haloxanthate Inifers[J]. Macromolecules 42 (21), 8198-8210.
    58. Finn, M. G.; Kolb, H. C.; Fokin, V. V.; Sharpless, K. B. 2008, Click chemistry - Definition and aims[J]. Progress in Chemistry 20 (1), 1-4.
    59. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. 2001, Click chemistry: Diverse chemical function from a few good reactions[J]. Angewandte Chemie-International Edition 40 (11), 2004-+.
    60. Van Camp, W.; Dervaux, B.; Lammens, M.; Van Renterghem, L.; Du Prez, F. 2009, From Novel Block-Like Copolymers to Reactive Nanoparticles: Atrp and "Click" Chemistry as Synthetic Tools[J]. New Smart Materials Via Metal Mediated Macromolecular Engineering, 111-132.
    61. Qiu, L. Y.; Zheng, C.; Jin, Y.; Zhu, K. J. E. 2007, Polymeric micelles as nanocarriers for drug delivery[J]. Expert Opinion on Therapeutic Patents 17 (7), 819-830.
    62. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. 2005, Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates[J]. Journal of the American Chemical Society 127 (1), 210-216.
    63. Hoyle, C. E.; Bowman, C. N. 2010, Thiol-Ene Click Chemistry[J]. Angewandte Chemie-International Edition 49 (9), 1540-1573.
    64. Lowe, A. B. 2010, Thiol-ene "click" reactions and recent applications in polymer and materials synthesis[J]. Polymer Chemistry 1 (1), 17-36.
    65. Jewett, J. C.; Bertozzi, C. R. 2010, Cu-free click cycloaddition reactions in chemical biology[J]. Chemical Society Reviews 39 (4), 1272-1279.
    66. Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. 2007, Copper-free click chemistry for dynamic in vivo imaging[J]. Proceedings of the National Academy of Sciences of the United States of America 104 (43), 16793-16797.
    67. Li, Y.; Kwon, G. S. 1999, Micelle-like structures of poly(ethylene oxide)-block-poly(2-hydroxyetbyl aspartamide)-methotrexate conjugates[J]. Colloids and Surfaces B-Biointerfaces 16 (1-4), 217-226.
    68. Lysenko, E. A.; Bronich, T. K.; Slonkina, E. V.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. 2002, Block ionomer complexes with polystyrene core-forming block in selective solvents ofvarious polarities. 1. Solution behavior and self-assembly in aqueous media[J]. Macromolecules 35 (16), 6351-6361.
    69. Lysenko, E. A.; Bronich, T. K.; Slonkina, E. V.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. 2002, Block ionomer complexes with polystyrene core-forming block in selective solvents of various polarities. 2. Solution behavior and self-assembly in nonpolar solvents[J]. Macromolecules 35 (16), 6344-6350.
    70. Liu, X. Y.; Kim, J. S.; Wu, J.; Eisenberg, A. 2005, Bowl-shaped aggregates from the self-assembly of an amphiphilic random copolymer of poly(styrene-co-methacrylic acid)[J]. Macromolecules 38 (16), 6749-6751.
    71. Zhang, L. F.; Eisenberg, A. 1999, Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution[J]. Journal of Polymer Science Part B-Polymer Physics 37 (13), 1469-1484.
    72. Riegel, I. C.; Samios, D.; Petzhold, C. L.; Eisenberg, A. 2003, Self-assembly of amphiphilic di and triblock copolymers of styrene and quaternized 5-(N,N-diethylamino) isoprene in selective solvents[J]. Polymer 44 (7), 2117-2128.
    73. Bronich, T. K.; Popov, A. M.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. 2000, Effects of block length and structure of surfactant on self-assembly and solution behavior of block ionomer complexes[J]. Langmuir 16 (2), 481-489.
    74. Yu, K.; Brinker, C. J.; Hurd, A. J.; Eisenberg, A. 2001, Formation of PS-b-PEO/silica films with flat or curved multi-bilayer mesostructures of large characteristic length scales prepared by solvent evaporation-induced self-assembly.[J]. Abstracts of Papers of the American Chemical Society 221, U424-U424.
    75. Cai, Y. L.; Armes, S. P. 2004, A Zwitterionic ABC triblock copolymer that forms a "Trinity" of micellar aggregates in aqueous solution[J]. Macromolecules 37 (19), 7116-7122.
    76. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. 1997, Signaling recognition events with fluorescent sensors and switches[J]. Chemical Reviews 97 (5), 1515-1566.
    77. Beer, P. D.; Gale, P. A. 2001, Anion recognition and sensing: The state of the art and future perspectives[J]. Angewandte Chemie-International Edition 40 (3), 486-516.
    78. Nolan, E. M.; Lippard, S. J. 2008, Tools and tactics for the optical detection of mercuric ion[J]. Chemical Reviews 108 (9), 3443-3480.
    79. Han, J. Y.; Burgess, K. 2010, Fluorescent Indicators for Intracellular pH[J]. Chemical Reviews 110 (5), 2709-2728.
    80. Sagara, Y.; Kato, T. 2009, Mechanically induced luminescence changes in molecularassemblies[J]. Nature Chemistry 1 (8), 605-610.
    81. Xu, J.; Liu, S. Y. 2008, Polymeric nanocarriers possessing thermoresponsive coronas[J]. Soft Matter 4 (9), 1745-1749.
    82. Kost, J.; Langer, R. 2001, Responsive polymeric delivery systems[J]. Advanced Drug Delivery Reviews 46 (1-3), 125-148.
    83. Ahn, S. K.; Kasi, R. M.; Kim, S. C.; Sharma, N.; Zhou, Y. X. 2008, Stimuli-responsive polymer gels[J]. Soft Matter 4 (6), 1151-1157.
    84. Cho, D. G.; Sessler, J. L. 2009, Modern reaction-based indicator systems[J]. Chemical Society Reviews 38 (6), 1647-1662.
    85. Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. 2007, Design of fluorescent materials for chemical sensing[J]. Chemical Society Reviews 36 (6), 993-1017.
    86. Germain, M. E.; Knapp, M. J. 2009, Optical explosives detection: from color changes to fluorescence turn-on[J]. Chemical Society Reviews 38 (9), 2543-2555.
    87. Adhikari, B.; Majumdar, S. 2004, Polymers in sensor applications[J]. Progress in Polymer Science 29 (7), 699-766.
    88. Gotzamanis, G.; Tsitsilianis, C. 2007, Design of responsive double-hydrophilic A-b-(B-co-C) diblock terpolymers with tunable thermosensitivity[J]. Polymer 48 (21), 6226-6233.
    89. Wan, X. J.; Liu, S. Y. 2010, Fabrication of a Thermoresponsive Biohybrid Double Hydrophilic Block Copolymer by a Cofactor Reconstitution Approach[J]. Macromolecular Rapid Communications 31 (23), 2070-2076.
    90. Jiang, X. Z.; Zhang, J. Y.; Zhou, Y. M.; Xu, J.; Liu, S. Y. 2008, Facile preparation of core-crosslinked micelles from azide-containing thermoresponsive double hydrophilic diblock copolymer via click chemistry[J]. Journal of Polymer Science Part a-Polymer Chemistry 46 (3), 860-871.
    91. Romao, R. I. S.; Ferreira, Q.; Morgado, J.; Martinho, J. M. G.; da Silva, A. M. P. S. G. 2011, Nanopatterning in Langmuir-Blodgett Monolayers of a Thermoresponsive Double Hydrophilic Block Copolymer Studied by Atomic Force Microscopy[J]. Journal of Nanoscience and Nanotechnology 11 (4), 3151-3161.
    92. Berlinova, I. V.; Iliev, P. V.; Vladimirov, N. G.; Novakov, C. P. 2007, Polymerization and self-assembly of thermally responsive in-chain functionalized double-hydrophilic macromonomers[J]. Journal of Polymer Science Part a-Polymer Chemistry 45 (20), 4720-4732.
    93. Romao, R. I. S.; Beija, M.; Charreyre, M. T.; Farinha, J. P. S.; da Silva, A. M. P. S. G.; Martinho, J. M. G. 2010, Schizophrenic Behavior of a Thermoresponsive Double Hydrophilic Diblock Copolymer at the Air-Water Interface[J]. Langmuir 26 (3), 1807-1815.
    94. Luo, S. Z.; Ling, C. X.; Hu, X. L.; Liu, X.; Chen, S. S.; Han, M. C.; Xia, J. A. 2011, Thermoresponsive unimolecular micelles with a hydrophobic dendritic core and a double hydrophilic block copolymer shell[J]. Journal of Colloid and Interface Science 353 (1), 76-82.
    95. Hong, S. W.; Kim, D. Y.; Lee, J. U.; Jo, W. H. 2009, Synthesis of Polymeric Temperature Sensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly(N-isopropylacrylamide)[J]. Macromolecules 42 (7), 2756-2761.
    96. Tang, L.; Jin, J. K.; Qin, A. J.; Yuan, W. Z.; Mao, Y.; Mei, J.; Sun, J. Z.; Tang, B. Z. 2009, A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water[J]. Chemical Communications (33), 4974-4976.
    97. Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. 2003, Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans[J]. Analytical Chemistry 75 (21), 5926-5935.
    98. Uchiyama, S.; Kawai, N.; de Silva, A. P.; Iwai, K. 2004, Fluorescent polymeric AND logic gate with temperature and pH as inputs[J]. Journal of the American Chemical Society 126 (10), 3032-3033.
    99. Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. 2004, Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers[J]. Analytical Chemistry 76 (6), 1793-1798.
    100. Zhu, L. J.; Shi, Y. F.; Tu, C. L.; Wang, R. B.; Pang, Y.; Qiu, F.; Zhu, X. Y.; Yan, D. Y.; He, L.; Jin, C. Y.; Zhu, B. S. 2010, Construction and Application of a pH-Sensitive Nanoreactor via a Double-Hydrophilic Mu Warm Hyperbranched Polymer[J]. Langmuir 26 (11), 8875-8881.
    101. Bo, Q.; Zhao, Y. 2006, Double-hydrophilic block copolymer for encapsulation and two-way pH change-induced release of metalloporphyrins[J]. Journal of Polymer Science Part a-Polymer Chemistry 44 (5), 1734-1744.
    102. Sfika, V.; Tsitsilianis, C.; Kiriy, A.; Gorodyska, G.; Stamm, M. 2004, pH responsive heteroarm starlike micelles from double hydrophilic ABC terpolymer with ampholitic A and C blocks[J]. Macromolecules 37 (25), 9551-9560.
    103. Boudier, A.; Aubert-Pouessel, A.; Gerardin, C.; Devoisselle, J. M.; Begu, S. 2009, pH-sensitive double-hydrophilic block copolymer micelles for biological applications[J]. International Journal of Pharmaceutics 379 (2), 212-217.
    104. Gu, L.; Feng, C.; Yang, D.; Li, Y. G.; Hu, J. H.; Lu, G. L.; Huang, X. Y. 2009, PPEGMEA-g-PDEAEMA: Double Hydrophilic Double-Grafted Copolymer Stimuli-Responsive to Both pH and Salinity[J]. Journal of Polymer Science Part a-Polymer Chemistry 47 (12), 3142-3153.
    105. Du, X.; Tan, Y. B.; Wang, H.; Zhang, L.; Ren, X. N. 2010, Synthesis, Characterization and Aqueous Solution Behavior of a pH-responsive Double Hydrophilic Block Copolymer[J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry 47 (8), 770-776.
    106. Ge, Z. S.; Xu, J.; Wu, D.; Narain, R.; Liu, S. Y. 2008, pH-switchable complexation between double hydrophilic heteroarm star copolymers and a cationic block polyelectrolyte[J]. Macromolecular Chemistry and Physics 209 (7), 754-763.
    107. Tang, X. Z.; Pan, C. Y. 2008, Double hydrophilic block copolymers PEO-b-PGA: Synthesis, application as potential drug carrier and drug release via pH-sensitive linkage[J]. Journal of Biomedical Materials Research Part A 86A (2), 428-438.
    108. Agut, W.; Brulet, A.; Schatz, C.; Taton, D.; Lecommandoux, S. 2010, pH and Temperature Responsive Polymeric Micelles and Polymersomes by Self-Assembly of Poly[2-(dimethylamino)ethyl methacrylate]-b-Poly(glutamic acid) Double Hydrophilic Block Copolymers[J]. Langmuir 26 (13), 10546-10554.
