纤维方位角对玻纤增强复合材料细观力学行为的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃纤维增强环氧树脂复合材料(GFRP)因其高强度比、高刚度比等特性广泛用于轻质结构中。本文利用SEM高温疲劳试验系统,系统研究了GFRP在单轴加载条件下的力学性能及其随纤维方位角的关系,并通过SEM图像分析,结合应力应变关系曲线研究了纤维增强复合材料在单向载荷下的破坏过程及损伤演化规律。引入岩石力学单一节理模型,给出了峰值强度随纤维方位角的关系。基于弹性力学理论,通过转置刚度矩阵在Mathematica环境下生成横观各向同性复合材料的杨氏模量随纤维方位角(0-90o)的关系表达式。在Abaqus CAE环境下生成不同纤维方位角的有限元模型,并将理论结果与实验结果、数值模拟结果进行对比分析,均发现了纤维增强复合材料的杨氏模量随纤维方位角呈先减小后增加的U型趋势,并得到杨氏模量与纤维含量和纤维方位角的统计关系式。进一步利用扩展有限元法(XFEM),研究了GFRP在拉伸载荷下的开裂过程,得到了纤维方位角对裂纹扩展路径的影响规律。
Glass fiber-reinforced polymer (GFRP) composites are widely used in low-weightconstructions due to high specific strength and modulus. In-situ experiments of damage growthin under unidirectional loading are carried out. By analyzing the experimental results of severalgroups of samples with different fiber orientation angles, the effect of the orientation angles ofglass fibers on the mechanical properties of composites and the damage mechanisms is analyzed.The damage mechanisms and microstructural changes in GFRP subject to unidirectional loadingare observed. An analytical model based on single discontinuity theory is proposed to explain thecompressive strength of glass fiber reinforced composites. From the basic theory of elasticmechanics, a procedure which can be applied to evaluate the elastic stiffness matrix of FRPcomposite as an analytical function of fiber orientation angle (0-90o), is developed inMathematica environment to explore the effect of fiber orientation angle on the Young’s modulusof composites. Different finite element models with inclined glass fiber are developed via theABAQUS Scripting Interface to explore the effect of inclined angle of fiber on the Young’smodulus of composites. The comparative analysis shows that the peak strength, Young’smodulus decrease with increasing the fiber angles at first, and slightly increase after45-60. Therelation among the Young’s modulus, fiber content and fiber angel is obtained. Furthermore,fracture mechanism of GFRP under tensive loads is studied by using XFEM.
引文
[1]李成良,王继辉,薛忠民,大型风机叶片材料的应用和发展.玻璃钢/复合材料,2008(4):49-52
    [2]Hedgepeth J M, Stress concentrations in filamentary structures. NASA TND-882,1961
    [3]曾庆敦.复合材料的细观破坏机制与强度.北京:科学出版社
    [4]Zweben C. An approximate method of analysis for notched unidirectionalcomposites. Eng Fracture Mech,1974,6:1-10
    [5]范赋群.单向纤维增强复合材料的荷载集中因子和裂纹扩展统计理论.国体力学学报,1981,(3):287-294
    [6]曾庆敦,林雪慧.单向复合材料的应力集中问题研究.湖南大学学报,2001,28(4):104-108
    [7]曾庆敦,林雪慧.界面损伤对单向复合材料拉伸统计强度的影响.湖南大学学报,2001,28(4):20-25
    [8]Hikami F,Chou T W. Explicit crack problem solutions of unidirectionalcomposites:elastic stress concentrations, AIAA Journal,1990,28:499
    [9]Aveston J,Cooper G,Kelly A. Single and multiple fracture. In:The Properties ofFiber Composites, Conference Proceedings, National Physical Laboratory, IPCScience and Technology Press Ltd,1971.15-26
    [10]Gucer D E,Gurland J. Comparison of statistics of two fracture modes. J MechPhys Solids,1962,10:365-373
    [11]Rosen B W.Tensile failure of fibrous composites.AIAA J,1964,2:1985-1991
