复杂网络中若干模型上的传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂网络研究已经渗透到数理科学、生命科学和工程科学等众多不同的领域,成为近年来的一个研究热点。在复杂网络研究中,复杂网络的网络模型和其上的传播特性是其中的两个重要研究方向。在过去的几年里,学者们在这两个方面作了大量的研究,提出了许多切合实际的网络模型和传播模型。虽然取得了丰硕的成果,但是还有很多需要研究和解决的问题。本论文将运用统计物理、运筹学以及计算机仿真等方法,对复杂网络模型和网络上的传播特性两个方面进行研究。主要内容和创新之处概述如下:
     1、研究局域世界网络中谣言传播的特性
     谣言是现实社会中一种非常普遍的现象,在突发事件、乃至各种危机中作用不可低估。局域世界是很多实际网络中普遍存在的结构,例如在世界贸易网中,许多国家都着重于加强与各自区域经济合作组织(包括欧洲联盟、东南亚国家联盟、北美自由贸易区等等)内部的国家之间的经济合作和贸易关系。在人类社会网络中,每个人实际上也生活在各自的局域世界中,有自己的朋友圈。利用两个衡量谣言传播能力的指标来考察谣言在局域世界网络中的传播特性。计算机仿真结果表明,在传播概率不变的情况下,局域世界规模和免疫概率都对谣言传播具有非常重要的影响。
     2、提出一个新的带有偏好的信息传播模型,研究其在小世界网络和无标度网络中的传播特性
     偏好是决策分析中的一个重要依据,决策通常是以个人的偏好为基础的。对于朋友提供的同一条信息,有的人感兴趣从而愿意传播,有的人不感兴趣而不愿意传播。也就是说对于同一条信息人们是否感兴趣并且传播与他们的偏好有关,而偏好程度可以用效用函数值来进行量化。文中将效用函数引入信息传播中,提出了一个新的带有偏好的信息传播模型。利用计算机仿真来研究在小世界网络和无标度网络中信息传播的特性,主要揭示了效用值与信息传播能力的关系。
     3、提出三个新的传染病传播模型,研究其在小世界网络和无标度网络中的传播特性
     真实流行病学中康复个体的免疫力强弱不同,有些康复个体会失去全部免疫力变成易感个体,但是也有些康复个体保留部分的免疫力(即免疫力减弱)变成低易感个体,低易感个体如果和感染个体接触不会马上被感染,只是失去这部分免疫力变成易感个体。针对这种感染机制,首先提出了一种新的符合实际的传染病传播模型——具有低易感的传染病模型(即SIRSLS模型)。运用平均场方法推导出该模型在小世界网络和无标度网络中的传播阈值。小世界网络中具有非零的传播阈值,而对于网络规模无限大的无标度网络,传播阈值为零。另一方面在传染病的传播过程中每个时刻每个节点不可能与其所有邻点接触,假设节点具有相同的传染能力,又提出两个新的传染病传播模型——传染能力相同的SIRS模型和传染能力相同的SIRSLS模型。运用平均场方法推导出这两个模型在无标度网络中的传播阈值。不同于SIRSLS模型,对于这两个模型,即使对于网络规模无限大的无标度网络,仍存在非零的传播阈值。通过对传染病传播过程的仿真研究,发现理论结果和仿真结果都吻合得很好。
     4、提出一个新的按边权择优的加权局域世界网络模型,并且研究该网络中的传染病传播特性
     复杂网络模型是模拟和研究现实网络的抽象对象,包括无权网络模型和加权网络模型。无权网络模型中只是说明节点之间边的存在性,而每条边的重要性都被认为是相同的,这一点与现实网络并不完全相符,例如,科学家合作网络中,即使有合作关系,不同的合作者合作的次数是不一样的;航空网中,即使有机场,不同机场间航班的载客量也是有区别的。因此,加权网络模型能更好地描述真实网络。考虑到科学家合作网络中密集的合作成果也会吸引更多的研究者加入,也就是说是边而不是节点吸引了新的连接,提出了一个新的按边权择优的加权局域世界网络模型。利用平均场方法解析推导出边权分布、点强度分布和度分布,并且计算机仿真得到的结果和解析结果吻合。更重要的是构造的新网络模型的边权可以很好地模拟线虫神经网络和在线社会网络这两种实证网络。最后分析了该网络中传染病传播的特性。
The research of complex networks has penetrated into many different fields includingMathematical and Physical Sciences, Life Sciences and Engineering Sciences and has become ahot research topic in recent years. There are two important research directions in complexnetworks----network models and spreading properties on networks. In the past few years,researchers have carried out considerable studies on the two directions and proposed manypractical network models and spreading models. Although fruitful achievements have been made,many problems are still to be studied and solved. In this paper, complex network models andspreading properties on networks are studied by using statistical physics, operational researchand computer simulation. The main contents and originalities of this paper can be summarized asfollows:
     1. Studing the rumor spreading properties on the local-world network
     Rumor is a very universal phenomenon in real society and its effect cannot beunderestimated in emergency and many crises. A local-world is a ubiquitous structure in manyrealistic networks. For example, in the World Trade Web, many countries emphatically acceleratetheir economy collaborations in various regional economy cooperative organizations (such as theEuropean Union, Association of Southeast Asian Nations, North America Free Trade Area, etc).And in human social, in fact everyone lives in the local-world of their own and has their owncircle of friends. The rumor spreading properties on the local-world network are studied by usingtwo indexes which measure the rumor spreading ability. The results indicate that the local-worldscale and the immune probability both play important roles in rumor propagation under the fixedtransmission probability.