    109. Tao, Y. H.; Liu, R.; Liu, X. Y.; Chen, M. Q.; Yang, C. Q.; Ni, Z. B. 2009, pH-Sensitive Micelles Based on Double-Hydrophilic Poly(methylacrylic acid)-Poly(ethylene glycol)-Poly(methylacrylic acid) Triblock Copolymer[J]. Nanoscale Research Letters 4 (4), 341-343.
    110. Mountrichas, G.; Pispas, S. 2006, Synthesis and pH responsive self-assembly of new double hydrophilic block copolymers[J]. Macromolecules 39 (14), 4767-4774.
    111. Hong, S. W.; Ahn, C. H.; Huh, J.; Jo, W. H. 2006, Synthesis of a PEGylated polymeric pH sensor and its pH sensitivity by fluorescence resonance energy transfer[J]. Macromolecules 39 (22), 7694-7700.
    112. Zhou, K. J.; Wang, Y. G.; Huang, X. N.; L-P, K.; S., B. D.; Gao, J. M. 2011, Tunable, Ultrasensitive pH-Responsive Nanoparticles Targeting Specific Endocytic Organelles in Living Cells[J]. Angewandte Chemie-International Edition 50, DOI: 10.1002/anie.201100884.
    113. Jiang, X.; Lavender, C. A.; Woodcock, J. W.; Zhao, B. 2008, Multiple micellization and dissociation transitions of thermo- and light-sensitive poly(ethylene oxide)-b-poly(ethoxytri(ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) in water[J]. Macromolecules 41 (7), 2632-2643.
    114. Jiang, X. G.; Jin, S.; Zhong, Q. X.; Dadmun, M. D.; Zhao, B. 2009, Stimulated-Induced Multiple Sol-Gel-Sol Transitions of Aqueous Solution of a Thermo- and Light-Sensitive Hydrophilic Block Copolymer[J]. Macromolecules 42 (21), 8468-8476.
    115. Yin, J.; Hu, H. B.; Wu, Y. H.; Liu, S. Y. 2011, Thermo-and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels[J]. Polymer Chemistry2 (2), 363-371.
    116. Pasparakis, G.; Alexander, C. 2008, Sweet talking double hydrophilic block copolymer vesicles[J]. Angewandte Chemie-International Edition 47 (26), 4847-4850.
    117. Liu, H.; Zhang, Y. F.; Hu, J. M.; Li, C. H.; Liu, S. Y. 2009, Multi-Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Host-Guest Inclusion Complexation between beta-Cyclodextrin and Adamantyl Moieties[J]. Macromolecular Chemistry and Physics 210 (24), 2125-2137.
    118. Xu, Y. Y.; Walther, A.; Muller, A. H. E. 2010, Direct Synthesis of Poly(potassium 3-sulfopropyl methacrylate) Cylindrical Polymer Brushes via ATRP Using a Supramolecular Complex With Crown Ether[J]. Macromolecular Rapid Communications 31 (16), 1462-1466.
    119. Ge, Z. S.; Hu, J. M.; Huang, F. H.; Liu, S. Y. 2009, Responsive Supramolecular Gels Constructed by Crown Ether Based Molecular Recognition[J]. Angewandte Chemie-International Edition 48 (10), 1798-1802.
    120. Yin, J.; Li, C. H.; Wang, D.; Liu, S. Y. 2010, FRET-Derived Ratiometric Fluorescent K+ Sensors Fabricated from Thermoresponsive Poly(N-isopropylacrylamide) Microgels Labeled with Crown Ether Moieties[J]. Journal of Physical Chemistry B 114 (38), 12213-12220.
    121. Crenshaw, B. R.; Weder, C. 2003, Deformation-induced color changes in melt-processed photoluminescent polymer blends[J]. Chemistry of Materials 15 (25), 4717-4724.
    122. Halperin, A.; Alexander, S. 1989, Polymeric micelles: their relaxation kinetics[J]. Macromolecules 22 (5), 2403-2412.
    123. Dormidontova, E. E. 1999, Micellization kinetics in block copolymer solutions: Scaling model[J]. Macromolecules 32 (22), 7630-7644.
    124. Esselink, F. J.; Dormidontova, E.; Hadziioannou, G. 1998, Evolution of block copolymer micellar size and structure evidenced with cryo electron microscopy[J]. Macromolecules 31 (9), 2925-2932.
    125. Esselink, F. J.; Dormidontova, E. E.; Hadziioannou, G. 1998, Redistribution of block copolymer chains between mixed micelles in solution[J]. Macromolecules 31 (15), 4873-4878.
    126. Iyama, K.; Nose, T. 1998, Kinetics of micelle formation with change of micelle shape in a dilute solution of diblock copolymers[J]. Macromolecules 31 (21), 7356-7364.
    127. Honda, C.; Hasegawa, Y.; Hirunuma, R.; Nose, T. 1994, Micellization Kinetics of Block-Copolymers in Selective Solvent[J]. Macromolecules 27 (26), 7660-7668.
    128. Honda, C.; Abe, Y.; Nose, T. 1996, Relaxation kinetics of micellization in micelle-forming block copolymer in selective solvent[J]. Macromolecules 29 (21), 6778-6785.
    129. Zhu, Z. Y.; Xu, J.; Zhou, Y. M.; Jiang, X. Z.; Armes, S. P.; Liu, S. Y. 2007, Effect of salt onthe micellization kinetics of pH-responsive ABC triblock copolymers[J]. Macromolecules 40 (17), 6393-6400.
    130. Zhu, Z. Y.; Armes, S. P.; Liu, S. Y. 2005, pH-induced micellization kinetics of ABC triblock copolymers measured by stopped-flow light scattering[J]. Macromolecules 38 (23), 9803-9812.
    1. Qiu, Q.; Somasundaran, P.; Pethica, B. A. 2002, Hydrophobic complexation of poly(vinyl caprolactam) with sodium dodecyl sulfate and dodecyltrimethylammonium bromide in solution[J]. Langmuir 18 (9), 3482-3486.
    2. Chatterjee, U.; Jewrajka, S. K.; Mandal, B. M. 2005, The amphiphilic block copolymers of
    2-(dimethylamino)ethyl methacrylate and methyl methacrylate: Synthesis by atom transfer radical polymerization and solution properties[J]. Polymer 46 (24), 10699-10708.
    3. Aoi, K.; Okada, M.; Miyamoto, M. 1997, Sequence control on the ring-opening oligomerization of cyclic imino ethers[J]. Macromolecular Rapid Communications 18 (1), 17-21.
    4. Aoi, K.; Motoda, A.; Okada, M.; Imae, T. 1997, Novel amphiphilic linear polymer/dendrimer block copolymer: Synthesis of poly(2-methyl-2-oxazoline) block poly(amido amine) dendrimer[J]. Macromolecular Rapid Communications 18 (10), 945-952.
    5. Stenzel, M. H.; Barner-Kowollik, C.; Davis, T. P.; Dalton, H. M. 2004, Amphiphilic block copolymers based on poly (2-acryloyloxyethyl phosphorylcholine) prepared via RAFT polymerisation as biocompatible nanocontainers[J]. Macromolecular Bioscience 4 (4), 445-453.
    6. Teoh, S. K.; Ravi, P.; Dai, S.; Tam, K. C. 2005, Self-assembly of stimuli-responsive water-soluble [60]fullerene end-capped ampholytic block copolymer[J]. Journal of Physical Chemistry B 109 (10), 4431-4438.
    7. Yusa, S. I.; Fukuda, K.; Yamamoto, T.; Ishihara, K.; Morishima, Y. 2005, Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel blocompatible polymer micelle reagent[J]. Biomacromolecules 6 (2), 663-670.
    8. Chung, J. E.; Yokoyama, M.; Okano, T. 2000, Inner core segment design for drug delivery control of thermo-responsive polymeric micelles[J]. Journal of Controlled Release 65 (1-2), 93-103.
    9. Jiang, M.; Li, M.; Xiang, M. L.; Zhou, H. 1999, Interpolymer complexation and miscibility enhancement by hydrogen bonding[J]. Polymer Synthesis Polymer-Polymer Complexation 146, 121-196.
    10. Liu, H. B.; Farrell, S.; Uhrich, K. 2000, Drug release characteristics of unimolecular polymeric micelles[J]. Journal of Controlled Release 68 (2), 167-174.
    11. Salvage, J. P.; Rose, S. F.; Phillips, G. J.; Hanlon, G. W.; Lloyd, A. W.; Ma, I. Y.; Armes, S. P.; Billingham, N. C.; Lewis, A. L. 2005, Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery[J]. Journal of Controlled Release 104 (2), 259-270.
    12. Theodoly, O.; Cascao-Pereira, L.; Bergeron, V.; Radke, C. J. 2005, A combined streaming-potential optical reflectometer for studying adsorption at the water/solid surface[J]. Langmuir 21 (22), 10127-10139.
    13. Webber, G. B.; Wanless, E. J.; Armes, S. P.; Baines, F. L.; Biggs, S. 2001, Adsorption of amphiphilic diblock copolymer micelles at the mica/solution interface[J]. Langmuir 17 (18), 5551-5561.
    14. Wei, H.; Zhang, X. Z.; Zhou, Y.; Cheng, S. X.; Zhuo, R. X. 2006, Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate)[J]. Biomaterials 27 (9), 2028-2034.
    15. Cameron, N. S.; Eisenberg, A.; Brown, G. R. 2002, Amphiphilic block copolymers as bile acid sorbents: 2. Polystyrene-b-poly(N,N,N-trimethylammoniumethylene acrylamide chloride): Self-assembly and application to serum cholesterol reduction[J]. Biomacromolecules 3 (1), 124-132.
    16. Li, S.; Clarke, C. J.; Lennox, R. B.; Eisenberg, A. 1998, Two-dimensional self assembly of polystyrene-b-poly (butyl-methacrylate) diblock copolymers[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects 133 (3), 191-203.
    17. Cox, J. K.; Eisenberg, A.; Lennox, R. B. 1999, Patterned surfaces via self-assembly[J]. Current Opinion in Colloid & Interface Science 4 (1), 52-59.
    18. Meszaros, M.; Eisenberg, A.; Lennox, R. B. 1994, Block-Copolymer Self-Assembly in 2 Dimensions - Nanoscale Emulsions and Foams[J]. Faraday Discussions (98), 283-294.
    19. Greene, L. E.; Zhao, X.; Greener, T.; Eisenberg, E. 1998, Expression of the clathrin assembly protein, AP-180, in tissue culture cells inhibits endocytosis.[J]. Faseb Journal 12 (8), A1469-A1469.
    20. Zhao, X.; Greener, T.; Greene, L. E.; Eisenberg, E. 1998, Expression of the clathrin assembly protein, auxilin, in tissue culture cells inhibits endocytosis.[J]. Faseb Journal 12 (8), A1469-A1469.
    21. Prasad, K.; Barouch, W.; Martin, B. M.; Greene, L. E.; Eisenberg, E. 1995, Purification of a new clathrin assembly protein from bovine brain coated vesicles and its identification as myelin basic protein[J]. Journal of Biological Chemistry 270 (51), 30551-30556.
    22. Zhang, L. F.; Eisenberg, A. 1999, Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution[J]. Journal of Polymer Science Part B-Polymer Physics 37 (13), 1469-1484.
    23. Azzam, T.; Eisenberg, A. 2007, Monolayer-protected gold nanoparticles by the self-assembly of micellar poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymer[J]. Langmuir 23(4), 2126-2132.
    24. Bronich, T. K.; Cherry, T.; Vinogradov, S. V.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. 1998, Self-assembly in mixtures of poly(ethylene oxide)-graft-poly(ethyleneimine) and alkyl sulfates[J]. Langmuir 14 (21), 6101-6106.
    25. Bronich, T. K.; Popov, A. M.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. 2000, Effects of block length and structure of surfactant on self-assembly and solution behavior of block ionomer complexes[J]. Langmuir 16 (2), 481-489.
    26. Liu, X. Y.; Wu, J.; Kim, J. S.; Eisenberg, A. 2006, Self-assembly of mixtures of block copolymers of polystyrene-b-acrylic acid) with random copolymers of polystyrene-co-methacrylic acid)[J]. Langmuir 22 (1), 419-424.
    27. Yu, K.; Hurd, A. J.; Eisenberg, A.; Brinker, C. J. 2001, Syntheses of silica/polystyrene-block-poly(ethylene oxide) films with regular and reverse mesostructures of large characteristic length scales by solvent evaporation-induced self-assembly[J]. Langmuir 17 (26), 7961-7965.