    [12]Zweben C,Rosen B W. A statistical theory of material strength with applicationto composite materials. J Mech Phys Solids,1970,18:189-206
    [13]Harlow D G,Phoenix S L. The chain-of boundles probability model for thestrength of fibrous materials I:Analysis and conjectures. J Compo Mater,1978,12:195-214
    [14]Harlow D G,Phoenix S L. The chain-of boundles probability model for thestrength of fibrous materials Ⅱ:A numerical study of convergence.J CompoMater,1978,12:314-334
    [15]Smith R L. The random variation of stress concentration factors in fibrouscomposites.J Mater Sci Lett,1983,2:385-391
    [16]Fukuda H,Kawata K. On the strength distribution of unidirectional fibercomposites. Fiber Sci Technol,1977,10:53-67
    [17]Fukuda H,Kawata K.Stress distribution of laminates including discontinuouslayers. Fiber Sci Technol,1980,13:226-267
    [18]Zhu Y T,Zhou G H,Zheng Z G. A statistical theory of material strength withapplication to composite materials. J Mech Phys Solids,1970,18:189-206
    [19]曾庆敦,马锐,范赋群.复合材料正交叠层板最终拉伸强度的细观力学分析.力学学报.1994,26:451-461
    [20]冼杏娟,李瑞义.复合材料破坏分析及微观图谱.北京:科学出版社,1993
    [21]王红,李卓球.基体非线性对单向玻璃纤维增强复合材料压缩性能的影响.广东工业大学学.2003,20(2):38-41
    [22]杨卫.结构增韧材料在裂纹扩展中的韧度增值.力学学报[J],1991,23(1):61
    [23]沈观林.复合材料力学.北京:清华大学出版社,1995
    [24]魏悦广,杨卫,黄克智.纤维复合材料后微屈曲的理论和实验.中国科学A辑,1992,13:388-393
    [25]虞洪辉,杨卫.孔洞损伤的CT识别.力学与实践,1993,15(6):41-55
    [26]王清,李维学,稽醒.有缺陷纤维增强复合材料的细观力学.材料科学与工程,1998, Vol16, No2,52-60
    [27]魏悦广.纤维增强复合材料压缩破坏的细观力学研究.清华大学工学博士学位论文,北京,1992
    [28]董振英,李庆斌.纤维增强脆性复合材料细观力学若干进展.力学进展,2001,Vol31(4):555-582
    [29]叶裕恭.单行线材料中孔洞成核、发展及应力场.固体力学学报,1990,11(3):201-208
    [30] Jelf, P M and Fleck, N A. Compression failure mechanisms in unidirectionalcomposites. Composite Materials,1992,26(18),2706-2726
    [31] Rosen, B.W., Fiber composite materials, Chapter3, Mechanics of compositestrengthening, ASM, Materials Park, Ohio,1965:37-75
    [32] Schuerch H, Prediction of compressive strength in uniaxial boron fiber-metalmatrix composite materials. AIAA Journal,1966,4(1):102-106
    [33] Argon A.S., Fracture of composites, Treatise on Material Science andTechnology, Ed. H. Herman, Academic Press,1972,1:79-114
    [34] Budiansky B., Micromechanics, Computers and Structures,1983,16(1-4):3-12
    [35] Budiansky B. and Fleck, N.A., Compressive failure of fibre composites, Journalof Mech. Phys. Solids.,1993,41(1):183-211
    [36] Yeh J.R. and Teply J.L., Compressive response of Kevlar/Epoxy composites.Journal of Composite Materials,1988,22(3):245-257
    [37] Steif P.S., A simple model for the compressive failure of weakly bondedfibre-reinforced composites. Journal of Composite Materials,1988,22(9):818-828
    [38] Steif P.S., A model for kinking in fiber composites-I, Fiber breakage viamicro-buckling. International Journal of Solids and Structures,1990,26(5-6):549-561
    [39] Steif P.S., A model for kinking in fiber composites-II, Fiber breakage viamicro-buckling. International Journal of Solids and Structures,1990,26(5-6):563-56