     2. Proposing a new information spreading model with preference and studing the spreadingproperties on small-world networks and scale-free networks
     Preference is very important and decisions are usually based on the personal preference. For the same information offered by a certain friend, some people are interested in it and are willingto spread it, but some people are not interested in it and are not willing to spread it. That is to say,whether people are interested in and propagate the information depends on their preferences,while the extent can be quantified by using the utility function value. In this paper the utilityfunction is introduced to the information dissemination and a new information spreading modelwith preference is put forward. The information spreading properties on small-world networksand scale-free networks are studied by computer simulation. The relationship between the utilityvalue and the information spreading ability is revealed mainly.
     3. Proposing three new epidemic spreading models and studing the spreading properties onsmall-world networks and scale-free networks
     In real epidemiology, the immunity of removed individual is different. Some removedindividuals will lose all the immunity and become susceptible individuals, but some removedindividuals will retain partial immunity (i.e., weakened immunity) and become lowersusceptible individuals. A lower susceptible individual will not be infected immediately if itmakes contact with infected individuals. It just loses the partial immunity and becomessusceptible individual. First of all, based on this mechanism of infection, a new practicalepidemic spreading model—epidemic model with lower susceptibility (i.e., SIRSLS model) isproposed. The epidemic threshold of this model on small-world networks and scale-freenetworks are deduced by using the mean field method. There exists a nonzero epidemicthreshold on small-world networks and the threshold is null if the size of scale-free networks issufficiently large. For another, in the process of epidemic spreading, each individual will notcontact all its neighbors once at each time step. Thus supposed that every individual has thesame infectivity, two new epidemic spreading models—SIRS model with identical infectivityand SIRSLS model with identical infectivity are proposed. The epidemic thresholds of the twomodels on scale-free networks are deduced through the mean field method. Different formSIRSLS model, the thresholds of the two models are nonzero even if the size of scale-freenetworks is sufficiently large. Through the computer simulation research on epidemic spreadingprocess, we find that the theoretical results and the simulation results are in good agreement.
     4. Proposing a new weighted local-world network evolving model based on the edgepreferential selection and studing the epidemic spreading properties on this network
     Complex network model is an abstract object to simulate and study realistic networkswhich including unweighted network model and weighted network model. In the unweightednetwork model, only the existence of edges between nodes is showed, but the important of eachedge is known as identical. It is not correspond exactly to the realistic networks. For instance, inthe scientific collaboration network, even with the cooperation relations, the number ofcoauthored publications of different parters is unequal and in the airline transportation network,even with the airport, the passenger capacity on this route between different airports is alsounequal. So, it is better to describe some real networks by using the weighted networks. Theintensive collaborations have a greater chance to attract new collaborators than occasionalconnections in the scientific collaboration network. In other words, it is the edge but not nodethat attracts new links. Therefore, based on this phenomenon, a new weighted local-networkmodel based on the edge preferential selection is proposed. The weight distribution, the strengthdistribution and the degree distribution of this model are deduced by using the mean fieldmethod. All results of the computer simulation are well consistent with the analytical results.What’s more important is that the weight dynamics of the new model can simulate somerealistic networks such as Neural network of the nematode C. Elegans and Online SocialNetwork. Finally the epidemic spreading properties on this new network are analyzed.
引文
[1]郭雷,许晓鸣.复杂网络[M].上海:上海科技教育出版社,2006.
    [2]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [3]汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
    [4]吴金闪,狄增如.从统计物理学看复杂网络研究[J].物理学进展,2004,24(1):19-46.
    [5]郑金连,狄增如.复杂网络研究与复杂现象[J].系统辩证学报,2005,13(4):8-13.
    [6]史定华.网络—探索复杂性的新途径[J].系统工程学报,2005,20(2):115-119.