    28. Moffitt, M.; Eisenberg, A. 1997, Tandem interactions in the self-assembly of ionic block copolymers[J]. Macromolecular Symposia 117, 181-193.
    29. Liu, X. Y.; Kim, J. S.; Wu, J.; Eisenberg, A. 2005, Bowl-shaped aggregates from the self-assembly of an amphiphilic random copolymer of poly(styrene-co-methacrylic acid)[J]. Macromolecules 38 (16), 6749-6751.
    30. Lysenko, E. A.; Bronich, T. K.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. 1998, Solution behavior and self-assembly of complexes from poly(alpha-methylstyrene)-block-poly(N-ethyl-4-vinylpyridinium) cations and aerosol OT anions[J]. Macromolecules 31 (14), 4516-4519.
    31. Lysenko, E. A.; Bronich, T. K.; Slonkina, E. V.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. 2002, Block ionomer complexes with polystyrene core-forming block in selective solvents of various polarities. 2. Solution behavior and self-assembly in nonpolar solvents[J]. Macromolecules 35 (16), 6344-6350.
    32. Lysenko, E. A.; Bronich, T. K.; Slonkina, E. V.; Eisenberg, A.; Kabanov, V. A.; Kabanov, A. V. 2002, Block ionomer complexes with polystyrene core-forming block in selective solvents of various polarities. 1. Solution behavior and self-assembly in aqueous media[J]. Macromolecules 35 (16), 6351-6361.
    33. Zhang, L. F.; Eisenberg, A. 1999, Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution[J]. Macromolecules 32 (7),2239-2249.
    34. Zhao, X.; Greener, T.; Al-Hasani, H.; Cushman, S. W.; Eisenberg, E.; Greene, L. E. 1998, Expression of the clathrin assembly proteins auxilin and AP(180) in various cells in culture inhibits endocytosis.[J]. Molecular Biology of the Cell 9, 340a-340a.
    35. Zhang, L. F.; Bartels, C.; Yu, Y. S.; Shen, H. W.; Eisenberg, A. 1997, Mesosized crystal-like structure of hexagonally packed hollow hoops by solution self-assembly of diblock copolymers[J]. Physical Review Letters 79 (25), 5034-5037.
    36. Riegel, I. C.; Samios, D.; Petzhold, C. L.; Eisenberg, A. 2003, Self-assembly of amphiphilic di and triblock copolymers of styrene and quaternized 5-(N,N-diethylamino) isoprene in selective solvents[J]. Polymer 44 (7), 2117-2128.
    37. Ivanova, M. I.; Sievers, S. A.; Sawaya, M. R.; Wall, J. S.; Eisenberg, D. 2009, Molecular basis for insulin fibril assembly[J]. Proceedings of the National Academy of Sciences of the United States of America 106 (45), 18990-18995.
    38. Mura, C.; Phillips, M.; Kozhukhovsky, A.; Eisenberg, D. 2003, Structure and assembly of an augmented Sm-like archaeal protein 14-mer[J]. Proceedings of the National Academy of Sciences of the United States of America 100 (8), 4539-4544.
    39. Shakibai, N.; Kumar, V.; Eisenberg, S. 1996, The Ku-like protein from Saccharomyces cerevisiae is required in vitro for the assembly of a stable multiprotein complex at a eukaryotic origin of replication[J]. Proceedings of the National Academy of Sciences of the United States of America 93 (21), 11569-11574.
    40. Bennett, M. J.; Schlunegger, M. P.; Eisenberg, D. 1995, 3d Domain Swapping - a Mechanism for Oligomer Assembly[J]. Protein Science 4 (12), 2455-2468.
    41. Ghigliotti, G.; Abendschein, D. R.; Waissbluth, A. D.; Eisenberg, P. R. 1997, Aspirin, but not heparin attenuates XaVa assembly after deep arterial injury of the rabbit aorta[J]. Thrombosis and Haemostasis, Ps329-Ps329.
    42. Nardin, C.; Hirt, T.; Leukel, J.; Meier, W. 2000, Polymerized ABA triblock copolymer vesicles[J]. Langmuir 16 (3), 1035-1041.
    43. Ding, J. F.; Liu, G. J. 1998, Water-soluble hollow nanospheres as potential drug carriers[J]. Journal of Physical Chemistry B 102 (31), 6107-6113.
    44. Harrisson, S.; Wooley, K. L. 2005, Shell-crosslinked nanostructures from amphiphilic AB and ABA block copolymers of styrene-alt-(maleic anhydride) and styrene: polymerization, assembly and stabilization in one pot[J]. Chemical Communications (26), 3259-3261.
    45. Zhu, H.; Liu, Q. C.; Chen, Y. M. 2007, Reactive block copolymer vesicles with an epoxy wall[J]. Langmuir 23 (2), 790-794.
    46. Wooley, K. L. 2000, Shell crosslinked polymer assemblies: Nanoscale constructs inspired from biological systems[J]. Journal of Polymer Science Part a-Polymer Chemistry 38 (9), 1397-1407.
    47. Joralemon, M. J.; O'Reilly, R. K.; Hawker, C. J.; Wooley, K. L. 2005, Shell Click-crosslinked (SCC) nanoparticles: A new methodology for synthesis and orthogonal functionalization[J]. Journal of the American Chemical Society 127 (48), 16892-16899.
    48. Turner, J. L.; Becker, M. L.; Li, X. X.; Taylor, J. S. A.; Wooley, K. L. 2005, PNA-directed solution- and surface-assembly of shell crosslinked (SCK) nanoparticle conjugates[J]. Soft Matter 1 (1), 69-78.
    49. Cheng, C.; Qi, K.; Khoshdel, E.; Wooley, K. L. 2006, Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures[J]. Journal of the American Chemical Society 128 (21), 6808-6809.
    50. Ding, J. F.; Liu, G. J.; Yang, M. L. 1997, Multiple morphologies of polyisoprene-block-poly(2-cinnamoylethyl methacrylate) and polystyrene-block-poly(2-cinnamoylethyl methacrylate) micelles in organic solvents[J]. Polymer 38 (21), 5497-5501.
    51. Ding, J. F.; Liu, G. J. 1997, Polyisoprene-block-poly(2-cinnamoylethyl methacrylate) vesicles and their aggregates[J]. Macromolecules 30 (3), 655-657.
    52. Maskos, M.; Harris, J. R. 2001, Double-shell vesicles, strings of vesicles and filaments found in crosslinked micellar solutions of poly(1,2-butadiene)-block-poly(ethylene oxide) diblock copolymers[J]. Macromolecular Rapid Communications 22 (4), 271-273.
    53. Discher, B. M.; Bermudez, H.; Hammer, D. A.; Discher, D. E.; Won, Y. Y.; Bates, F. S. 2002, Cross-linked polymersome membranes: Vesicles with broadly adjustable properties[J]. Journal of Physical Chemistry B 106 (11), 2848-2854.
    54. Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. 2003, Vesicles and polymerized vesicles from thiophene-containing rod-coil block copolymers[J]. Angewandte Chemie-International Edition 42 (7), 772-776.
    55. Luo, S. Z.; Xu, J.; Zhang, Y. F.; Liu, S. Y.; Wu, C. 2005, Double hydrophilic block copolymer monolayer protected hybrid gold nanoparticles and their shell cross-linking[J]. Journal of Physical Chemistry B 109 (47), 22159-22166.
    56. Jiang, X. Z.; Luo, S. Z.; Armes, S. P.; Shi, W. F.; Liu, S. Y. 2006, UV irradiation-induced shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers[J]. Macromolecules 39 (18), 5987-5994.
    57. Jiang, X. Z.; Ge, Z. S.; Xu, J.; Liu, H.; Liu, S. Y. 2007, Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability[J]. Biomacromolecules 8 (10), 3184-3192.
    58. Liu, H.; Jiang, X. Z.; Fan, J.; Wang, G. H.; Liu, S. Y. 2007, Aldehyde surface-functionalized shell cross-linked micelles with pH-tunable core swellability and their bioconjugation with lysozyme[J]. Macromolecules 40 (25), 9074-9083.
    59. Zhang, J. Y.; Jiang, X.; Zhang, Y. F.; Li, Y. T.; Liu, S. Y. 2007, Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability[J]. Macromolecules 40 (25), 9125-9132.
    60. Jiang, X. Z.; Zhang, J. Y.; Zhou, Y. M.; Xu, J.; Liu, S. Y. 2008, Facile preparation of core-crosslinked micelles from azide-containing thermoresponsive double hydrophilic diblock copolymer via click chemistry[J]. Journal of Polymer Science Part a-Polymer Chemistry 46 (3), 860-871.
    61. Zhou, Y. M.; Jiang, K. Q.; Chen, Y. Q.; Liu, S. Y. 2008, Gold nanoparticle-incorporated core and shell crosslinked micelles fabricated from thermoresponsive block copolymer of N-isopropylacrylamide and a novel primary-amine containing monomer[J]. Journal of Polymer Science Part a-Polymer Chemistry 46 (19), 6518-6531.
    62. Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. 1999, A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates[J]. Tetrahedron Letters 40 (12), 2435-2438.
    1. Yi, Z. A.; Zhu, L. P.; Xu, Y. Y.; Li, X. L.; Yu, J. Z.; Zhu, B. K. 2010, F127-based multi-block copolymer additives with poly(N,N-dimethylamino-2-ethyl methacrylate) end chains: The hydrophilicity and stimuli-responsive behavior investigation in polyethersulfone membranesmodification[J]. Journal of Membrane Science 364 (1-2), 34-42.
    2. Pan, K.; Zhang, X. W.; Ren, R. M.; Cao, B. 2010, Double stimuli-responsive membranes grafted with block copolymer by ATRP method[J]. Journal of Membrane Science 356 (1-2), 133-137.
    3. Ge, Z. S.; Xie, D.; Chen, D. Y.; Jiang, X. Z.; Zhang, Y. F.; Liu, H. W.; Liu, S. Y. 2008, Stimuli-responsive double hydrophilic block copolymer micelles with switchable catalytic activity (vol 40, pg 3538, 2007)[J]. Macromolecules 41 (9), 3384-3384.
    4. Masuda, T.; Yamamoto, S. I.; Moriya, O.; Kashio, M.; Sugizaki, T. 2008, Preparation of stimuli-responsive polysilsesquioxane grafted block copolymer of acrylamide monomers[J]. Polymer Journal 40 (2), 126-136.
    5. Ge, Z. S.; Xie, D.; Chen, D. Y.; Jiang, X. Z.; Zhang, Y. F.; Liu, H. W.; Liu, S. Y. 2007, Stimuli-responsive double hydrophilic block copolymer micelles with switchable catalytic activity[J]. Macromolecules 40 (10), 3538-3546.
    6. Yu, K.; Wang, H. F.; Xue, L. J.; Han, Y. C. 2007, Stimuli-responsive polyelectrolyte block copolymer brushes synthesized from the si wafer via atom-transfer radical polymerization[J]. Langmuir 23 (3), 1443-1452.
    7. Teoh, S. K.; Ravi, P.; Dai, S.; Tam, K. C. 2005, Self-assembly of stimuli-responsive water-soluble [60]fullerene end-capped ampholytic block copolymer[J]. Journal of Physical Chemistry B 109 (10), 4431-4438.
    8. Lai, T. C.; Bae, Y.; Yoshida, T.; Kataoka, K.; Kwon, G. S. 2010, pH-Sensitive Multi-PEGylated Block Copolymer as a Bioresponsive pDNA Delivery Vector[J]. Pharmaceutical Research 27 (11), 2260-2273.
    9. Kim, K.; Kim, T. H.; Choi, J. H.; Lee, J. Y.; Hah, S. S.; Yoo, H. O.; Hwang, S. S.; Ryu, K. N.; Kim, H. J.; Kim, J. 2010, Synthesis of a pH-Sensitive PEO-Based Block Copolymer and its Application for the Stabilization of Iron Oxide Nanoparticles[J]. Macromolecular Chemistry and Physics 211 (10), 1127-1136.
    10. Lomas, H.; Du, J. Z.; Canton, I.; Madsen, J.; Warren, N.; Armes, S. P.; Lewis, A. L.; Battaglia, G. 2010, Efficient Encapsulation of Plasmid DNA in pH-Sensitive PMPC-PDPA Polymersomes: Study of the Effect of PDPA Block Length on Copolymer-DNA Binding Affinity[J]. Macromolecular Bioscience 10 (5), 513-530.