    [40]B.BUDIANSKY, N.A.FLECK AND J.C.AMAZIGO.ON KINK-BANDPROPAGATION IN FIBER COMPOSITES, J.Mech,Phys.Solids,1998,Vol.46,No.9:1637-1653
    [41] R. R. Effendi, J.-J. Barrau and D. Guedra-Degeorges.Failure mechanismanalysis under compression loading of unidirectional carbon/epoxy composites usingmicromechanical modelling.Composite Structures,1995,Vol.31,2,87-98
    [42] K. Niu and R. Talreja Modeling of compressive failure in fiber reinforcedcomposites.International Journal of Solids and Structures,2000,17(37):2405-2428
    [43] Christoffersen J, Jensen HM.(1996) Kink band analysis accounting for themicrostructure of fiber reinforced materials. Mech. of Mater24, pp.305-315
    [44] Jensen H.M.Analysis of compressive failure of layered materials by kink bandbroadening. Int. J. Solids Structures,1999,36,3427-3441
    [45] R.M.Christensen,S.J.DeTeresa. The kink band mechanism for the compressivefailure of fiber composite materials, Journal of Applied Mechanics,1997, Vol.64(3):1-6
    [46] N.A.Fleck, L.Deng and B.Budiansky. Prediction of Kink Width in CompressedFiber Composites. Journal of Applied Mechanics,1995,Vol.62(6):329-337
    [47] P.M. Moran, X.H. Liu and C.F. Shih, Kink band formation and band broadeningin fiber composites under compressive loading.Acta Metallurgica et Materialia,Volume43, Issue8, August1995,2943-2958
    [48] X. H. Liu, P. M. Moran and C. F. Shih.The mechanics of compressive kinkingin unidirectional fiber reinforced ductile matrix composites.Composites Part B:Engineering,1996,Vol.27,6, pp.553-560
    [49] S.T. Pinho, P. Robinson and L. Iannucci. Fracture toughness of the tensile andcompressive fibre failure modes in laminated composites.Composites Science andTechnology,2006,Vol.66,13,2069-2079
    [50] ASTM D3039–00.2000. Standard Test for Tensile Properties of Polymer MatrixComposite Materials. W. Conshohocken, PA: Am. Soc. Test. Mater.
    [51]ISO527. Plastics—Determination of tensile properties. Geneva: ISO
    [52] L. Mishnaevsky Jr and P. Br?ndsted, Statistical modelling of compression andfatigue damage of unidirectional fiber reinforced composites. Composites Sci&Technol,69,3-4,2009,477-484
    [53] Deferran E.M. and Harris B., Compression strength of polyester resin reinforcedwith steel wires. Journal of Composite Materials,1970,4:62-72
    [54] Ewins, P.D. and Ham, A.G., The nature of compressive failure in unidirectionalcarbon fiber reinforced plastics. AIAA Bulletin,1974,11(3):118-128
    [55] Papanicolaou GC, Zaoutsos SP, Kontou EA. Fiber orientation dependence ofcontinuous carbon/epoxy composites nonlinear viscoelastic behavior. Compos SciTechnol2004;64:2535-2545
    [56] Zinovie P, Grigoriev S V, Labedeva O V, Tairova L R. Strength of multilayercomposites under plane stress state. Compos Sci Technol,1998,58:1209-1224
    [57]成会明,张名大,杨俊英.短炭纤维/树脂炭复合材料结构特征和断裂机制的研究.炭素,1988(3):1-7
    [58]张福勤,黄伯云,黄启忠等. C/C复合材料断口热解炭及其界面形貌SEM分析.矿冶工程学报.2002,3(22),93-95
    [59] Dillon F, Thomas KM, Marsh H. The influence of matrix microstructure on themechanical properties of CFRC composites. Carbon,1993,31(8):1337-1348