    [7]周涛,柏文洁,汪秉宏等.复杂网络研究概述[J].物理,2005,l:34-39.
    [8]刘涛,陈忠,陈晓荣.复杂网络理论及其应用研究概述[J].系统工程,2005,23(6):4-10.
    [9]汪秉宏,周涛,王文旭等.当前复杂系统研究的几个方向[J].复杂系统与复杂性科学,2008,5(4):21-28.
    [10]荣智海,唐明,汪小帆等.复杂网络2012年度盘点[J].电子科技大学学报,2012,41(6):801-807.
    [11] Albert R. and Barabási A. L. Statistical mechanics of complex network[J]. Rev. Mod.Phys.,2002,74:47-97.
    [12] Newman M. E. J. The structure and function of complex networks[J]. SIAM Rev.,2003,45:167-256.
    [13] Erdǒs P. and Rényi A. On the evolution of random graphs[J]. Publications of themathematical institute of the Hungarian academy of sciences,1960,5:17-61.
    [14] Watts D. J. and Strogaze S. H. Collective dynamics of small-world networks[J]. Nature,1998,393:440-442.
    [15] Barabási A. L. and Albert R. Emergence of scaling in random networks[J]. Science,1999,286:509-512.
    [16] Newman. M. E. J. and Watts D. J. Renormalization group analysis of the small-worldnetword model[J]. Phys. Lett. A,1999,263:341-346.
    [17] Kasturirangan R. Multiple scales in small-world graphs[J]. Arxiv preprintcond-mat/9904055,1999.
    [18] Dorogovtsev S. N. and Mendes J. F. F. Exactly solvable small-world network[J].Europhys. Lett.,2000,50:1-7.
    [19] Kleinberg J. Navigation in a small world[J]. Nature,2000,406:845.
    [20] Ozik J., Hunt B. R. and Ott E. Growing networks with geographical attachmentpreference: Emergence of small worlds[J]. Phys. Rev. E,2004,69:026108-026112.
    [21]杨波,陈忠,段文奇.基于个体选择的小世界网络结构演化[J].系统工程,2004,22(12):1-5.
    [22]刘强,方锦清,李永等.探索小世界特性产生的一种新方法[J].复杂系统与复杂性科学,2005,2(2):13-19.
    [23] Dorogovtsev S. N. and Mendes J. F. F. Effect of the accelerating growth ofcommunication netwoeks on their structure[J]. Phys. Rev. E.,2001,63:025101-025104.
    [24] Shi D. H.,Chen Q. H.,and Liu L. M. Markov chain-based numerical method for degreedistribution of growing networks[J]. Phys. Rev. E,2005,71:036140-036148.
    [25] Liu Z. H., Lai Y. C, Ye N., et al. Connective distribution and attack tolerance of generalnetworks with both preferential and random attachments[J]. Phys. Lett. A,2002,303:337-344.
    [26] Bianconi G.. and Barabási A. L. Competition and multiscaling in evolving networks[J].Europhys. Lett.,2001,54:436-442.
    [27] Dorogovtsev S. N., Mendes J. F. F. and Samukhin A. N. Structure of growth networkswith preferential linking[J]. Phys. Rev. Lett.,2000,85:4633-4636.
    [28] Krapivsky P. L.,Redner S. and Leyvraz F. Connectivity of growing random networks[J].Phys. Rev. Lett.,2000,85:4629-4632.
    [29] Fang J. Q. and Liang Y. Topological properties and transition features generated by anew hybrid preferential model[J]. Chin. Phys. Lett.,2005,22(10):2719-2722.
    [30]方锦清,毕桥,李永等.复杂动态网络的一种和谐统一的混合择优模型及其普适特性[J].中国科学G,2007,37(2):230-249.
    [31] Saramaki J. and Kaski K.Scale-free networks generated by random walkers[J].PhysicaA,2004,341:80-86.
    [32] Shi D., Liu L., Zhu S. X., et al. Degree distribution of evolving networks[J]. Europhys.Lett.,2006,76(4):10315-10316.
    [33] Valverde S., Ferrer Cancho R. and Solé R. V. Scale-free networks from optimaldesign[J]. Europhys. Lett.,2002,60(4):512-517.
    [34] Kim B. J., Trusina A., Minnhagen P., et al. Self organized scale-free networks frommerging and regeneration[J]. Eur. Phys. J. B,2005,43(3):369-372.
    [35] Garlaschelli D., Capocci A. and Caldarelli G. Self-organized network evolution coupledto extremal dynamics[J]. Nature Phys.,2007,3(11):813-817.