    11. Boudier, A.; Aubert-Pouessel, A.; Gerardin, C.; Devoisselle, J. M.; Begu, S. 2009, pH-sensitive double-hydrophilic block copolymer micelles for biological applications[J]. International Journal of Pharmaceutics 379 (2), 212-217.
    12. Prabaharan, M.; Grailer, J. J.; Pilla, S.; Steeber, D. A.; Gong, S. Q. 2009, Amphiphilicmulti-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery[J]. Biomaterials 30 (29), 5757-5766.
    13. Tao, Y. H.; Liu, R.; Liu, X. Y.; Chen, M. Q.; Yang, C.; Ni, Z. B. 2008, pH-sensitive Spherical Micelles with Core-Corona Structure Based on Graft-like Block Copolymer Containing Biodegradable epsilon-Caprolactone Branches[J]. Chemistry Letters 37 (11), 1162-1163.
    14. Plotnikov, N.; Victorov, A. 2007, Mesoscale morphology and dissociation equilibrium in pH-sensitive block copolymer gels[J]. Fluid Phase Equilibria 261 (1-2), 26-34.
    15. Shim, W. S.; Kim, S. W.; Choi, E. K.; Park, H. J.; Kim, J. S.; Lee, D. S. 2006, Novel pH sensitive block copolymer micelles for solvent free drug loading[J]. Macromolecular Bioscience 6 (2), 179-186.
    16. Jin, Q. A.; Lv, L. P.; Liu, G. Y.; Xu, J. P.; Ji, J. A. 2010, Phenylboronic acid as a sugar- and pH-responsive trigger to tune the multiple micellization of thermo-responsive block copolymer[J]. Polymer 51 (14), 3068-3074.
    17. Kotsuchibashi, Y.; Kuboshima, Y.; Yamamoto, K.; Aoyagi, T. 2008, Synthesis and characterization of double thermo-responsive block copolymer consisting N-isopropylacrylamide by atom transfer radical polymerization[J]. Journal of Polymer Science Part a-Polymer Chemistry 46 (18), 6142-6150.
    18. Liu, Z. P.; Zhang, C. L.; He, W. J.; Qian, F.; Yang, X. L.; Gao, X.; Guo, Z. J. 2010, A charge transfer type pH responsive fluorescent probe and its intracellular application[J]. New Journal of Chemistry 34 (4), 656-660.
    19. Peng, H. S.; Stolwijk, J. A.; Sun, L. N.; Wegener, J.; Wolfbeis, O. S. 2010, A Nanogel for Ratiometric Fluorescent Sensing of Intracellular pH Values[J]. Angewandte Chemie-International Edition 49 (25), 4246-4249.
    20. Hong, S. W.; Ahn, C. H.; Huh, J.; Jo, W. H. 2006, Synthesis of a PEGylated polymeric pH sensor and its pH sensitivity by fluorescence resonance energy transfer[J]. Macromolecules 39 (22), 7694-7700.
    21. Modi, S.; Swetha, M. G.; Goswami, D.; Gupta, G. D.; Mayor, S.; Krishnan, Y. 2009, A DNA nanomachine that maps spatial and temporal pH changes inside living cells[J]. Nature Nanotechnology 4 (5), 325-330.
    22. Murakami, M.; Cabral, H.; Matsumoto, Y.; Wu, S.; Kano, M. R.; Yamori, T.; Nishiyama, N.; Kataoka, K. 2011, Improving Drug Potency and Efficacy by Nanocarrier-Mediated Subcellular Targeting[J]. Science Translational Medicine 3 (64), DOI: 10.1126/scitranslmed.3001385.
    23. Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P. L.; Kobayashi, H. 2009, Selective molecular imagingof viable cancer cells with pH-activatable fluorescence probes[J]. Nature Medicine 15 (1), 104-109.
    24. Zhou, K. J.; Wang, Y. G.; Huang, X. N.; L-P, K.; S., B. D.; Gao, J. M. 2011, Tunable, Ultrasensitive pH-Responsive Nanoparticles Targeting Specific Endocytic Organelles in Living Cells[J]. Angewandte Chemie-International Edition 50, DOI: 10.1002/anie.201100884.
    25. Hynes, J.; O'Riordan, T. C.; Zhdanov, A. V.; Uray, G.; Will, Y.; Papkovsky, D. B. 2009, In vitro analysis of cell metabolism using a long-decay pH-sensitive lanthanide probe and extracellular acidification assay[J]. Analytical Biochemistry 390 (1), 21-28.
    26. Ohara-Imaizumi, M.; Nakamichi, Y.; Tanaka, T.; Katsuta, H.; Ishida, H.; Nagamatsu, S. 2002, Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy[J]. Biochemical Journal 363, 73-80.
    27. Kawai, C.; Pessoto, F. S.; Rodrigues, T.; Mugnol, K. C. U.; Tortora, V.; Castro, L.; Milicchio, V. A.; Tersariol, I. L. S.; Di Mascio, P.; Radi, R.; Carmona-Ribeiro, A. M.; Nantes, I. L. 2009, pH-Sensitive Binding of Cytochrome c to the Inner Mitochondrial Membrane. Implications for the Participation of the Protein in Cell Respiration and Apoptosis[J]. Biochemistry 48 (35), 8335-8342.
    28. Hynes, J.; O'Riordan, T.; Papkovsky, D.; Will, Y. 2008, The use of oxygen and pH-sensitive fluorescent probes for the investigation of perturbed cell metabolism[J]. Biochimica Et Biophysica Acta-Bioenergetics 1777, S77-S77.
    29. Asayama, S.; Sekine, T.; Kawakami, H.; Nagaoka, S. 2007, Design of aminated poly(1-vinylimidazole) for a new pH-Sensitive polycation to enhance cell-specific gene delivery[J]. Bioconjugate Chemistry 18 (5), 1662-1667.
    30. Cohen, J. A.; Beaudette, T. T.; Tseng, W. W.; Bachelder, E. M.; Mende, I.; Engleman, E. G.; Frechet, J. M. J. 2009, T-Cell Activation by Antigen-Loaded pH-Sensitive Hydrogel Particles in Vivo: The Effect of Particle Size[J]. Bioconjugate Chemistry 20 (1), 111-119.
    31. Wang, X. L.; Ramusovic, S.; Nguyen, T.; Lu, Z. R. 2007, Novel polymerizable surfactants with pH-sensitive amphiphilicity and cell membrane disruption for efficient siRNA delivery[J]. Bioconjugate Chemistry 18 (6), 2169-2177.
    32. Wu, D. Q.; Sun, Y. X.; Xu, X. D.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. 2008, Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release[J]. Biomacromolecules 9 (4), 1155-1162.
    33. Boudier, A.; Aubert-Pouessel, A.; Louis-Plence, P.; Gerardin, C.; Jorgensen, C.; Devoisselle, J. M.; Begu, S. 2009, The control of dendritic cell maturation by pH-sensitive polyion complexmicelles[J]. Biomaterials 30 (2), 233-241.
    34. Torres-Lugo, M.; Garcia, M.; Record, R.; Peppas, N. A. 2002, pH-sensitive hydrogels as gastrointestinal tract absorption enhancers: Transport mechanisms of salmon calcitonin and other model molecules using the Caco-2 cell model[J]. Biotechnology Progress 18 (3), 612-616.
    35. Chowdhury, E. H. 2008, Self-assembly of DNA and cell-adhesive proteins onto pH-sensitive inorganic crystals for precise and efficient transgene delivery[J]. Current Pharmaceutical Design 14 (22), 2212-2228.
    36. Adie, E. J.; Kalinka, S.; Smith, L.; Francis, M. J.; Marenghi, A.; Cooper, M. E.; Briggs, M.; Milligan, G.; Game, S. 2002, Monitoring G-protein coupled receptor activation using a ph sensitive CyDye (TM) on the LEADseeker (TM) cell analysis system[J]. Cytometry, 132-132.
    37. Fishilevich, E.; Fitzpatrick, J. A. J.; Minden, J. S. 2010, pHMA, a pH-Sensitive GFP Reporter for Cell Engulfment, in Drosophila Embryos, Tissues, and Cells[J]. Developmental Dynamics 239 (2), 559-573.
    38. Carafa, M.; Di Marzio, L.; Matianecci, C.; Cinque, B.; Lucania, G.; Kajiwara, K.; Cifone, M. G.; Santucci, E. 2006, Designing novel pH-sensitive non-phospholipid vesicle: Characterization and cell interaction[J]. European Journal of Pharmaceutical Sciences 28 (5), 385-393.
    39. Chowdhury, E. H. 2007, pH-sensitive nano-crystals of carbonate apatite for smart and cell-specific transgene delivery[J]. Expert Opinion on Drug Delivery 4 (3), 193-196.
    40. Simard, P.; Leroux, J. C. 2009, pH-sensitive immunoliposomes specific to the CD33 cell surface antigen of leukemic cells[J]. International Journal of Pharmaceutics 381 (2), 86-96.
    41. Wang, X. L.; Xu, R. Z.; Lu, Z. R. 2009, A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery[J]. Journal of Controlled Release 134 (3), 207-213.
    42. Petheo, G. L.; Molnar, Z.; Roka, A.; Makara, J. K.; Spat, A. 2000, Characterization of a pH-sensitive anion current in the chemoreceptor cell of rat carotid body[J]. Journal of Physiology-London 526, 5P-5P.
    43. Petheo, G. L.; Molnar, Z.; Roka, A.; Makara, J. K.; Spat, A. 2001, A pH-sensitive chloride current in the chemoreceptor cell of rat carotid body[J]. Journal of Physiology-London 535 (1), 95-106.
    44. Zguris, J.; Pishko, M. V. 2005, pH sensitive fluorescent poly(ethylene) glycol hydrogel microstructures for monitoring in cell culture systems[J]. Sensor Letters 3 (3), 206-210.
    45. Ashby, M. C.; Ibaraki, K.; Henley, J. M. 2004, It's green outside: tracking cell surface proteins with pH-sensitive GFP[J]. Trends in Neurosciences 27 (5), 257-261.
    46. Cho, D. G.; Sessler, J. L. 2009, Modern reaction-based indicator systems[J]. ChemicalSociety Reviews 38 (6), 1647-1662.
    47. Mancin, F.; Rampazzo, E.; Tecilla, P.; Tonellato, U. 2006, Self-assembled fluorescent chemosensors[J]. Chemistry-a European Journal 12 (7), 1844-1854.
    48. de Silva, A. P.; Uchiyama, S. 2007, Molecular logic and computing[J]. Nature Nanotechnology 2 (7), 399-410.
    49. de Silva, A. P.; Uchiyama, S.; Vance, T. P.; Wannalerse, B. 2007, A supramolecular chemistry basis for molecular logic and computation[J]. Coordination Chemistry Reviews 251 (13-14), 1623-1632.
    50. Tsupryk, A.; Tovkach, I.; Gavrilov, D.; Kosobokova, O.; Gudkov, G.; Tyshko, G.; Gorbovitski, B.; Gorfinkel, V. 2008, Ultra sensitive sensor with enhanced dynamic range for high speed detection of multi-color fluorescence radiation[J]. Biosensors & Bioelectronics 23 (10), 1512-1518.
    51. Royzen, M.; Dai, Z. H.; Canary, J. W. 2005, Ratiometric displacement approach to Cu(II) sensing by fluorescence[J]. Journal of the American Chemical Society 127 (6), 1612-1613.
    52. Guliyev, R.; Coskun, A.; Akkaya, E. U. 2009, Design Strategies for Ratiometric Chemosensors: Modulation of Excitation Energy Transfer at the Energy Donor Site[J]. Journal of the American Chemical Society 131 (25), 9007-9013.
    53. Lee, S. Y.; Kim, H. J.; Wu, J. S.; No, K.; Kim, J. S. 2008, Metal ion-induced FRET modulation in a bifluorophore system[J]. Tetrahedron Letters 49 (42), 6141-6144.
    54. Xu, Z. C.; Qian, X. H.; Cui, J. N. 2005, Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission: Cu(II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore[J]. Organic Letters 7 (14), 3029-3032.
    55. Guo, Z. Q.; Zhu, W. H.; Shen, L. J.; Tian, H. 2007, A fluorophore capable of crossword puzzles and logic memory[J]. Angewandte Chemie-International Edition 46 (29), 5549-5553.
    56. Yu, H. B.; Fu, M. Y.; Xiao, Y. 2010, Switching off FRET by analyte-induced decomposition of squaraine energy acceptor: A concept to transform 'turn off' chemodosimeter into ratiometric sensors[J]. Physical Chemistry Chemical Physics 12 (27), 7386-7391.