    [60] Majzoobi GH, Saniee FF, Bahrani M. An experimental study on the behavior ofglass epoxy composite at low strain rates. JMater Process Technol2005;162:76-82
    [61] Plueddeman E P. Interfaces in Polymer Matrix Composites. Academic press.New York (1974):174
    [62] Lager, J. R. and June, R.R., Compressive strength of boron-epoxy composites.Journal of composite materials,1969,3(1):48-56
    [63] Hahn, H.T. and Sohi, M.M., Buckling of a fiber bundle embedded in epoxy.Composites Science and Technology,1986,27(1):25-41
    [64]Hahn H T, Tsai S W. Nonlinear elastic behavior of unidirectional compositelaminate. J Comp Mater,1973,7(1):120-128
    [65] Deferran E.M. and Harris B., Compression strength of polyester resin reinforcedwith steel wires. Journal of Composite Materials,1970,4:62-72
    [66]Ewins, P.D. and Ham, A.G., The nature of compressive failure in unidirectionalcarbon fiber reinforced plastics. AIAA Bulletin,1974,11(3):118-128
    [67]H.F.WU,J.R.YEH, Compressive response of Kevlar-epoxy composites:experimental verification, JOURNAL of MATERIALS SCIENCE,27(1992):755-760
    [68] ZHOU HongWei, L MISHNAEVSKY JR, P BRONDSTED, TAN JinBiao, GUILeLe. SEM in-situ laboratory investigations on damage growth in GFRP compositeunder three-point bending tests. Chinese Science Bulletin.2010,55(12):1199-1208
    [69] Narudol Mongkollapkit, Apisit Kositchaiyong, Vichai Rosarpitak et al,Mechanical and Morphological Properties for Sandwich Composites of Wood/PVCand Glass Fiber/PVC Layers, Journal of Applied Polymer Science,2010, Vol116,3427-3436
    [70] Mohit Sharma, I.Mohan Rao,Jayashree Bijwe, Influence of fiber orientation onabrasive wear of unidirectionally reinforced carbon fiber-polyetherimide composites,Tribology International,43(2010):959-964
    [71] M.Sharma, I.M.Rao,J.Bijwe. Influence of orientation of long fibers in carbonfiber-polyetherimide composites on mechanical and tribological properties,Wear,267(2009):839-845
    [72] MUSTAFA OZGUR BORA, ONUR COBAN AND TAMER SINMAZCELIK,Effect of Fiber Orientation on Scratch Resistance in UnidirectionalCarbon-Fiber-Reinforced Polymer Matrix Composites, Journal of ReinforcedPlastics and Composites,2010,29:1476-1489
    [73] F. Raischel, F. Kun and H.J. Herrmann: Physical Review E Vol.73(2006),p.066101
    [74] H. Qing and L. Mishnaevsky: Computational Materials Science Vol.47(2009),p.548
    [75] Z. Xia, W.A. Curtin and T. Okabe: Composites Science and Technology Vol.62(2002), p.1279
    [76] W.S. Slaughter: International Journal of Solids and Structures.1993,30:385-393
    [77] T. J. Vogler, S.-Y. Hsu and S. Kyriakides.On the initiation and growth of kinkbands in fiber composites. Part II: analysis.International Journal of Solids andStructures,2001,Vol.38,15,2653-2682
    [78] S. Feih, A. Thraner and H. Lilholt: Journal of Materials Science Vol.40(2005),p.1615-1626
    [79] G.K.B.V. Kumar, Studying the influence of glass fiber sizing roughness andthickness with the single fiber fragmentation test.2006, Kristianstad University,Degree Project.