    [36] Perotti J. I., Billoni O. V., Tamarit F. A., et al. Emergent self-organized complexnetwork topology out of stability constraints[J]. Phys. Rev. Lett.,2009,103(10):108701-108704.
    [37] Holme P. and Kim B.J., Growing Scale-Free Networks with Tunable Clustering[J]. Phys.Rev. E,2002,65:026107-026110.
    [38] Li X. and Chen G. R. A local-world evolving network model[J]. Physica A,2003,328:274-286.
    [39]章忠志.复杂网络的演化模型研究[D].大连:大连理工大学,2006.
    [40]李季,汪秉宏,蒋品群等.节点数加速增长的复杂网络生长模型[J].物理学报,2006,55(08):4051-4057.
    [41]覃森,戴冠中,王林.具有边连接增长速度的演化网络度分布研究[J].系统工程理论与实践,2007,11:159-163.
    [42]郭进利,汪丽娜.幂律指数在1与3之间的一类无标度网络[J].物理学报,2007,56(7):5635-5639.
    [43]杨阳,荣智海,李翔.复杂网络演化模型理论研究综述[J].复杂系统与复杂性科学.2008,5(4):47-55.
    [44] Qin S. and Dai G. Zh. A new local-world evolving network model[J], Chin. Phys. B,2009,18(02):383-390.
    [45]姜志宏,王晖,高超.一种基于随机行走和策略连接的网络演化模型[J].物理学报,2011,60(5):058903-058912.
    [46]刘宏鲲,吕琳媛,周涛.利用链路预测推断网络演化机制[J].中国科学G,2011,41:816-823.
    [47] Freeman L. A Set of measures of Centrality Based upon Betweenness [J]. Sociometry,1977,40:35-41.
    [48] Newman. M. E. J. Networks[M]. Cambridge: Cambridge University Press,2010.
    [49] Gaertler M. and Patrignani M. Dynamic analysis of the autonomous system graph[C].International Workshop on Inter-domain Performance and Simulation,2004,13-24.
    [50] Newman M. E. J.Assortative mixing in networks[J].Phys. Rev. Lett.,2002,89(20):208701-208705.
    [51] Ravasz E., Somera A. L., Mongru D. A., et a1.Hierarchical organization of modularity inmetabolic networks[J].Science,2002,297(5586):1551-1555.
    [52] Newman M. E. J.Detecting community structure in networks[J].Eur. Phys. J. B,2004,38:321-330.
    [53]杜海峰,李树茁,Marcus W. F.等.小世界网络与无标度网络的社区结构研究[J].物理学报,2007,56(12):6886-6893.
    [54] Solomonoff R. and Rapoport A. Connectivity of random nets[J]. Bulletin of Math.Biophys,1951,13:107-117.
    [55] Barabási A. L. Scale-free networks: a decade and beyond[J]. Science,2009,325:412-413.
    [56] Barabási A. L., Albert R. and Jeong H. Mean-field theory for scale-free randomnetworks[J]. Physica A,1999,272:173-187.
    [57] Jeong H.,Nda Z. and Barabási A. L. Measuring preferential attachment in evolvingnetworks [J]. Europhys. Lett.,2003,61:567-572.
    [58] Bailey N. T. J. The mathematical theory of infectious diseases and its applications[M].New York: Hafner Press,1975.
    [59] Murray J. D. Mathematical biology [M]. Berlin: Springer-Verlag,1993.
    [60]马知恩,周义仓,王稳地等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004.
    [61] Pastor-Satorras R. and Vespignani A. Epidemic dynamics and endemic states in complexnetworks[J]. Phys. Rev. E,2001,63:066117-066125.
    [62] Moremo Y., Pastor-Satorras R. and Vespignani A. Epidemic outbreaks in complexheterogeneous networks[J]. Eur. Phys. J. B,2002,26:521-529.
    [63] Moreno Y., Nekovee M. and Pacheco A. Dynamics of rumor spreading in complexnetworks[J]. Phys. Rev. E,2004,69:066130-066137.
    [64] Newman M. E. J. and Watts D. J. Scaling and percolation in the small-world networksmodel[J]. Phys. Rev. E,1999,60:7332-7342.
    [65] Moore C. and Newman M. E. J. Epidemics and percolation in small-world networks[J].Phys. Rev. E,2000,61:5678-5682.
    [66] Kuperman M. and Abramson G. Small-world effect in an epidemiological model[J]. Phys.Rev. Lett.,2001,86:2909-2912.
    [67] Boguná M. and Pastor-Satorras R. Epidemic spreading in correlated complexnetworks[J]. Phys.Rev.E,2002,66:047104-047107.
    [68] Moremo Y., Gómez J. B. and Pacheco A. F. Epidemic incidence in correlated complexnetworks[J]. Phys. Rev. E,2003,68:035103-035107.
