小麦抗条锈病相关基因cDNA片段及Yr10候选基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦条锈病是一种世界性病害,严重威胁着小麦生产,目前尚未发现成
    功克隆小麦抗锈基因的文献报道。小麦抗条锈病基因Yr10可抵抗我国目前出
    现的所有条锈菌生理小种,而且在生产上还基本没有被利用。因此,本文以Yr10
    的载体品种Moro作材料,首次应用差异显示RT-PCR技术,从小麦中分离了
    小麦与条锈菌抗性反应过程中相关基因的cDNA片段;并首次以小麦抗条锈病
    基因Yr10的近等基因系为材料,运用植物抗病基因保守序列策略,探索了分
    离小麦抗条锈病基因Yr10的候选基因的新途径,取得了以下重要进展:
     以小麦条锈菌(Puccinia striiformis West.)菌系75078和CY27分别接种含
    抗条锈病基因Yr10的小麦品种Moro,组成小麦与条锈菌亲和及不亲和互作组
    合。采用差异显示RT-PCR 使用3个锚定引物T_(11)MN(M为A、G、C简并
    碱基,N为A、G或C),与40条随机10聚体引物组合,分析上述处理及其
    与不接种对照间mRNA水平的差异。发现不同引物组合间的扩增结果差别很
    大,有的能扩增出很丰富的条带,有的只扩增出稀疏的条带,而且不同引物组
    合扩增产物间的多态性不同。
     对接种后24、48、72和96小时样品的分析,共回收到146条差异带,其
    中接种后24和48小时样品回收到78条差异带。
     进一步将这78个再扩增产物分别与其对应的总cDNA探针进行反向
    Northern杂交,获得1个在不亲和组合和亲和组合间均表达,而在不接种对照
    中不表达的片段,将这片段命名为DD-1。将DD-1克隆到T-easy载体上,进
    行序列测定。DD-1长度为316bp,在GenBank中的注册号为AY015491。同源
    性检索没有发现与其明显相似的已知序列,推测DD-1为一个新基因片段。
     Northern点杂交显示DD-1片段在亲和与不亲和组合中都有表达,但在不
    亲和组合中表达量较大。接种72小时后,DD-1在亲和组合中表达量减少,而
    在不亲和组合中表达量无明显变化。
     以Yr10的近等基因系作材料,根据多数已克隆R基因都具有的NBS区设
    计一对简并引物,用Touch down PCR程序扩增它们的cDNA,结果在Yr10/6×
    Avocet S中稳定出现一条约800bp的条带,而在其背景材料Avocet S中没有这
    条带。序列分析表明该cDNA片段长度为771bp。核苷酸序列同源性检索发现,
    