    [80] J. Reis: Materials Research Vol.8(2005), p.357-371
    [81]H.W. Wang, H.W. Zhou, L. Mishnaevsky Jr, P. Brondsted and L.N. Wang:Computational Materials Science Vol.46(2009), p.810-819
    [82] Sutcliffe, M P F, Fleck, N A and Xin, X J. Prediction of compressive toughnessfor fibre composites. Proc. Roy. Soc. London,1996,A452,2443-2465
    [83] S. Kyriakides, R. Arseculeratne, E. J. Perry and K. M. Liechti.On thecompressive failure of fiber reinforced composites.International Journal of Solidsand Structures,1995,Vol32,6-7,689-738
    [84] Y. Lapusta, J. Harich and W. Wagner.Micromechanical formulation and3Dfinite element modeling of microinstabilities in composites. Computational MaterialsScience,2007,Vol.38,4,692-696
    [85] S. Y. Hsu, T. J. Vogler and S. Kyriakides.On the axial propagation of kinkbands in fiber composites: Part ii analysis.International Journal of Solids andStructures,1999,Vol36,4,575-595
    [86] Fleck, N A and Shu, J Y. Microbuckle initiation in fibre composites: a finiteelement study. J. Mech. Phys. Solids,1995,43(12),1887-1918
    [87] T. J. Vogler, S.-Y. Hsu and S. Kyriakides.On the initiation and growth of kinkbands in fiber composites. Part II: analysis.International Journal of Solids andStructures,2001,Vol.38,15,2653-2682
    [88] Ibnabdeljalil M. and Curtin W. A.(1997) Strength and reliability offiber-reinforced composites: Localized loadsharing and associated size effects,International Journal of Solids and Structures, Vol.34,21, pp.2649-2668
    [89] M. Ibnabdeljalil and Curtin W.A.(1997).Strength and reliability of notchedfiber-reinforced composites, Acta Materialia, Vol.45,9, pp.3641-3652
    [90] Xia Z. H. and Curtin W. A.(2001) Multiscale modeling of damage and failurein aluminum-matrix composite, Composites Science and Technology, Vol.61,15, pp.2247-2257
    [91] Xia Z., Curtin W. A. and Okabe T.(2002) Green's function vs. shear-lag modelsof damage and failure in fiber composites, Composites Science and Technology, Vol.62,10-11, pp.1279-1288
    [92]Leon Mishnaevsky Jr.,Povl Br ndsted.Micromechanisms of damage inunidirectional fiber reinforced composites with ductile matrix:computationalanalysis.Presented at Second International Conference on Recent Advances inComposite Materials (ICRACM-2007), New Delhi,20-23March2007
    [93]Huaiwen Wang, Lele Gui and Hongwei Zhou. Numerical Investigations ofYoung’s Modulus for Composites with Inclined Glass Fiber for Wind EnergyApplication.Advanced Materials Research Vol.216(2011) pp393-396
    [94]杜善义,吴林志.复合材料细观力学研究.哈尔滨工业大学复合材料研究所
    [95]孙志刚,宋迎东,高德平.考虑界面时细观几何结构对复合材料力学性能的影响.材料科学与工程学报,2004,4(22):488-494
    [96]高庆,康国政,杨川,等.高温下短纤维增强金属基复合材料界面的微观结构和热残余应力状态分析[J].复合材料学报,2002,19(4):46-50