    57. He, G. J.; Zhang, X. L.; He, C.; Zhao, X. W.; Duan, C. Y. 2010, Ratiometric fluorescence chemosensors for copper(II) and mercury(II) based on FRET systems[J]. Tetrahedron 66 (51), 9762-9768.
    58. Kurishita, Y.; Kohira, T.; Ojida, A.; Hamachi, I. 2010, Rational Design of FRET-Based Ratiometric Chemosensors for in Vitro and in Cell Fluorescence Analyses of Nucleoside Polyphosphates[J]. Journal of the American Chemical Society 132 (38), 13290-13299.
    59. Kim, H. J.; Park, S. Y.; Yoon, S.; Kim, J. S. 2008, FRET-derived ratiometric fluorescence sensor for Cu2+[J]. Tetrahedron 64 (7), 1294-1300.
    60. Albers, A. E.; Okreglak, V. S.; Chang, C. J. 2006, A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide[J]. Journal of the American Chemical Society 128 (30), 9640-9641.
    61. Allard, E.; Larpent, C. 2008, Core-shell type dually fluorescent polymer nanoparticles for ratiometric pH-sensing[J]. Journal of Polymer Science Part a-Polymer Chemistry 46 (18), 6206-6213.
    62. Sun, H.; Scharff-Poulsen, A. M.; Gu, H.; Almdal, K. 2006, Synthesis and characterization of ratiometric, pH sensing nanoparticles with covalently attached fluorescent dyes[J]. Chemistry of Materials 18 (15), 3381-3384.
    63. Li, Y. Y.; Cheng, H.; Zhu, J. L.; Yuan, L.; Dai, Y.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. 2009, Temperature- and pH-Sensitive Multicolored Micellar Complexes[J]. Advanced Materials 21 (23), 2402-+.
    64. Albertazzi, L.; Storti, B.; Marchetti, L.; Beltram, F. 2010, Delivery and Subcellular Targeting of Dendrimer-Based Fluorescent pH Sensors in Living Cells[J]. Journal of the American Chemical Society 132 (51), 18158-18167.
    65. Li, C. H.; Zhang, Y. X.; Hu, J. M.; Cheng, J. J.; Liu, S. Y. 2010, Reversible Three-State Switching of Multicolor Fluorescence Emission by Multiple Stimuli Modulated FRET Processes within Thermoresponsive Polymeric Micelles[J]. Angewandte Chemie-International Edition 49 (30), 5120-5124.
    66. Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. 1999, A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates[J]. Tetrahedron Letters 40 (12), 2435-2438.
    1. Liu, Y.; Zhang, Y. J.; Guan, Y. 2009, New polymerized crystalline colloidal array for glucose sensing[J]. Chemical Communications (14), 1867-1869.
    2. Pasparakis, G.; Cockayne, A.; Alexander, C. 2007, Control of bacterial aggregation by thermoresponsive glycopolymers[J]. Journal of the American Chemical Society 129 (36), 11014-+.
    3. Roberts, M. C.; Hanson, M. C.; Massey, A. P.; Karren, E. A.; Kiser, P. F. 2007, Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks[J]. Advanced Materials 19 (18), 2503-+.
    4. Roy, D.; Cambre, J. N.; Sumerlin, B. S. 2008, Sugar-responsive block copolymers by direct RAFT polymerization of unprotected boronic acid monomers[J]. Chemical Communications (21), 2477-2479.
    5. Zhang, Y. J.; Guan, Y.; Zhou, S. Q. 2007, Permeability control of glucose-sensitive nanoshells[J]. Biomacromolecules 8 (12), 3842-3847.
    6. Roy, D.; Cambre, J. N.; Sumerlin, B. S. 2009, Triply-responsive boronic acid block copolymers: solution self-assembly induced by changes in temperature, pH, or sugar concentration[J]. Chemical Communications (16), 2106-2108.
    7. Wang, B. L.; Ma, R. J.; Liu, G.; Li, Y.; Liu, X. J.; An, Y. L.; Shi, L. Q. 2009, Glucose-Responsive Micelles from Self-Assembly of Poly(ethylene glycol)-b-Poly(acrylic acid-co-acrylamidophenylboronic acid) and the Controlled Release of Insulin[J]. Langmuir 25 (21), 12522-12528.
    8. Jin, X. J.; Zhang, X. G.; Wu, Z. M.; Teng, D. Y.; Zhang, X. J.; Wang, Y. X.; Wang, Z.; Li, C. X. 2009, Amphiphilic Random Glycopolymer Based on Phenylboronic Acid: Synthesis, Characterization, and Potential as Glucose-Sensitive Matrix[J]. Biomacromolecules 10 (6), 1337-1345.
    9. Roy, D.; Cambre, J. N.; Sumerlin, B. S. 2010, Future perspectives and recent advances in stimuli-responsive materials[J]. Progress in Polymer Science 35 (1-2), 278-301.
    10. Cambre, J. N.; Roy, D.; Gondi, S. R.; Sumerlin, B. S. 2007, Facile strategy to well-definedwater-soluble boronic acid (co)polymers[J]. Journal of the American Chemical Society 129 (34), 10348-+.
    11. Loykulnant, S.; Hirao, A. 2000, Protection and polymerization of functional monomers. 30. Anionic living polymerization of 4-alkylstyrenes containing acetal-protected monosaccharide residues[J]. Macromolecules 33 (13), 4757-4764.
    12. Loykulnant, S.; Hirao, A. 2001, Synthesis and characterization of well-defined chain-end- and in-chain-functionalized polystyrenes with a definite number of D-glucose and/or D-galactose[J]. Macromolecules 34 (24), 8434-8445.
    13. Aoi, K.; Tsutsumiuchi, K.; Aoki, E.; Okada, M. 1996, First synthesis of glycopeptide macromonomers and graft-type sugar-containing polymers with glycopeptide side chains[J]. Macromolecules 29 (12), 4456-4458.
    14. Tsutsumiuchi, K.; Aoi, K.; Okada, M. 1997, Synthesis of polyoxazoline-(glyco)peptide block copolymers by ring-opening polymerization of (sugar-substituted) alpha-amino acid N-carboxyanhydrides with polyoxazoline macroinitiators[J]. Macromolecules 30 (14), 4013-4017.
    15. Mortell, K. H.; Weatherman, R. V.; Kiessling, L. L. 1996, Recognition specificity of neoglycopolymers prepared by ring-opening metathesis polymerization[J]. Journal of the American Chemical Society 118 (9), 2297-2298.
    16. Matyjaszewski, K.; Xia, J. H. 2001, Atom transfer radical polymerization[J]. Chemical Reviews 101 (9), 2921-2990.
    17. Jiang, X. Z.; Housni, A.; Gody, G.; Boullanger, P.; Charreyre, M. T.; Delair, T.; Narain, R. 2010, Synthesis of Biotinylated alpha-D-Mannoside or N-Acetyl beta-D-Glucosaminoside Decorated Gold Nanoparticles: Study of Their Biomolecular Recognition with Con A and WGA Lectins[J]. Bioconjugate Chemistry 21 (3), 521-530.
    18. Narain, R.; Armes, S. P. 2002, Synthesis of low polydispersity, controlled-structure sugar methacrylate polymers under mild conditions without protecting group chemistry[J]. Chemical Communications (23), 2776-2777.
    19. Bernard, J.; Hao, X. J.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. 2006, Synthesis of various glycopolymer architectures via RAFT polymerization: From block copolymers to stars[J]. Biomacromolecules 7 (1), 232-238.
    20. Stuart, M. A. C.; Besseling, N. A. M.; Fokkink, R. G. 1998, Formation of micelles with complex coacervate cores[J]. Langmuir 14 (24), 6846-6849.
    21. van der Burgh, S.; de Keizer, A.; Stuart, M. A. C. 2004, Complex coacervation core micelles. Colloidal stability and aggregation mechanism[J]. Langmuir 20 (4), 1073-1084.
    22. Butun, V.; Billingham, N. C.; Armes, S. P. 1998, Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: Formation of micelles and reverse micelles in aqueous solution[J]. Journal of the American Chemical Society 120 (45), 11818-11819.
    23. Liu, S. Y.; Armes, S. P. 2002, Polymeric surfactants for the new millennium: A pH-responsive, zwitterionic, schizophrenic diblock copolymer[J]. Angewandte Chemie-International Edition 41 (8), 1413-1416.
    24. Zhang, J. Y.; Zhou, Y. M.; Zhu, Z. Y.; Ge, Z. S.; Liu, S. Y. 2008, Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via "click" chemistry[J]. Macromolecules 41 (4), 1444-1454.
    25. Luo, S. Z.; Liu, S. Y.; Xu, J.; Liu, H.; Zhu, Z. Y.; Jiang, M.; Wu, C. 2006, A stopped-flow kinetic study of the assembly of interpolymer complexes via hydrogen-bonding interactions[J]. Macromolecules 39 (13), 4517-4525.
    26. Kang, N.; Perron, M. E.; Prud'homme, R. E.; Zhang, Y. B.; Gaucher, G.; Leroux, J. C. 2005, Stereocomplex block copolymer micelles: Core-shell nanostructures with enhanced stability[J]. Nano Letters 5 (2), 315-319.
    27. Wang, F.; Zhang, J. Q.; Ding, X.; Dong, S. Y.; Liu, M.; Zheng, B.; Li, S. J.; Wu, L.; Yu, Y. H.; Gibson, H. W.; Huang, F. H. 2010, Metal Coordination Mediated Reversible Conversion between Linear and Cross-Linked Supramolecular Polymers[J]. Angewandte Chemie-International Edition 49 (6), 1090-1094.
    28. Ishizu, K.; Minematsu, S.; Fukutomi, T. 1991, Synthesis and Blend Morphology of Ba/Bc-Type Binary Graft-Copolymers Composed of Polyelectrolyte Trunks[J]. Journal of Applied Polymer Science 43 (11), 2107-2114.
    29. Harada, A.; Kataoka, K. 1995, Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block-Copolymers with Poly(Ethylene Glycol) Segments[J]. Macromolecules 28 (15), 5294-5299.
    30. Kabanov, A. V.; Vinogradov, S. V.; Suzdaltseva, Y. G.; Alakhov, V. Y. 1995, Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery[J]. Bioconjugate Chemistry 6 (6), 639-643.
    31. Lai, J. T.; Filla, D.; Shea, R. 2002, Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents[J]. Macromolecules 35 (18), 6754-6756.
    32. Stenzel, M. H.; Davis, T. P.; Fane, A. G. 2003, Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process[J]. Journal of Materials Chemistry 13 (9), 2090-2097.
    33. Shiomori, K.; Ivanov, A. E.; Galaev, I. Y.; Kawano, Y.; Mattiasson, B. 2004, Thermoresponsive properties of sugar sensitive copolymer of N-isopropylacrylamide and 3-(acrylamido)phenylboronic acid[J]. Macromolecular Chemistry and Physics 205 (1), 27-34.
    34. Bailey, R. C.; Nam, J. M.; Mirkin, C. A.; Hupp, J. T. 2003, Real-time multicolor DNA detection with chemoresponsive diffraction gratings and nanoparticle probes[J]. Journal of the American Chemical Society 125 (44), 13541-13547.
    35. Hu, J. M.; Liu, S. Y. 2010, Responsive Polymers for Detection and Sensing Applications: Current Status and Future Developments[J]. Macromolecules 43 (20), 8315-8330.
    36. Kim, J.; Nayak, S.; Lyon, L. A. 2005, Bioresponsive hydrogel microlenses[J]. Journal of the American Chemical Society 127 (26), 9588-9592.
    37. Kumar, A.; Srivastava, A.; Galaev, I. Y.; Mattiasson, B. 2007, Smart polymers: Physical forms and bioengineering applications[J]. Progress in Polymer Science 32 (10), 1205-1237.
    38. Malmsten, M.; Bysell, H.; Hansson, P. 2010, Biomacromolecules in microgels - Opportunities and challenges for drug delivery[J]. Current Opinion in Colloid & Interface Science 15 (6), 435-444.
    39. Motornov, M.; Roiter, Y.; Tokarev, I.; Minko, S. 2010, Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems[J]. Progress in Polymer Science 35 (1-2), 174-211.
    40. Nayak, S.; Lyon, L. A. 2004, Ligand-functionalized core/shell microgels with permselective shells[J]. Angewandte Chemie-International Edition 43 (48), 6706-6709.