     中巳农业科学院傅土学位论文
    GenBank中有小麦抗条锈基因YrIO的序列(2000年12月登记),本实验获得
    的 cDNA片段与该 Yr!0基因高度同源(99%),只在 foo mRNA的第 613位的
    T(差异片段为G)、1006位的G(差异片段为A)和 1062位的G(差异片段为
    A)不同。氨基酸序列同源性检索发现,该片段编码氨基酸序列与Yrlo蛋白的
    203-459位氨基酸序列有99%的同源性,只在205位的L(差异片段编码氨基
    酸为V)不同。此外,该片段编码氨基酸序列还与多个R基因编码蛋白有不同
    程度的相似性u刁2们。
     简易法提取Yr 0/6 x Avocet S其背景材料Avocet S的基因组DNA,根据
    差异片段序列结果设计一对特异引物,同样用 TOuch down PCR程序进行扩增,
    得到一条在Yrlo历XAvocet S中稳定出现的约工刀kb的条带,而在其背景材料
    Av。cet S中没有这条带出现。推测该基因含有一个长度大于 1.okb的内含子。
     利用已有资源分别扩增 77fop CDNA片段对应基因的 5’部分和 3’部分。
    用分别对应于 771hp CDNA片段 ITlltThA序列的 5’端第 12〕0位,和 YrIO基
    因的第卜 18位的核昔酸序列合成一对特异引物,扩增 771 hp CDNA片段对应
    基因的 5’部分;用对应于 77fop。DNA片段 mRNA序列第 752J 位,和 Yr10
    基因的第36113630位的核苦酸序列合成一对特异引物,扩增77fop CDNA片
    段对应基因的 3’部分。以上述两对引物分别扩增 Yrlo/6XAvocet S总 cDNA
    和基因组DNA,均得到特异扩增产物,大小与预计产物长度相符合。每对引物
    从总CDNA和基因组DNA扩增得到的片段大小都相同。
     对上述 5’和 3’部分扩增产物进行克隆和测序,加上 771 hp片段的序列,
    得出 77fop cDNA对应基因的 2475nt全长 InRNA编码区序列,含一个编码 82’
    个氨基酸的ORF,其编码蛋白的一级结构具有LZ-NBS七RR结构特征。该mRNA
    对应基因中含有一个长度大于1.okb的内含子。用地高辛标记上述从Yrlo伍X
    Avocet v总。DNA中扩增的 3’部分 111 sbp片段作为探针,与 ech和 Bdl
    完全消化基因组DNA杂交,表明该基因是单拷贝的。
     本实验用于扩增1118hP DNA片段的引物只与 INO基因特异结合,该片段
    可以作为yrlo基因理想的分子标记。
Abstract
    Stripe rust (yellow rust), caused by Puccinia striiforms f. sp. tritici West., is one of the most important diseases on wheat throughout the world. Now we haven't found the cloning of wheat rust disease resistance gene. Wheat stripe rust disease resistance gene YrlO confer resistance to all the races in China. So we used wheat cultivar Moro(containing YrlO gene) and NIL of YrlO as materials to clone the resistance-related cDNA fragments and candidate gene for YrlO.
    Using the total RNA extracted from seedlings of wheat cultivar Moro (YrlO) inoculated with the avirulent isolate CY27 and the virulent 75078 of Puccinia striiformis West, respectively, we optimized silver-stained mRNA differential display RT-PCR to get a plentiful and high-resolution silver PAGE. Combining three anchored primer T11MN (M is degenerate of A, G, C; N is A, G or C) with 40 10-mer arbitrary primer, differences on mRNA level were analyzed among compatible interaction, incompatible interaction and not inoculated control. Some primer combinations amplified plentiful bands, while others combinations amplified only a few bands.
    A total of 146 polymorphic bands were reamplified from the samples collected 24, 48, 72, 96h after inoculation. A cDNA fragment DD-1 was cloned with T-easy vector after reverse Northern blotting of 78 differential displayed bands from the samples of 24 and 48h and sequencing showed that it was 316bp (GenBank accession number AYO15491). It has no obvious homologous sequences in GenBank.
    Northern dot blot hybridization analysis using probe of DD-1 as the probe uncovered that DD-1 was induced by both isolates, but the transcript abundance was less in the compatible interaction than in the incompatible interaction. Seventy-two hours after inoculation, the transcript abundance of DD-1 had no obviously change in the incompatible interaction though it decreased in the compatible interaction.
    Degenerated primers were designed according to the conserved NBS domain of R genes. Amplification was done with Touch Down PCR using the cDNAs as
    
    
    