    [69] May R. M. and Lloyd A. L. Infection dynamics on scale-free networks[J]. Phys. Rev. E,2001,64:066112-066115.
    [70] Pastor-Satorras R. and Vespignani A. Epidemic dynamics in finite size scale-freenetworks[J]. Phys. Rev. E,2002,65:035108-035111.
    [71] Hwang D. U., Boccaletti S., Moreno Y., et al. Thresholds for epidemic outbreaks in finitescale-free networks[J]. Math. Biosci.&Eng.,2005,20:317-327.
    [72] Yan G., Zhou T., Wang J., et al. Epidemic spread in weighted scale-free networks[J].Chin. Phys. Lett.,2005,22:510-513.
    [73] Chu X. W., Zhang Zh. Zh., Guan J. H., et al. Epidemic spreading with nonlinearinfectivityin weighted scale-free networks[J]. arXiv:0903.0924v1,2009.
    [74] Liu Z. H. and Hu B. Epidemic spreading in community networks[J]. Europhys. Lett.,2005,72(2):315-321.
    [75] Huang W. and Li Ch. G. Epidemic spreading in scale-free networks with communitystructure[J]. J. Stat. Mech.,2007,1:01014-01026.
    [76] Wu X. Y. and Liu Z. H. How community structure influences epidemic spread in socialnetworks[J]. Physica A,2008,387:623-630.
    [77] Chu X. W., Guan J. H., Zhang Zh. Zh., et al. Epidemic spreading in weighted scale-freenetworks with community structure[J]. J. Stat. Mech.,2009,7:07043-07060.
    [78] Chen J.C., Zhang H.L., Guan Zh.H., et al,Epidemic spreading on networks withoverlapping community structure[J]. Physica A,2012,391:1848-1854.
    [79] Saramǎki J. and Kaski K. Modelling development of epidemics with dynamicsmall-world networks[J]. J. Theor. Biol.,2005,234:413-421.
    [80] Miramontes O. and Luque B. Dynamical small-world behavior in an epidemical modelof mobile individuals[J]. Physica D,2002,168-169(2):379-385.
    [81] Frasca M, Buscarino A., Rizzo.A., et al. Dynamical network model of infective mobileagents[J]. Phys. Rev. E,2006,74:036110-036114.
    [82]夏承遗,孙世温,孙俊清等.考虑个体运动的SIS传染模型研究[J].自然科学进展,2009,19(9):999-1003.
    [83]夏承遗,刘忠信,陈增强等.动态网络中基于SIS模型疾病传播的建模与仿真研究[J].系统仿真学报,2009,21(15):4815-4822.
    [84] Zhang H. F., Small M., Fu X. Ch, et al. Dynamical behavior of epidemic on complexnetworks with population mobility[J]. Chin. Phys. B,2009,18(09):3633-3640.
    [85] Sun H. J. and Gao Z. Y. Dynamical behaviors of epidemics on scale-free networks withcommunity structure[J]. Phsyica A,2007,381:491-496.
    [86] Zhou J. and Liu Z. H. Epidemic spreading in communities with mobile agents[J].Physica A,2009,388(7):1228-1236.
    [87] Xia Ch. Y., Sun Sh.W., Rao F., et al. SIS model of epidemic spreading on dynamicalnetworks with community[J]. Front. Comput. Scien. China,2009,3(3):361-365.
    [88] Tang M., Liu Z. H. and Li B. W. Epidemic spreading by objective traveling[J]. Europhys.Lett.,2009,87:18005-18009.
    [89] Zhou T., Yan G.. and Wang B. H. Maximal planar networks with large clusteringcoefficient and power-law degree distribution[J]. Phys. Rev.E,2005,71:046141-046150.
    [90]许丹,李翔,汪小帆.局域世界复杂网络中的病毒传播及其免疫控制[J].控制与决策,2006,21(7):817-820.
    [91]倪顺江,翁文国,范维澄.具有局部结构的增长无标度网络中传染病传播机制研究[J].物理学报,2009,58(6):3707-3713.
    [92] Chu X. W., Zhang Zh. Zh. and Guan J. H. Different behaviors of epidemic spreading inscale-free networks with identical degree sequence[J]. J. Phys. A: Math. Theor,2010,43:065001-065011.
    [93] Yang X.H., Wang B., Chen Sh.Y., et al. Epidemic dynamics behavior in some bustransport networks[J],Physica A,2012,391:917-924.
    [94] Kitsak M., Gallos L., Havlin S., et al. Identifying influential spreaders in complexnetworks[J], Nature Phys.,2010,6:888-893.