    [97]康国政,高庆,刘世楷.界面对短纤维增强金属基复合材料力学行为的影响[J].复合材料学报,1999,16(1):35-40
    [98]黄玉东,孔宪仁,张志谦,等.界面层对纤维与基体间载荷传递能力的影响[J].复合材料学报,1996,13(3):21-25
    [99]王清,李维学,稽醒.有缺陷纤维增强复合材料的细观力学.材料科学与工程,1998,Vol16,No2,52
    [100]贺福,王润成.炭纤维增强树脂复合材料界面效应的研究.炭素技术,1984(5):6-9
    [101]陈列民,杨宝宁.复合材料的力学分析.北京:中国科学技术出版社.2006
    [102]孙永奇,田炯,王俊勃.纤维增强复合材料界面分层萌生扩展演化过程的细观观察与分析.第八届全国断裂学术会议论文集,1996,9
    [103]张福勤,黄伯云,黄启忠,陈腾飞,巩前明,熊翔. C/C复合材料断口热解炭及其界面形貌SEM分析.矿冶工程学报.2002,3(22),93-95
    [104]陈建桥.复合材料力学概论.北京:科学出版社.2006
    [105]Papanicolaou GC, Zaoutsos SP, Kontou EA. Fiber orientation dependence ofcontinuous carbon/epoxy composites nonlinear viscoelastic behavior. Compos SciTechnol2004;64:2535-45
    [106]黄争鸣,张华山.纤维增强复合材料强度理论的研究现状与发展趋势-破坏分析奥运会评估综述.力学进展,2007,1(37):80-98
    [107]庄辉,刘学习,程勇锋,戴干策.长玻璃纤维增强聚丙烯复合材料的力学性能.塑料科技.200735(5):54-58
    [108]徐焜,许希武,田静.小编织角三维编织复合材料拉伸强度模型.航空学报.2007,28(2):294-300
    [109]张云龙,张宇民,赵晓静,韩杰才.纤维含量对Cf/SiC复合材料力学性能和断裂机理的影响.兵器材料科学与工程.200831(1):39-42
    [110]黄玉东,孔宪仁,张志谦,等.界面层对纤维与基体间载荷传递能力的影响[J].复合材料学报,1996,13(3):21-25
    [111]康国政,高庆,刘世楷.界面对短纤维增强金属基复合材料力学行为的影响[J].复合材料学报,1999,16(1):35-40
    [112]黄志强.[0/903]s层合复合材料板的特征损伤状态研究[J].武汉科技交通大学学报,1999,23(1):24-27.
    [113]Kang G Z,Gao Q,Liu S K. Effect of interfaces on stress transfer in short fiberreinforced metal matrix composites[J]. J Southwest Jiao tong University,1998,6(1):47-49
    [114]赵稼祥.复合材料在风力发电上的应用.高科技纤维与应用,2003,28(4):1-4
    [115]Talreja R.Stiffness properties of composite laminates with matrix cracking andinterior delamination[J].Engineering of Fracture Mechanics,1986,25:751-762.
    [116]Talreja R.Transverse cracking and stiffness reduction in compositelaminate[J].Journal of Composite Materials,1985,19(4):355-375.
    [117] H.L.Box, K.Molenveld,W.Teunissen.Compressive behavior of unidirectionalflax fibre reinforced composites. Journal of materials science,39(2004):2159-2168
    [118]R.Ahmad, F.A.R.Al-salehi, S.T.S.Al-hassani et al, Strength and Failure Modesof Hoop Wound CFRP Tubes Under Compressive High Rates of Loading, AppliedComposite Materials,(2005)12:277-292
    [119]S.L.Bazhenov, V.V.Kozey. Transversal compression fracture of unidirectionalfibre-reinforced plastics, Journal of materials science,26(1991):2677-2684
    [120]Lim S G, Hong C S.Effect of transverse cracks on the thermo-mechanicalproperties of cross-ply laminated composites[J].Composite Science and Technology,1989,34:145-162
    [121]黄醒春.岩石力学.北京:高等教育出版社,2005
    [122]王文星.岩体力学.湖南:中南大学出版社,2004
    [123]徐志英.岩石力学.北京:中国水利水电出版社,1993
    [124]谢和平.节理粗糙度系数的分形估算[J].地质科学译丛.1992,9(1):85-90
    [125]张亚衡,周宏伟等.粗糙表面分形维数估算的改进立方体覆盖法[J].岩石力学与工程学报.2005,24(17):3192-3196
    [126]谢征芳,杨盛良,杨德明,陈朝辉.复合材料断口分形维数的测定.兵器材料科学与工程.199922(3):41-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700