    templates reverse transcribed from YrlO NILs mRNAs. A 771bp PCR product appeared in the resistant Fir/0/6 X Avocet S but not in the susceptible background parent Avocet S. It has a high homology (99%) with YrlO gene(accession in Dec. 2000) in both nucleotide and amino acid sequences.
    With primers designed according to the sequence of the DNA fragment, an about 2.0kb fragment was amplified from the genomic DNA of YrlO/6 X Avocet S. It showed that this gene has an about 1.0kb intron.
    To get the 5'-terminal and the 3'-terminal fragments, a pair of primers was synthesized according to 12-30 of the 771bp cDNA and 1-18 of YrlO mRNA and a pair of primers according to 752-771 of 771bp cDNA and 3611-3630 of YrlO mRNA. A 636bp fragment at the 5'-terminal and an 1118bp fragment at the 3'-terminal were amplified by PCR with the primers from the cDNA of YrlO/6X Avocet S. The same fragments were also amplified from the genomic DNA.
    The full sequence of the mRNA was gained by combining the 3 cDNA fragments. The full mRNA with 2475 nucleotides has an ORF containing 824 amino acids. The deduced protein primary structure has LZ-NBS-LRR domain. Southern blotting using the genomic DNA digested with EcoR I and BamH I and the DIG-labeled 1118bp probe showed that the obtained gene is of single copy.
    The primers using to amplify 1118bp fragment at the 3'-terminal binds to YrlO gene specifically. The 1118bp fragment is a good molecular marker of wheat stripe rust disease resistance gene YrlO.
引文
1.董海涛,何祖华,吴玉良等.水稻抗稻瘟病近等基因系mRNA差别显示分析.农业生物技术学报,6(3):223-228,1998.
    2.董继新,董海涛,何祖华,李德葆一个水稻与稻瘟病菌(Magnaporthe grisea)互作相关新基因的克隆 农业生物技术学报,9(1):41-44,2001
    3.刘红彦,小麦抗条锈病基因分子标记的建立,博士学位论文,1999
    4.马渐新,周荣华,董玉琛等.小麦抗条锈病基因定位及分子标记研究进展.生物技术通报,1:1-6,1999.
    5.牛永春,吴立人.繁-6 绵阳系小麦抗条锈性变异及对策.植物病理学报,27(1):5-8,1997.
    6.牛永春,乔奇,吴立人。豫鲁皖三省重要小麦品种抗条锈基因推导。植物病理学报,30(2):122-128,2000
    7.牛永春,刘红彦,吴立人,徐世昌 小麦品种“Lee”中抗条锈病基因的RAPD标记 高技术通讯 1998,8(12):11-14
    8.邵映田,牛永春,朱立煌等。小麦抗条锈病基因Yr10的ALFP标记。科学通报,2001,46(8):669-672。
    9.王凤乐,吴立人,万安民等.陕甘川重要小麦品种抗条锈基因分析.作物学报,20(5):589-594,1994.
    10.王石平,刘克德,王江等.用同源序列的染色体定位寻找水稻抗病基因DNA片段.植物学报,40(1):42-50,1998.
    11.吴立人,牛永春.我国小麦条锈病持续控制的策略。中国农业科学2000.33(5):46-54。
    12.肖兴国,张爱民,聂秀玲,转基因小麦的研究进展与展望,农业生物技术学报,8(2):111-116,2000
    13.徐子勤,重要禾谷类植物转基因研究,生物工程进展,21(1):59-71
    14.薛勇彪,唐定中,张燕生等.水稻基因组中R类抗病基因同源序列的分离.科学通报,43(3):277-281,1998.
    15.杨崇林,陈章良 高等植物的LRR蛋白:结构与功能,生物工程进展,17(6):43-47,1997
    
    
    16.杨华安,Stubbs R.W.中国小麦条锈菌鉴别寄主抗条锈基因初步分析.植物保护学报,17(1):67-72,1990.
    17.钟鸣,小麦抗条锈病基因分子标记的建立,博士学位论文,2000。
    18. Aarts M.G.M. , Hekkert B.L., Holub E.B. et al. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. MPMI, 11(4):251-258, 1998.
    19. Altschul S F, Thomas L M, Alejandro A S, et al. "Gapped BLAST and PSIBLAST: a new generation of protein database search programs". Nucleic Acid Res. 25: 3389-3402, 1997
    20. Anderson P A, Lawrence G J, Morrish B C, Ayliffe M A, Finnegan E J and Ellis J G. Inactivation of the flax rust resistance gene M association with loss of a repeated unit within the leucine-rich repeat coding region. The Plant Cell, 9:641-651, 1997
    21. Averboukh L., Douglas S.A., Zhao S. et al. Better gel resolution and longer cDNAs increase the precision of differential display. BioTechniques, 20:918-921, 1996.
    22. Bariana H S, Mclntosh, R A. Cytogenetic studies in wheat XV. location of rust resistance genes in VPM1 and their genetic linkage with other disease resistances genes in chromosome 2A. Genome, 36: 476-482, 1993
    23. Bassam B.J., Caetano-Anollés G. and Gresshoff P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196: 80-83, 1991.
    24. Bauer D., Müller H., Reich J. ,et al. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Research, 21(18):4272-4280, 1993.
    25. Bendahmane A, Kanyuka K and baulcombe D C. The Rx gene from potato controls separate virus resistance and cell death responses. The Plant Cell, 11:781-791, 1999
    26. Bendahmane A, Querci M, Kanyuka K and Baulcombe D C. Agrobacterium
    
    transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant Journal, 21(1) : 73-81,2000
    27. Benito P.B., Prins T. and van Kan J.A.L. Application of differential display RT-PCR to the analysis of gene expression in a plant-fungus interaction. Plant Molecular Biology, 32:947-957,1996.
    28. Bent A.F., Kunkel B.N., Dahlbeck D. et al. RPS2 of Arabidopsis thaliana : a leucine-rich repeat class of plant disese resistance genes . Science , 265(23) : 1856-1860, 1994.
    29. Bertioli D J, Schlichter U H A, Adams M J, et al. An analysis of differential display shows a strong bias towards high copy number mRNA. Nucleic Acids Reach, 23(21) : 4520-4523, 1995
    30. Bhattacharjee A. , Rutherford M.S. , Abrahamsen M.S. , and et al. Refinements in re-amplification and cloning of DDRT-PCR products. BioTechniques, 22(6) : 1048-1051, 1997.
    31. BioTechniques Books, Edited by Pardee A. and McClelland M. , Natick, MA. 1999.
    32. Bonnet S. , Prevot G. and Bourgouin C. Efficient reamplification of differential display products by transient ligation and thermal asymmetric PCR. Nucleic Acids Research, 26(4) : 1130-1131,1998.
    33. Bostein D, White R L, Skolnick M et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. An J. Hum. Genet, 32: 314-331,1980.
    34. Brandwagt B F, Mesbah L A, Takken F L W, et al. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternate f. sp. lycopersici toxin and fumonisin B1. PNAS, 97(9) : 4961-4966,2000
    35. Briggs S.P. and Johal G.S. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 258(6) :985-987,1992.
    36. Brightbill H D, Libraty D H, Knrtzik S R et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science, 285: 732-739,1999
    
    
    37. Brommonschenkel S H, Frary A, Frary A and Tanksley S D. The broad-spectrum tospovirus resistnce gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact, 13(10) : 1130-1138, 2000
    38. Bryan G J, Collin A J, Stephenson P et al. Isolation and characterization of microsatellites from hexaploid bread wheat. Theor Appl Genet, 94: 557-563,1997
    39. Bryan G T, Wu K, Farrall L et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 12:2033-2046,2000
    40. Buess M. , Moroni C. and Hirsch H.H. Direct identification of differentially expressed genes by cycle sequencing and cycle labelling using the differential display PCR primers. Nucleic Acids Research, 25(11) :2233-2235, 1997.
    41. Buschges R, Hollricher K, Panstruga R et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 88: 695-705,1997
    42. Cai D. , Kleine M. , Kifle S. et al. Positionl cloning of a gene for nematode resistance in sugar beet. Science , 275(7) : 832-834 , 1997.
    43. Carrington J C, Bisseling T, Collmer A, and Jones J D G. Highlights from the ninth international congress on molecular plant-microbe interactions. The Plant Cell, 11:2063-2069, 1999
    44. Chapman M S, Qu N, Pascoe S, et al. Isolation of differentially expressed sequence tags from steroid-responsive cells using mRNA differential display. Mol Cell Endocrinol, 108(1) : 1-7, 1995
    45. Chen X. M. , Line R.F. and Leung H. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. Theor. Appl. Genet., 97:345-355, 1998.
    46. Chiang P, Trbusek M, Osemlak-Hanzlik M, and Kurnit D M. Rapid method for the elution and analysis of PCR products separated on high resolution acarylamide gels. BioTechniques, 18(1) : 32-40, 1995
    47. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA,
    
    NA and proteins from cell and tissue samples. BioTechniques, 15(3) :532-536, 1993.
    48. Chomczynski P. and Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162: 156-159,1987.
    49. Chung C.T. , Niemela S.L. and Miller R.H. One-step preparation of competent Escherichia coli: transformation and storage of bacteril cells in the same solution. Proc. Natl. Acad. Sci. USA, 86:2172-2175, 1989.
    50. Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S and Pryor T. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. The Plant Cell, 11: 1365-1376,1999
    51. Cooley M B, Pathirana S, Wu H, Kachroo P and Klessig D F. M Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. The Plant Cell, 12: 663-676, 2000
    52. Corton J.C. and Gustafsson J. Increased efficiency in screening large numbers of cDNA fragments generated by differential display. BioTechniques, 22(5) :802-810,1997.
    53. Daniel G, Amanda G F, Matthias M. Rational primer design greatly improves differential display-PCR(DDRT-PCR). Nucleic Acids Research, 25(11) : 2239-2240,1997
    54. Diatchenko L. , Lau Y.C. , Campbell A.P. et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA, 93:6025-6030,1996.
    55. Dixon M S, Golstein C, Thomas C M, et al. Genetic complexity of pathogen perception by plants: the example of Rcr3, a tomato gene required specifically by Cf-2. Proc. Natl. Acad. Sci. USA, 97(16) : 8807-8814,2000
    56. Dixon M S, Hatzixanthis K, Jones D A, Harrison K H and Jones J D G. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. The Plant Cell, 10: 1915-1925, 1998
    