    [95] Castellano C. and Pastor-Satorras R. Competing activation mechanisms in epidemics onnetworks[J]. Scientific Rep.,2012,2:371-402.
    [96] Comin C. H. and Costa L. F. Identifying the starting point of a spreading process incomplex networks[J],Phys. Rev. E,2011,84:056105-056110.
    [97] Zhou T., Liu J. W., Bai W. J., et a1.Behaviors of susceptible-infected epidemics onscale-free networks with identical infectivity[J]. Phys. Rev.E,2006,74:056109-056116.
    [98] Yang R., Wang B. H., Ren J., et al. Epidemic spreading on heterogeneous networks withidentical infectivity[J]. Phys. Lett. A,2007,364:189-193.
    [99]裴伟东,刘忠信,陈增强等.无标度网络中最大传染能力限定的病毒传播问题研究[J].物理学报,2008,57:6777-6785.
    [100] Wang J. Z., Liu Z. R. and Xu J. H.Epidemic spreading on uncorrelated heterogeneousnetworks with non-uniform transmission[J].Physica A,2007,382:715-721.
    [101] Xia C. Y., Liu Z. X., Chen Z. Q., et a1.Spreading behavior of SIS model withnon-uniform transmission on scale-free networks[J].The Joumal of China University ofPosts and Telecommunication,2009,16(1):27-31.
    [102] Xia C. Y., Liu Z. X. and Chen Z.Q. Epidemics of SIRS model with non-uniformtransmission on scale-free networks[J].Int. J. Mod. Phys. B,2009,23(9):2203-2213.
    [103] Fu X. C., Small M., Walker D. M., et al. Epidemic dynamics on scale-free networkswith piecewise linear infectivity and immunization[J]. Phys. Rev. E,2008,77:036113-036120.
    [104] Zhang H. F. and Fu X. Ch. Spreading of epidemics on scale-free networks withnonlinear infectivity[J]. Non. Analy.,2009,70:3273-3278.
    [105]王延,郑志刚.无标度网络上的传播动力学[J].物理学报,2009,58(7):4421-4425.
    [106]于新华,李常菊,黄樟灿等.一类新SEIRS模型在BA网络上的传播行为研究[J].计算机工程与应用,2009,45(21):232-234.
    [107]楚杨杰,周佳华,汪金水等.无标度网络上SEIQ疾病传播[J].计算机工程与应用,2010,46(5):108-110.
    [108] Liu Z. R, Yan J. R.,Guo Z.J., et a1.Epidemic dynamics with feedback mechanism inexponential networks[J].Chin. Phy. Lett.,2006,23(5):1343-1346.
    [109] Pei W. D., Chen Z. Q. and Yuan Zh Zh. A dynamic epidemic control model onuncorrelated complex networks[J]. Chin. Phys.B,2008,17:373-379.
    [110]张达敏,蔡绍洪,周海平等.复杂网络上的一种综合型SIRS模型[J].兰州大学学报(自然科学版),2009,45(3):122-126.
    [111] Li K. Z., Small M. and Fu X. Ch. Epidemic outbreaks on networks with effectivecontacts[J]. Non. Analy.,2010,11(2):1017-1025.
    [112] Shi H. J., Duan Zh. Sh. and Chen G. R. An SIS model with infective medium oncomplex networks[J]. Physica A,2008,387:2133-2144.
    [113] Xu X. J., Peng H. O., Wan X. M., et al. Epidemic spreading with time delay incomplex networks[J]. Physica A,2006,367:525-530.
    [114] Xu X. J. and Chen G. R. The SIS model with time delay on complex networks[J]. Int.J. Bifurcat. Chaos,2009,19(2):623-628.
    [115]王亚奇,蒋国平.同时考虑传染媒介和传播延迟的复杂网络病毒传播行为研究[J].物理学报,2010,59(10):6725-6733.
    [116]夏承遗,刘忠信,陈增强等.复杂网络上带有直接免疫的SIRS类传染模型研究[J].控制与决策,2008,23(4):468-472.
    [117] Shi H. J., Duan Zh. Sh., Chen G. R., et al. Epidemic spreading on networks withvaccination[J]. Chin. Phys. B,2009,18(08):3309-3317.
    [118] Zhang H. F., Zhang J. and Zhou Ch. S. Hub nodes inhibit the outbreak of epidemicunder voluntary vaccination[J]. New J. Phys.,2010,12:023015-023025.
    [119]王亚奇,蒋国平.复杂网络中考虑不完全免疫的病毒传播研究[J].物理学报,2010,59(10):6734-6743.
    [120]温罗生,杨小帆,钟将.在二部无标度网上的两性疾病传播[J].物理学报,2008,57(8):4794-4799.