    41. Nayak, S.; Lyon, L. A. 2005, Soft nanotechnology with soft nanoparticles[J]. Angewandte Chemie-International Edition 44 (47), 7686-7708.
    42. Nolan, C. M.; Reyes, C. D.; Debord, J. D.; Garcia, A. J.; Lyon, L. A. 2005, Phase transition behavior, protein adsorption, and cell adhesion resistance of poly(ethylene glycol) cross-linked microgel particles[J]. Biomacromolecules 6 (4), 2032-2039.
    43. Serpe, M. J.; Kim, J.; Lyon, L. A. 2004, Colloidal hydrogel microlenses[J]. Advanced Materials 16 (2), 184-187.
    44. Soppimath, K. S.; Tan, D. C. W.; Yang, Y. Y. 2005, pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery[J]. Advanced Materials 17 (3), 318-+.
    45. Tokarev, I.; Minko, S. 2010, Stimuli-Responsive Porous Hydrogels at Interfaces for Molecular Filtration, Separation, Controlled Release, and Gating in Capsules and Membranes[J]. Advanced Materials 22 (31), 3446-3462.
    46. Zhang, H.; Mardyani, S.; Chan, W. C. W.; Kumacheva, E. 2006, Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics[J].Biomacromolecules 7 (5), 1568-1572.
    47. Ge, H.; Ding, Y. W.; Ma, C. C.; Zhang, G. Z. 2006, Temperature-controlled release of diols from N-isopropylacrylamide-co-acrylamidophenylboronic acid microgels[J]. Journal of Physical Chemistry B 110 (41), 20635-20639.
    48. Perez-Alvarez, L.; Saez-Martinez, V.; Hernaez, E.; Katime, I. 2009, Novel pH- and Temperature-Responsive Methacrylamide Microgels[J]. Macromolecular Chemistry and Physics 210 (13-14), 1120-1126.
    49. Das, M.; Mardyani, S.; Chan, W. C. W.; Kumacheva, E. 2006, Biofunctionalized pH-responsive microgels for cancer cell targeting: Rational design[J]. Advanced Materials 18 (1), 80-83.
    50. Yang, J.; Liu, X. Y.; Yan, J.; Li, L.; Zha, L. S. 2009, pH/temperature dual stimuli responsive microgels based on interpenetrating polymer network structrue[J]. Acta Polymerica Sinica (7), 638-644.
    51. Debord, J. D.; Lyon, L. A. 2003, Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures[J]. Langmuir 19 (18), 7662-7664.
    52. Amalvy, J. I.; Wanless, E. J.; Li, Y.; Michailidou, V.; Armes, S. P.; Duccini, Y. 2004, Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates[J]. Langmuir 20 (21), 8992-8999.
    53. Garcia, A.; Marquez, M.; Cai, T.; Rosario, R.; Hu, Z. B.; Gust, D.; Hayes, M.; Vail, S. A.; Park, C. D. 2007, Photo-, thermally, and pH-responsive microgels[J]. Langmuir 23 (1), 224-229.
    54. Fujii, S.; Dupin, D.; Araki, T.; Armes, S. P.; Ade, H. 2009, First Direct Imaging of Electrolyte-Induced Deswelling Behavior of pH-Responsive Microgels in Aqueous Media Using Scanning Transmission X-ray Microscopy[J]. Langmuir 25 (5), 2588-2592.
    55. Hoare, T.; Pelton, R. 2004, Highly pH and temperature responsive microgels functionalized with vinylacetic acid[J]. Macromolecules 37 (7), 2544-2550.
    56. Yin, J.; Dupin, D.; Li, J. F.; Armes, S. P.; Liu, S. Y. 2008, pH-induced deswelling kinetics of sterically stabilized poly(2-vinylpyridine) microgels probed by stopped-flow light scattering[J]. Langmuir 24 (17), 9334-9340.
    57. Bromberg, L.; Temchenko, M.; Hatton, T. A. 2002, Dually responsive microgels from polyether-modified poly(acrylic acid): Swelling and drug loading[J]. Langmuir 18 (12), 4944-4952.
    58. Wu, S.; Hu, Y. C.; Liu, H. F.; Shi, Y. 2009, Loss of YY1 Impacts the Heterochromatic State and Meiotic Double-Strand Breaks during Mouse Spermatogenesis[J]. Molecular and CellularBiology 29 (23), 6245-6256.
    59. Li, C. H.; Liu, S. Y. 2010, Responsive nanogel-based dual fluorescent sensors for temperature and Hg2+ ions with enhanced detection sensitivity[J]. Journal of Materials Chemistry 20 (47), 10716-10723.
    60. Yin, J.; Hu, H. B.; Wu, Y. H.; Liu, S. Y. 2011, Thermo-and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels[J]. Polymer Chemistry 2 (2), 363-371.
    61. Yin, J.; Li, C. H.; Wang, D.; Liu, S. Y. 2010, FRET-Derived Ratiometric Fluorescent K+ Sensors Fabricated from Thermoresponsive Poly(N-isopropylacrylamide) Microgels Labeled with Crown Ether Moieties[J]. Journal of Physical Chemistry B 114 (38), 12213-12220.
    62. Wu, W. T.; Mitra, N.; Yan, E. C. Y.; Zhou, S. Q. 2010, Multifunctional Hybrid Nanogel for Integration of Optical Glucose Sensing and Self-Regulated Insulin Release at Physiological pH[J]. Acs Nano 4 (8), 4831-4839.
    63. Wu, W. T.; Zhou, T.; Shen, J.; Zhou, S. Q. 2009, Optical detection of glucose by CdS quantum dots immobilized in smart microgels[J]. Chemical Communications (29), 4390-4392.
    64. Shiino, D.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. 1994, A Self-Regulated Insulin Delivery System Using Boronic Acid Gel[J]. Journal of Intelligent Material Systems and Structures 5 (3), 311-314.
    65. Lapeyre, V.; Ancla, C.; Catargi, B.; Ravaine, V. 2008, Glucose-responsive microgels with a core-shell structure[J]. Journal of Colloid and Interface Science 327 (2), 316-323.
    66. Lapeyre, V.; Gosse, I.; Chevreux, S.; Ravaine, V. 2006, Monodispersed glucose-responsive microgels operating at physiological salinity[J]. Biomacromolecules 7 (12), 3356-3363.
    67. Lapeyre, V.; Renaudie, N.; Dechezelles, J. F.; Saadaoui, H.; Ravaine, S.; Ravaine, V. 2009, Multiresponsive Hybrid Microgels and Hollow Capsules with a Layered Structure[J]. Langmuir 25 (8), 4659-4667.
    68. Liu, P. X.; Luo, Q. F.; Guan, Y.; Zhang, Y. J. 2010, Drug release kinetics from monolayer films of glucose-sensitive microgel[J]. Polymer 51 (12), 2668-2675.
    69. Zhang, Y. J.; Guan, Y.; Zhou, S. Q. 2006, Synthesis and volume phase transitions of glucose-sensitive microgels[J]. Biomacromolecules 7 (11), 3196-3201.
    70. Luo, Q. F.; Liu, P. X.; Guan, Y.; Zhang, Y. J. 2010, Thermally Induced Phase Transition of Glucose-Sensitive Core-Shell Microgels[J]. Acs Applied Materials & Interfaces 2 (3), 760-767.
    71. Hoare, T.; Pelton, R. 2007, Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels[J]. Macromolecules 40 (3), 670-678.
    72. Hoare, T.; Pelton, R. 2008, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity[J]. Biomacromolecules 9 (2), 733-740.
    73. Shiino, D.; Murata, Y.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. 1994, Preparation and Characterization of a Glucose-Responsive Insulin-Releasing Polymer Device[J]. Biomaterials 15 (2), 121-128.
    74. Hassan, C. M.; Doyle, F. J.; Peppas, N. A. 1997, Dynamic behavior of glucose-responsive poly(methacrylic acid-g-ethylene glycol) hydrogels[J]. Macromolecules 30 (20), 6166-6173.
    75. Miyata, T.; Uragami, T.; Nakamae, K. 2002, Biomolecule-sensitive hydrogels[J]. Advanced Drug Delivery Reviews 54 (1), 79-98.
    76. Sierra, J. F.; Galban, J.; Castillo, J. R. 1997, Determination of glucose in blood based on the intrinsic fluorescence of glucose oxidase[J]. Analytical Chemistry 69 (8), 1471-1476.
    77. Sanz, V.; Galban, J.; de Marcos, S.; Castillo, J. R. 2003, Fluorometric sensors based on chemically modified enzymes - Glucose determination in drinks[J]. Talanta 60 (2-3), 415-423.
    78. Russell, R. J.; Pishko, M. V.; Gefrides, C. C.; McShane, M. J.; Cote, G. L. 1999, A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel[J]. Analytical Chemistry 71 (15), 3126-3132.
    79. Miyata, T.; Jikihara, A.; Nakamae, K.; Hoffman, A. S. 1996, Preparation of poly(2-glucosyloxyethyl methacrylate)concanavalin A complex hydrogel and its glucose-sensitivity[J]. Macromolecular Chemistry and Physics 197 (3), 1135-1146.
    80. Traitel, T.; Cohen, Y.; Kost, J. 2000, Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions[J]. Biomaterials 21 (16), 1679-1687.
    81. Lim, C. K.; Lee, Y. D.; Na, J.; Oh, J. M.; Her, S.; Kim, K.; Choi, K.; Kim, S.; Kwon, I. C. 2010, Chemiluminescence-Generating Nanoreactor Formulation for Near-Infrared Imaging of Hydrogen Peroxide and Glucose Level in vivo[J]. Advanced Functional Materials 20 (16), 2644-2648.
    82. Miyata, T.; Jikihara, A.; Nakamae, K.; Hoffman, A. S. 2004, Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose[J]. Journal of Biomaterials Science-Polymer Edition 15 (9), 1085-1098.
    83. Kitano, H.; Kuwayama, M.; Kanayama, N.; Ohno, K. 1998, Interfacial recognition of sugars by novel boronic acid-carrying amphiphiles prepared with a lipophilic radical initiator[J]. Langmuir 14 (1), 165-170.
    84. Arimori, S.; Bell, M. L.; Oh, C. S.; Frimat, K. A.; James, T. D. 2001, Modular fluorescence sensors for saccharides[J]. Chemical Communications (18), 1836-1837.
    85. Kim, K. T.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; van Hest, J. C. M. 2009, PolymericMonosaccharide Receptors Responsive at Neutral pH[J]. Journal of the American Chemical Society 131 (39), 13908-+.
    86. Uguzdogan, E.; Kayi, H.; Denkbas, E. B.; Patir, S.; Tuncel, A. 2003, Stimuli-responsive properties of aminophenylboronic acid-carrying thermosensitive copolymers[J]. Polymer International 52 (5), 649-657.
    87. Matsumoto, A.; Ikeda, S.; Harada, A.; Kataoka, K. 2003, Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions[J]. Biomacromolecules 4 (5), 1410-1416.
    88. Ivanov, A. E.; Shiomori, K.; Kawano, Y.; Galaev, I. Y.; Mattiasson, B. 2006, Effects of polyols, saccharides, and glycoproteins on thermoprecipitation of phenylboronate-containing copolymers[J]. Biomacromolecules 7 (4), 1017-1024.
    89. Aoki, T.; Nagao, Y.; Sanui, K.; Ogata, N.; Kikuchi, A.; Sakurai, Y.; Kataoka, K.; Okano, T. 1996, Glucose-sensitive lower critical solution temperature changes of copolymers composed of N-isopropylacrylamide and phenylboronic acid moieties[J]. Polymer Journal 28 (4), 371-374.
    90. Elmas, B.; Senel, S.; Tuncel, A. 2007, A new thermosensitive fluorescent probe for diol sensing: Poly(N-isopropylacrylamide-co-vinylphenylboronic acid)-alizarin red S complex[J]. Reactive & Functional Polymers 67 (2), 87-96.
    91. Shibata, H.; Heo, Y. J.; Okitsu, T.; Matsunaga, Y.; Kawanishi, T.; Takeuchi, S. 2010, Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring[J]. Proceedings of the National Academy of Sciences of the United States of America 107 (42), 17894-17898.
    92. Kataoka, K.; Miyazaki, H.; Bunya, M.; Okano, T.; Sakurai, Y. 1998, Totally synthetic polymer gels responding to external glucose concentration: Their preparation and application to on-off regulation of insulin release[J]. Journal of the American Chemical Society 120 (48), 12694-12695.