    
    57. Dixon M S, Jones D A, Keddie J S, Thomas C M, Harrison K and Jones J D G. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 84: 451-459, 1996
    58. Dodds P N, Lawrence G J and Ellis J G. Six amino acid changes confined to the leucine-rich repeat β-strand/ β-turn motif determine the difference between the P and P2 ust resistance specificities in flax. Plant Cell, 13: 163-179,2001
    59. Doss R.P, Differential display without radioactivity-a modified procedure . BioTechniques, 21(3) :408-412, 1996.
    60. Dudler R. , Hertig C. , Rebmann G. et al. A pathogen-induced wheat gene encodes a protein homologou s to glutathione-s-transferases. Molecular Plant-Microbe Interactions, 4(1) : 14-18, 1991.
    61. Ellis J G, Lawrence G J, Luck J E and Dodds P N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene speciicity. The Plant Cell, 11: 495-506, 1999
    62. Ellis J, Dodds P, and Pryor T. The generation of plant disease resistance gene specificities. Trends in Plant Science, 5: 373-379,2000
    63. Feuillet C. , Reuzeau C., Kjellbom P. et al. Molecular characterization of a new type of receptor-like kinase(wlrk) gene family in wheat. Plant Molecular Biology, 37:943-953, 1998.
    64. Feuillet C. , Schachermayr G. , and Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. The Plant Journal, 11(1) : 45-52,1997.
    65. Fischer A. , Saedler H. and Theissen G. Restriction fragment length polymorphism-coupled domain-directed differential display : a highly efficient technique for expression analysis of multigene families. Proc. Natl. Acad. Sci. USA, 92:5331-5335, 1995.
    66. Flor H H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971,9:275-296
    67. Frederick R D, Thilmony R L, Sessa G, and Martin G B. Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the
    
    activation loop of the tomato Pto kinase. Mol. Cell, 1998,2: 241-245
    68. Goormachtig S. , Valerio-Lepiniec M. , Szczyglowski K. , et al. Use of differential display to identify novel Sesbania rostrata genes enhanced by Azorhizobium caulinodans infection. Molecular Plant-Microbe Interactions, 8(6) : 816-824,1995.
    69. Gopalan S, Bauer D W, Alfano J R, et al. Expresson of the Pseudomonas syringae avimlence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicty(Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. The Plant Cell, 8: 1095-1105,1996
    70. Grant M.R. , Godiard L. , Straube E. et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science , 269(11) : 843-846 , 1995.
    71. Gu Y, Yang C, Thara V K,et al. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. The Plant Cell, 12: 771-785, 2000
    72. Guimara es M J, Lee F, Zlotnik A and McClanahan T. Differential display by PCR: novel findings and applications. Nucleic Acids Research, 23(10) : 1832-1833,1995
    73. Halterman D, Zhou F, Wei F, Wise R P and Schulze-Lefert P. The MLA6 coiled-coil, NBS-LRR protein confers AvrMlaa6-dependent resistance specificity to Blumeria graminis f. Sp. hordei in barley and wheat. The Plant Journal, 25(3) : 335-348, 2000
    74. Hammond-Kosack K E and Jones J D G. Plant disease resistance genes, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 575-607, 1997
    75. Hammond-kosac K, Jones J D G. Resistance gene-dependent plant defense responses[J]. Plant Cell, 1996, 8: 1773-1791.
    76. Hannappel U., Balzer H.J. and Ganal M.W. Direct isolation of cDNA sequence from specific chromosomal regions of the tomato genome by the differential display technique. Mol. Gen . Genet., 249 : 19-24 ,1995.
    77. He ZuHua , Dong HaiTao , Cheng ShiJun , et al. Molecular cloning of
    
    differentially expressed novel rice genes induced by Magnaporthe grisea. Chinese Science Bulletin, 42(20) : 1748-1749, 1997.
    78. Hoisington D, Khairallah M, Reeves T et al. Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA, 96: 5937-5943, 1999
    79. Honee G. Engineered resistance against fungal plant pathogens. European Journal of Plant Pathology, 105: 319-326, 1999
    80. Hwang C, Bhakta A V, Truesdell G M, et al. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. The Plant Cell, 12: 1319-1329, 2000
    81. Ikonomov O.C. and Jacob M.H. Differential display protocol with selected primers that preferentially isolates mRNAs of moderate-to low-abundance in a microscopic system . BioTechniques, 20:1030-1042, 1996.
    82. Innes R W. Plant-pathogen interactions: unexpected findings on signal input and output. The Plant Cell, 8: 133,1996
    83. Jia Y, McAdams S A, Bryan G T B, Hershey H P and Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 19(15) : 4004-4014, 2000
    84. Johal G.S. , and Briggs S.P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science , 258(6) : 985-987, 1992.
    85. Jones D.A. , Thomas C.M. , Hammond-Kosack K.E. et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 266(4) : 789-791, 1994.
    86. Joshi C.P. , Kumar S. and Nguyen H.T. Application of modified differential display technique for cloning and sequencing of the 3' region from three putative members of wheat HSP70 gene family. Plant Molecular Biology,30: 641-646,1996.
    87. Joshi L. , Leger R.J.St. , Roberts D.W. Isolation of a cDNA encoding a novel subtilisin-like protease (PrlB) from the entomopathogenic fungus, Metarhizium anisopliae using differential display-RT-PCR. Gene, 197:1-8,1998.
    