    [121] Liu M. X. and Ruan J. Modelling the spread of sexually transmitted diseases onscale-free networks[J]. Chin. Phys.B,2009,18(06):2115-2120.
    [122] Lou J. and Ruggeri T. The dynamics of spreading and immune strategies of sexuallytransmitted diseases on scale-free network[J]. J. Math. Anal. Appl.,2010,365:210-219.
    [123] Zanette D. H. Critical behavior of propagation on small-world networks[J]. Phys. Rev.E,2001,64:050901-050904.
    [124] Zanette D. H. Dynamics of rumor propagation on small world networks[J]. Phys. Rev.E,2002,65:041908-041916.
    [125] Liu Z. H., Lai Y. Ch. and Ye N. Propagation and immunization of infection on generalnetworks with both homogeneous and heterogeneous components[J]. Phys. Rev. E,2003,67:031911-031915.
    [126] Zhou J., Liu Z. H. and Li B. W. Influence of network structure on rumorpropagation[J]. Phys. Lett. A,2007,368:458-463.
    [127] Moreno Y., Nekovee M. and Pacheco A. Dynamics of rumor spreading in complexnetworks[J]. Phys. Rev. E,2004,69:066130-066137.
    [128]潘灶烽,汪小帆,李翔.可变聚类系数无标度网络上的谣言传播仿真研究[J].系统仿真学报,2006,18(8):2346-2348.
    [129] Nekovee M., Moreno Y., Bianconi G., et al. Theory of rumour spreading in complexsocial networks[J]. Physica A,2007,374:457-470.
    [130] Zhao L. J, Wang Q., Chen J., et al. Rumor spreading model with consideration offorgetting mechanism: A case of online blogging LiveJournal[J]. Physics A,2011,390:2619-2625.
    [131] Roshani F. and Naimi Y. Effects of degree-biased transmission rate and nonlinearinfectivity on rumor spreading in complex social networks[J]. Phys. Rev. E,2012,85:036109-036116.
    [132] Holthoefer J. B. and Moreno Y. Absence of influential spreaders in rumor dynamics[J].Phys. Rev. E,2012,85:026116-026121.
    [133] Lü L. Y., Chen D. B. and Zhou T. The small world yields the most effectiveinformation spreading[J]. New J. Phys.,2011,13:123005-123014.
    [134]魏权龄,胡显佑、严颖.运筹学通论[M].北京:中国人民大学出版社,2001.
    [135] Neumann J. V. and Morgenstern O. Theory of games and economic behavior[M].Princeton: Princeton University Press, Third edition,1953.
    [136]范大茵,陈永华.概率论与数理统计[M].杭州:浙江大学出版社,2003.
    [137]李光正,史定华.复杂网络上SIRS类疾病传播行为分析[J].自然科学进展,2006,16(4):508-512.
    [138] Agiza H. N., Elgazaar A. S. and Youssef S. A. Phase transition in some epidemicmodels defined on small-world networks[J]. Int. J. Mod. Phys. C,2003,14(6):825-833.
    [139] Muller B. and Reinhardt. Neural Networks: An Introduction[M]. Berlin:Springer-Verlag,1991.
    [140] Kalisman N., Silberberg G. and Markram H. The neocortical microcircuit as a tabularasa[J]. Proc. Natl. Acad. Sci. U.S.A,2005,102(3):880-885.
    [141] Berlow E. L. Strong effects of weak interaction in ecological communities[J]. Nature,1999,398:330-334.
    [142] Almass E., Kovacs B., Vicsek T. et al. Gobal organization of metabolic fluxes in thebacterium Escherichiacoli[J]. Nature,2004,427:839-843.
    [143] Newman M. E. J. The structure of scientific collaboration networks[J]. Proc. Natl. Acad.Sci. U.S.A,2001,98:404-409.
    [144] Newman M. E. J. Scientific collaboration networks. I. Network construction andfundamental results[J], Phys. Rev. E,2001,64:016131-016138.
    [145] Fan Y., Li M., Chen J., et al. Network of econophysicsts: a weighted network toinvestigate the development of econophysics[J]. Int. J. Mod. Phys. B,2004,18:2505-2512.
    [146] Li M., Fan Y., Chen J., et al. Weighted network of scientific commucation: themeasurement and topological role of weight[J]. Physics A,2005,350:643-656.
    [147] Li W. and Cai X. Statistical analysis of airport network of China[J], Phys.Rev.E.,2004,69:046106-046111.
    [148] Barrat A., Barthélemy M., Pastor-Satorras R., et al. The architecture of complexweighted networks[J], Proc. Natl. Acad. Sci. U.S.A.,2004,101:3747-3752.