    93. Matsumoto, A.; Kurata, T.; Shiino, D.; Kataoka, K. 2004, Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety[J]. Macromolecules 37 (4), 1502-1510.
    94. Zenkl, G.; Klimant, I. 2009, Fluorescent acrylamide nanoparticles for boronic acid based sugar sensing - from probes to sensors[J]. Microchimica Acta 166 (1-2), 123-131.
    95. Zenkl, G.; Mayr, T.; Khmant, I. 2008, Sugar-responsive fluorescent nanospheres[J]. Macromolecular Bioscience 8 (2), 146-152.
    96. Lee, Y. J.; Pruzinsky, S. A.; Braun, P. V. 2004, Glucose-sensitive inverse opal hydrogels: Analysis of optical diffraction response[J]. Langmuir 20 (8), 3096-3106.
    97. Wang, B. L.; Ma, R. J.; Liu, G.; Liu, X. J.; Gao, Y. H.; Shen, J. Y.; An, Y. L.; Shi, L. Q. 2010, Effect of Coordination on the Glucose-Responsiveness of PEG-b-(PAA-co-PAAPBA) Micelles[J]. Macromolecular Rapid Communications 31 (18), 1628-1634.
    98. Kataoka, K.; Miyazaki, H.; Okano, T.; Sakurai, Y. 1994, Sensitive Glucose-Induced Change of the Lower Critical Solution Temperature of Poly[N,N-Dimethylacrylamide-Co-3- (Acrylamido)Phenyl-Boronic Acid] in Physiological Saline[J]. Macromolecules 27 (4), 1061-1062.
    99. Jin, Q. A.; Lv, L. P.; Liu, G. Y.; Xu, J. P.; Ji, J. A. 2010, Phenylboronic acid as a sugar- and pH-responsive trigger to tune the multiple micellization of thermo-responsive block copolymer[J]. Polymer 51 (14), 3068-3074.
    100. Shiino, D.; Murata, Y.; Kubo, A.; Kim, Y. J.; Kataoka, K.; Koyama, Y.; Kikuchi, A.; Yokoyama, M.; Sakurai, Y.; Okano, T. 1995, Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH[J]. Journal of Controlled Release 37 (3), 269-276.
    101. Matsumoto, A.; Yamamoto, K.; Yoshida, R.; Kataoka, K.; Aoyagi, T.; Miyahara, Y. 2010, A totally synthetic glucose responsive gel operating in physiological aqueous conditions[J]. Chemical Communications 46 (13), 2203-2205.
    102. Wang, L.; Liu, M. Z.; Gao, C. M.; Ma, L. W.; Cui, D. P. 2010, A pH-, thermo-, and glucose-, triple-responsive hydrogels: Synthesis and controlled drug delivery[J]. Reactive & Functional Polymers 70 (3), 159-167.
    103. Gan, D. J.; Lyon, L. A. 2001, Interfacial nonradiative energy transfer in responsive core-shell hydrogel nanoparticles[J]. Journal of the American Chemical Society 123 (34), 8203-8209.
    104. Jones, C. D.; McGrath, J. G.; Lyon, L. A. 2004, Characterization of cyanine dye-labeled poly(N-isopropylacrylamide) core/shell microgels using fluorescence resonance energy transfer[J]. Journal of Physical Chemistry B 108 (34), 12652-12657.
    105. Li, C. H.; Zhang, Y. X.; Hu, J. M.; Cheng, J. J.; Liu, S. Y. 2010, Reversible Three-State Switching of Multicolor Fluorescence Emission by Multiple Stimuli Modulated FRET Processes within Thermoresponsive Polymeric Micelles[J]. Angewandte Chemie-International Edition 49 (30), 5120-5124.
    106. Hu, J. M.; Li, C. H.; Liu, S. Y. 2010, Hg2+-Reactive Double Hydrophilic Block Copolymer Assemblies as Novel Multifunctional Fluorescent Probes with Improved Performance[J]. Langmuir 26 (2), 724-729.
    107. Kanekiyo, Y.; Sano, M.; Iguchi, R.; Shinkai, S. 2000, Novel nucleotide-responsive hydrogels designed from copolymers of boronic acid and cationic units and their applications as a QCMresonator system to nucleotide sensing[J]. Journal of Polymer Science Part a-Polymer Chemistry 38 (8), 1302-1310.
    108. Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. 2003, Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans[J]. Analytical Chemistry 75 (21), 5926-5935.
    1. Nagano, S.; Kinumatsu, T.; Ohnuma, Y.; Seki, T. 2011, "Inversed" Surface Micelle Array Fabrication of an Amphiphilic Block Copolymer on Water Surface[J]. Journal of Nanoscience and Nanotechnology 11 (4), 2973-2978.
    2. Morikawa, H.; Kotaki, Y.; Mihara, R.; Kiraku, Y.; Ichimura, S.; Motokucho, S. 2010, Photochemical Formation of a Core-crosslinked Micelle using an Anthracene-containing Amphiphilic Copolymer[J]. Chemistry Letters 39 (7), 682-683.
    3. Liu, J. H.; Hsieh, F. M. 2010, Fabrication of Polycrystalline Silver Nanowires Via Reversed Micelle with Amphiphilic Diblock Copolymer and Aluminum Oxide Template at Controlled Temperature[J]. Polymer Composites 31 (8), 1352-1359.
    4. Du, B. Y.; Mei, A. X.; Yang, Y.; Zhang, Q. F.; Wang, Q.; Xu, J. T.; Fan, Z. Q. 2010, Synthesis and micelle behavior of (PNIPAm-PtBA-PNIPAm)(m) amphiphilic multiblock copolymer[J]. Polymer 51 (15), 3493-3502.
    5. Chen, Z. Q.; He, C. C.; Li, F. B.; Tong, L.; Liao, X. Z.; Wang, Y. 2010, Responsive Mice liar Films of Amphiphilic Block Copolymer Micelles: Control on Micelle Opening and Closing[J]. Langmuir 26 (11), 8869-8874.
    6. Qu, T. H.; Wang, A. R.; Yuan, J. F.; Shi, J. H.; Gao, Q. Y. 2009, Preparation and characterizationof thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release[J]. Colloids and Surfaces B-Biointerfaces 72 (1), 94-100.
    7. Hussain, H.; Tan, B. H.; Gudipati, C. S.; He, C. B.; Liu, Y.; Davis, T. P. 2009, Micelle Formation of Amphiphilic Polystyrene-b-poly(N-vinylpyrrolidone) Diblock Copolymer in Methanol and Water-Methanol Binary Mixtures[J]. Langmuir 25 (10), 5557-5564.
    8. Yang, Z.; Liu, J. H.; Huang, Z. P.; Shi, W. F. 2007, Crystallization behavior and micelle formation of star-shaped amphiphilic block copolymer based on dendritic poly(ether-amide)[J]. European Polymer Journal 43 (6), 2298-2307.
    9. Kondo, S.; Mori, H.; Sasai, Y.; Kuzuya, M. 2007, Conventional synthesis of amphiphilic block copolymer utilized for polymeric micelle by mechanochemical solid-state polymerization[J]. Chemical & Pharmaceutical Bulletin 55 (3), 389-392.
    10. Jeong, K. H.; Kim, Y. J. 2006, Polymeric micelle using poly((R)-3-hydroxybutyric acid)/poly(ethylene glycol) amphiphilic block copolymer for drug delivery system[J]. Polymer-Korea 30 (6), 512-518.
    11. Humpolickova, J.; Prochazka, K.; Hof, M. 2003, Octadecylrhodamine B as a specific micelle-binding fluorescent tag for fluorescence correlation spectroscopy studies of amphiphilic water-soluble block copolymer micelles. Spectroscopic behavior in aqueous media[J]. Collection of Czechoslovak Chemical Communications 68 (11), 2105-2119.
    12. Matsuoka, H.; Matsutani, M.; Mouri, E.; Matsumoto, K. 2003, Polymer micelle formation without Gibbs monolayer formation: Synthesis and characteristic behavior of an amphiphilic diblock copolymer having strong acid groups[J]. Macromolecules 36 (14), 5321-5330.
    13. Humpolickova, J.; Prochazka, K.; Hof, M.; Tuzar, Z.; Spirkova, M. 2003, Fluorescence correlation spectroscopy using octadecylrhodamine B as a specific micelle-binding fluorescent tag; Light scattering and tapping mode atomic force microscopy studies of amphiphilic water-soluble block copolymer micelles[J]. Langmuir 19 (10), 4111-4119.
    14. Chen, W. X.; Fan, X. D.; Huang, Y.; Liu, Y. Y.; Sun, L. 2009, Synthesis and characterization of a pentaerythritol-based amphiphilic star block copolymer and its application in controlled drug release[J]. Reactive & Functional Polymers 69 (2), 97-104.
    15. Chen, X. N.; Qi, Z. Q.; Huang, Y. Q.; Pelton, R.; Ghosh, R. 2008, Surfaces modified by amphiphilic copolymer: Preparation and application[J]. Multi-Functional Materials and Structures, Pts 1 and 2 47-50, 1311-1314.
    16. Otman, O.; Boullanger, P.; Lafont, D.; Hamaide, T. 2008, New Amphiphilic Glycopolymers Based on a Polycaprolactone-maleic anhydride Copolymer Backbone: Characterization by N-15 NMR and Application to Colloidal Stabilization of Nanoparticles[J]. MacromolecularChemistry and Physics 209 (23), 2410-2422.
    17. Gong, F.; Han, Y. L.; He, P. X. 2010, Synthesis, Characterization and Application of Amphiphilic Copolymer Poly(vinyl alcohol)-g-Poly(butyl acrylate)[J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry 47 (4), 318-323.
    18. Saindane, N. S.; Bramhane, D. M.; Vavia, P. R. 2011, Synthesis and characterization of amphiphilic star copolymer of beta-cyclodextrin and polypropylene oxide and their application as nanocarriers[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry 69 (3-4), 383-392.
    19. Wang, R. M.; Wang, J. F.; Lv, W. H.; Guo, J. F.; He, Y. F.; Jiang, M. L. 2011, Preparation of Amphiphilic Acrylic Acid Copolymer and Its Application in Humidity-Sensitive Coatings[J]. Journal of Applied Polymer Science 120 (5), 3109-3117.
    20. Kim, T. A.; Jo, W. H. 2010, Synthesis of Nonfluorinated Amphiphilic Rod-Coil Block Copolymer and Its Application to Proton Exchange Membrane[J]. Chemistry of Materials 22 (12), 3646-3652.
    21. Lee, C. T.; Huang, C. P.; Lee, Y. D. 2007, Synthesis and characterizations of amphiphilic poly(L-lactide)-grafted chondroitin sulfate copolymer and its application as drug carrier[J]. Biomolecular Engineering 24 (1), 131-139.
    22. Colfen, H. 2001, Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers[J]. Macromolecular Rapid Communications 22 (4), 219-252.
    23. Butun, V.; Billingham, N. C.; Armes, S. P. 1998, Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: Formation of micelles and reverse micelles in aqueous solution[J]. Journal of the American Chemical Society 120 (45), 11818-11819.
    24. Rodriguez-Hernandez, J.; Lecommandoux, S. 2005, Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers[J]. Journal of the American Chemical Society 127 (7), 2026-2027.
    25. Maeda, Y.; Mochiduki, H.; Ikeda, I. 2004, Hydration changes during thermosensitive association of a block copolymer consisting of LCST and UCST blocks[J]. Macromolecular Rapid Communications 25 (14), 1330-1334.
    26. Arotcarena, M.; Heise, B.; Ishaya, S.; Laschewsky, A. 2002, Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity[J]. Journal of the American Chemical Society 124 (14), 3787-3793.
    27. Virtanen, J.; Arotcarena, M.; Heise, B.; Ishaya, S.; Laschewsky, A.; Tenhu, H. 2002,Dissolution and aggregation of a poly(NIPA-block-sulfobetaine) copolymer in water and saline aqueous solutions[J]. Langmuir 18 (14), 5360-5365.
    28. Andre, X.; Zhang, M. F.; Muller, A. H. E. 2005, Thermo- and pH-responsive micelles of poly(acrylic acid)-block-poly(N,N-diethylacrylamide)[J]. Macromolecular Rapid Communications 26 (7), 558-563.