    [149] Ganesh B. Analysis of the airport network of India as a complex weighted network[J].Arxiv: cond-mat/0409773.
    [150] Yook S. H., Jeong H., Barabási A. L., et al. Weighted evolving networks[J]. Phys. Rev.Lett.,2001,86:5835-5838.
    [151] Zheng D.F., Trimper B., Zheng B., et al. Weighted scale-free networks with stochasticweight assignments[J]. Phys. Rev. E,2003,67:040102-040114.
    [152] Antal T. and Krapivshy P. L. Weight-driven growing networks[J]. Phys. Rev. E,2005,71:026103-026108.
    [153] Barrat A., Barthélemy M. and Vespignani A., Weighted evolving networks: couplingtopology and weight dynamics[J]. Phys. Rev. Lett.,2004,92:228701-228704.
    [154] Pan Z. F., Li X. and Wang X. F., Generalized local-world models for weightednetworks[J]. Phys. Rev. E,2006,73:056109-056117.
    [155] Wang W. X., Wang B., Hu, B., et al. General dynamics of topology and traffic onweighted technological networks[J]. Phys. Rev. Lett.,2005,94:188702-188705.
    [156] Wang W. X., Wang B., Hu, B., et al., Mutual attraction model for both asstrative anddisasstrative weighted networks[J]. Phys. Rev. E,2006,73:016133-016136.
    [157] Dorogovtsev S. N., Mendes J. F. F and Samukhin A. N. Minimal models of weightedscale-free networks[J]. arXiv:cond-mat/0408343,2004.
    [158] Chen Sh.H. and Chen Q.H. A Weighted Network Model Based on the PreferentialSelection of Edges[J]. Appl. Math. Sci.,2007,1:1145-1156.
    [159] Hu B., Jiang X. Y., Ding J. F., et al A weighted network model for interpersonalrelationship evolution[J]. Physica A,2005,353:576-594.
    [160] Geng X. M. and Wen G.. H. Weighted evolving networks with intrinsic strength[J]. Int.J. Mod. Phys. C,2007,18:1435-1442.
    [161] Xie Y. B., Wang W. X. and Wang B. H. Modeling the coevolution of topology andtraffic on weighted technological networks[J]. Phys. Rev. E,2007,75:026111-026119.
    [162] Tanaka T. and Aoyagi T. Weighted scale-free networks with variable power-lawexponents[J]. Physica D,2008,237:898-907.
    [163] Zhou. Y. B. Cai Sh. M., Wang W. X., et al. Age-based model for weighted network withgeneral assortative mixing[J]. Physica A,2009,388:999-1006.
    [164] Xu Q. X. and Xu X. J. Generating weighted community networks based on localevents[J]. Chin. Phys. B,2009,18:933-938.
    [165]苏凯,汪李峰,张卓.一种灵活的加权复杂网络演化模型及其仿真[J].系统仿真学报,2009,21(1):266-271.
    [166]井元伟,郝彬彬,张嗣瀛.具有高簇系数的权重演化无标度网络模型[J].复杂系统与复杂性科学,2009,6(3):87-93.
    [167] Wen G. H. and Duan Z. S. Dynamics behaviors of weighted local-world evolvingnetworks with extended links[J]. Int. J. Mod. Phys. C,2009,20:1719-1735.
    [168] Ma Y. H., Li H. J. and Zhang X. D. Strength distribution of novel local-worldnetworks[J]. Physica A,2009,388(21):4669-4677.
    [169] Zhuo Zh.W. and Shan E. F. A weighted evolving network with community sizepreferential attachment[J]. Commun.Theor.Phys.,2010,54:813-818.
    [170] Wen G. H., Duan Zh. Sh., Chen G. R. A weighted local-world evolving network modelwith aging nodes[J]. Physica A,2011,390:4012-4026.
    [171] Onnela J. P., Chakraborti A. Kaski K., et al. Dynamics of marketcorrelations:Taxonomy and portfolio analysis[J]. Phys. Rev. E,2003,68:056110-056112.
    [172] Dorogovtsev S. N. and Mendes J. F. F. Evolution of networks[J]. Adv. Phys.,2002,51:1079-1187.
    [173] White J. G., Southgate E., Thompson J. N., et al. The structure of the nervous system ofthe nematode C. Elegans[J]. Phil. Trans. R. Soc. B,1986,314(1165):1-340.
    [174] Opsahl T. and Panzarasa P. Clustering in weighted networks[J]. Social Networks,2009,31(2):155-163
    [175] Yan G.., Zhou T., Wang J., et al. Epidemic spread in weighted scale-free networks[J].Chin. Phys. Lett.,2005,22:510-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700