    29. Schilli, C. M.; Zhang, M. F.; Rizzardo, E.; Thang, S. H.; Chong, Y. K.; Edwards, K.; Karlsson, G.; Muller, A. H. E. 2004, A new double-responsive block copolymer synthesized via RAFT polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid)[J]. Macromolecules 37 (21), 7861-7866.
    30. Gil, E. S.; Hudson, S. M. 2004, Stimuli-reponsive polymers and their bioconjugates[J]. Progress in Polymer Science 29 (12), 1173-1222.
    31. Alarcon, C. D. H.; Pennadam, S.; Alexander, C. 2005, Stimuli responsive polymers for biomedical applications[J]. Chemical Society Reviews 34 (3), 276-285.
    32. Dai, S.; Ravi, P.; Tam, K. C.; Mao, B. W.; Gang, L. H. 2003, Novel pH-responsive amphiphilic diblock copolymers with reversible micellization properties[J]. Langmuir 19 (12), 5175-5177.
    33. Gan, L. H.; Ravi, P.; Mao, B. W.; Tam, K. C. 2003, Controlled/living polymerization of 2-(diethylamino) ethyl methacrylate and its block copolymer with tert-butyl methacrylate by atom transfer radical polymerization[J]. Journal of Polymer Science Part a-Polymer Chemistry 41 (17), 2688-2695.
    34. Butun, V.; Liu, S.; Weaver, J. V. M.; Bories-Azeau, X.; Cai, Y.; Armes, S. P. 2006, A brief review of 'schizophrenic' block copolymers[J]. Reactive & Functional Polymers 66 (1), 157-165.
    35. Liu, S. Y.; Weaver, J. V. M.; Save, M.; Armes, S. P. 2002, Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles[J]. Langmuir 18 (22), 8350-8357.
    36. Liu, S. Y.; Ma, Y. H.; Armes, S. P. 2002, Direct verification of the core-shell structure of shell cross-linked micelles in the solid state using X-ray photoelectron spectroscopy[J]. Langmuir 18 (21), 7780-7784.
    37. Liu, S. Y.; Weaver, J. V. M.; Tang, Y. Q.; Billingham, N. C.; Armes, S. P.; Tribe, K. 2002, Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers[J]. Macromolecules 35 (16), 6121-6131.
    38. Liu, S. Y.; Armes, S. P. 2002, Polymeric surfactants for the new millennium: A pH-responsive, zwitterionic, schizophrenic diblock copolymer[J]. Angewandte Chemie-International Edition 41(8), 1413-1416.
    39. Kamachi, M.; Kurihara, M.; Stille, J. K. 1972, Synthesis of Block Polymers for Desalination Membranes. Preparation of Block Copolymers of 2-Vinylpyridine and Methacrylic Acid or Acrylic Acid[J]. Macromolecules 5 (2), 161~167.
    40. Antonietti, M.; Breulmann, M.; Goltner, C. G.; Colfen, H.; Wong, K. K. W.; Walsh, D.; Mann, S. 1998, Inorganic/organic mesostructures with complex architectures: Precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers[J]. Chemistry-a European Journal 4 (12), 2493~2500.
    41. Bronstein, L. M.; Sidorov, S. N.; Gourkova, A. Y.; Valetsky, P. M.; Hartmann, J.; Breulmann, M.; Colfen, H.; Antonietti, M. 1998, Interaction of metal compounds with 'double-hydrophilic' block copolymers in aqueous medium and metal colloid formation[J]. Inorganica Chimica Acta 280 (1-2), 348~354.
    42. Colfen, H.; Antonietti, M. 1998, Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers[J]. Langmuir 14 (3), 582~589.
    43. Kabanov, A. V.; Kabanov, V. A. 1998, Interpolyelectrolyte and block ionomer complexes for gene delivery: Physicochemical aspects[J]. Advanced Drug Delivery Reviews 30 (1-3), 49~60.
    44. Naik, R. M.; Singh, R.; Asthana, A. 2010, The Kinetics and Mechanism of Ligand Substitution Reaction of Aquapentacyanoruthenate(II) with Nitroso-R-salt and alpha-Nitroso-beta-Naphthol in Presence of Anionic Surfactant Micelle[J]. Journal of Dispersion Science and Technology 31 (2), 216-225.
    45. Brinkmann, U.; Neumann, E.; Robinson, B. H. 1998, Thermodynamics and kinetics of vesicle <-> mixed micelle transitions of sodium tridecyl-6-benzene sulfonate sodium dodecyl sulfate surfactant systems[J]. Journal of the Chemical Society-Faraday Transactions 94 (9), 1281-1285.
    46. Pirmedova, N. A.; Lezhnev, N. B.; Ovlyakuliev, B. 1995, Kinetics of micelle formation of carboxymethylated surfactant in aqueous solutions[J]. Acousto-Optics and Applications Ii 2643, 351-353.
    47. Aniansson, E. A. G.; Wall, S. N.; Almgren, M.; Hoffmann, H.; Kielmann, I.; Ulbricht, W.; Zana, R.; Lang, J.; Tondre, C. 1976, Theory of Kinetics of Micellar Equilibria and Quantitative Interpretation of Chemical Relaxation Studies of Micellar Solutions of Ionic Surfactants[J]. Journal of Physical Chemistry 80 (9), 905~922.
    48. Halperin, A.; Alexander, S. 1989, Polymeric micelles: their relaxation kinetics[J]. Macromolecules 22 (5), 2403-2412.
    49. Aniansson, E. A. G.; Wall, S. N. 1975, Correction and Improvement of on Kinetics ofStep-Wise Micelle Association by Aniansson,Eag and Wall,Sn[J]. Journal of Physical Chemistry 79 (8), 857~858.
    50. Lehmann, S.; Busse, G.; Kahlweit, M.; Stolle, R.; Simon, F.; Marowsky, G. 1995, Surfactant Aggregation and Micellization Studied by Interfacial-Tension and Optical 2nd-Harmonic Generation[J]. Langmuir 11 (4), 1174-1177.
    51. Kahlweit, M. 1982, Kinetics of Formation of Association Colloids[J]. Journal of Colloid and Interface Science 90 (1), 92~99.
    52. Lessner, E.; Teubner, M.; Kahlweit, M. 1981, Relaxation Experiments in Aqueous-Solutions of Ionic Micelles .1. Theory and Experiments on the System H2o-Sodium Tetradecyl Sulfate-Naclo4[J]. Journal of Physical Chemistry 85 (11), 1529~1536.
    53. Halperin, A.; Alexander, S. 1989, Polymeric Micelles - Their Relaxation Kinetics[J]. Macromolecules 22 (5), 2403~2412.
    54. Hecht, E.; Hoffmann, H. 1995, Kinetic and Calorimetric Investigations on Micelle Formation of Block-Copolymers of the Poloxamer Type[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects 96 (1-2), 181~197.
    55. Goldmints, I.; Holzwarth, J. F.; Smith, K. A.; Hatton, T. A. 1997, Micellar dynamics in aqueous solutions of PEO-PPO-PEO block copolymers[J]. Langmuir 13 (23), 6130~6134.
    56. Waton, G.; Michels, B.; Zana, R. 2001, Dynamics of block copolymer micelles in aqueous solution[J]. Macromolecules 34 (4), 907~910.
    57. Kositza, M. J.; Bohne, C.; Alexandridis, P.; Hatton, T. A.; Holzwarth, J. F. 1999, Dynamics of micro- and macrophase separation of amphiphilic block-copolymers in aqueous solution[J]. Macromolecules 32 (17), 5539~5551.
    58. Goldmints, I.; vonGottberg, F. K.; Smith, K. A.; Hatton, T. A. 1997, Small-angle neutron scattering study of PEO-PPO-PEO micelle structure in the unimer-to-micelle transition region[J]. Langmuir 13 (14), 3659~3664.
    59. Michels, B.; Waton, G.; Zana, R. 1997, Dynamics of micelles of poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) block copolymers in aqueous solutions[J]. Langmuir 13 (12), 3111~3118.
    60. Waton, G.; Michels, B.; Zana, R. 1999, Dynamics of micelles of polyethyleneoxide-polypropyleneoxide-polyethyleneoxide block copolymers in aqueous solutions[J]. Journal of Colloid and Interface Science 212 (2), 593~596.
    61. Guragain, S.; Bastakoti, B. P.; Nakashima, K. 2010, Schizophrenic micellization of poly(ethylene oxide-b-methacrylic acid) induced by phosphate and calcium ions[J]. Journal of Colloid and Interface Science 350 (1), 63-68.
    62. Feng, C.; Li, Y. J.; Yang, D.; Li, Y. G.; Hu, J. H.; Zhai, S. J.; Lu, G. L.; Huang, X. Y. 2010, Synthesis of Well-Defined PNIPAM-b-(PEA-g-P2VP) Double Hydrophilic Graft Copolymer via Sequential SET-LRP and ATRP and Its "Schizophrenic" Micellization Behavior in Aqueous Media[J]. Journal of Polymer Science Part a-Polymer Chemistry 48 (1), 15-23.
    63. Chang, C.; Wei, H.; Feng, J.; Wang, Z. C.; Wu, X. J.; Wu, D. Q.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. 2009, Temperature and pH Double Responsive Hybrid Cross-Linked Micelles Based on P(NIPAAm-co-MPMA)-b-P(DEA): RAFT Synthesis and "Schizophrenic" Micellization[J]. Macromolecules 42 (13), 4838-4844.
    64. Rao, J. Y.; Luo, Z. F.; Ge, Z. S.; Liu, H.; Liu, S. Y. 2007, "Schizophrenic" micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer[J]. Biomacromolecules 8 (12), 3871-3878.
    65. Ge, Z. S.; Cai, Y. L.; Yin, J.; Zhu, Z. Y.; Rao, J. Y.; Liu, S. Y. 2007, Synthesis and 'Schizophrenic' micellization of double hydrophilic AB(4) miktoarm star and AB diblock copolymers: Structure and kinetics of micellization[J]. Langmuir 23 (3), 1114-1122.
    66. Wang, Y. M.; Mattice, W. L.; Napper, D. H. 1993, Simulation of the Formation of Micelles by Diblock Copolymers under Weak Segregation[J]. Langmuir 9 (1), 66~70.
    67. Esselink, F. J.; Dormidontova, E. E.; Hadziioannou, G. 1998, Redistribution of block copolymer chains between mixed micelles in solution[J]. Macromolecules 31 (15), 4873~4878.
    68. Esselink, F. J.; Dormidontova, E.; Hadziioannou, G. 1998, Evolution of block copolymer micellar size and structure evidenced with cryo electron microscopy[J]. Macromolecules 31 (9), 2925~2932.
    69. Dormidontova, E. E. 1999, Micellization kinetics in block copolymer solutions: Scaling model[J]. Macromolecules 32 (22), 7630~7644.
    70. Nyrkova, I. A.; Semenov, A. N. 2005, On the theory of aggregation and micellization: PEO-PVP copolymer in water[J]. Faraday Discussions 128, 113~127.
    71. Nyrkova, I. A.; Semenov, A. N. 2005, On the theory of micellization kinetics[J]. Macromolecular Theory and Simulations 14 (9), 569~585.
    72. Bednar, B.; Edwards, K.; Almgren, M.; Tormod, S.; Tuzar, Z. 1988, Rates of Association and Dissociation of Block Copolymer Micelles - Light-Scattering Stopped-Flow Measurements[J]. Makromolekulare Chemie-Rapid Communications 9 (12), 785~790.
    73. Honda, C.; Abe, Y.; Nose, T. 1996, Relaxation kinetics of micellization in micelle-forming block copolymer in selective solvent[J]. Macromolecules 29 (21), 6778~6785.
    74. Honda, C.; Hasegawa, Y.; Hirunuma, R.; Nose, T. 1994, Micellization Kinetics of Block-Copolymers in Selective Solvent[J]. Macromolecules 27 (26), 7660~7668.
    75. Zhu, Z. Y.; Xu, J.; Zhou, Y. M.; Jiang, X. Z.; Armes, S. P.; Liu, S. Y. 2007, Effect of salt on the micellization kinetics of pH-responsive ABC triblock copolymers[J]. Macromolecules 40 (17), 6393-6400.
    76. Zhu, Z. Y.; Armes, S. P.; Liu, S. Y. 2005, pH-induced micellization kinetics of ABC triblock copolymers measured by stopped-flow light scattering[J]. Macromolecules 38 (23), 9803-9812.
    77. Weaver, J. V. M.; Armes, S. P.; Butun, V. 2002, Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer[J]. Chemical Communications (18), 2122-2123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700