    
    88. Jurecic R., Nachtman R.G., Colicos S.M. and Belmont J.W. Identification and cloning of differentially expressed gengs by long-distnce differential display . Analytica Biochemistry, 259:235-244, 1998.
    89. Kawasaki T, Henmi K, Ono E et al. The small GTP-binding protein Rac is a regulator of cell death in plants. PNAS, 96: 10922-10926, 1999
    90. Kawchuk L M, Hachey J, Lynch D R, et al., Tomato Ve disease resistance genes encode cell surface-like receptors. PNAS, 98(11) : 6511-6515, 2001.
    91. Khushbeer M, Lisa F, Walter C M, et al. Interaction and effect of annealing temperature on primers used in differential display RT-PCR. Nucleic Acids Research, 26(3) : 854-856,1998
    92. Kilian A, Steffenson B J, Saghai M M A and Kleinhofs A. RFLP markers linked to the durable stem rust resistance gene Rpg1 in barley. Mol Plant Microbe Interact, 7:298-301, 1994
    93. Kim C Y, Lee S, Park H C, et al. Identification of rice blast fungal elicitor-responsive genes by differential display analysis. MPMI, 13(4) : 470-474, 2000
    94. Kobe B and Deisenhofer J. The leucine-rich repeat: a versatile binding motif. TIBS, 19:415-421, 1994
    95. Kumar S.P.D. , Whithm S. , Choi D. et al. Transponson tagging of tobacco mosaic virus resistance gene N : its possible role in the TMV-N-mediated signal transduction pathway . Proc. Natl. Acad. Sci. USA, 92: 4175-4180,1995.
    96. Ling P., Zhu W.M. , Zhang x.y. , et al. Differential display using one-base anchored oligo-dT primers , Nucleic Acids Research, 22(25) :5763-5764,1994.
    97. Lagudah E S, Moullet O and Appels R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich regon at the Cre3 nematode resistance locus of wheat. Genome, 40: 659-665, 1997
    98. Lamb C. A ligand-receptor mechanism in plant-pathogen recognition. Science, 274(20) :2038-2039,1996.
    99. Lapopin L, Gianinazzi-Pearson V, and Franken P. Comparative differential RNA display analysis of arbuscular mycorrhiza in pisum sativum wild type and a mutant defective in late stage development. Plant Molecular Biology, 41: 669-
    
    677,1999
    100. Lauge R, Joosten M H, Haanstra J P et al. Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proc Natl Acad Sci USA, 95: 9014-9018, 1998
    101. Lawrence G.J. , Finnegan E.J. , Ayliffe M.A. et al. The L6 gene for flax rust resistance is related to the Arabidopsisbacterial resistance gene RPS2 and the tobacco viral resistance gene N. The Plant Cell, 7: 1195-1206, 1995.
    102. Lee S C, Hong J K, Kim Y J and Hwang B K. Pepper gene encoding thionin is differentially induced by pathogens, ethylene and methyl jasmonate. Physiological and Molecular Plant Pathology, 56: 207-216, 2000
    103. Leister R T and Katagiri F. A resistance gene product of the nucleotide binding site-leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. The Plant Journal, 22(4) : 345-354, 2000
    104. Li F.S. , Barnathan E.S. and Kariko K. Rapid method for screening and cloning cDNAs generated in differential mRNA display : application of Northern blot for affinity capturing of cDNAs. Nucleic Acids Research , 22(9) : 1764-1765, 1994.
    105. Liang P, Parde A B Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257(14) : 967-971, 1992.
    106. Liang P. , Averboukh L. and Pardee A.B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Research, 21(14) :3269-3275,1993.
    107. Lisitsyn N. , Lisitsyn N. and Wigler M. Cloning the differences between two complex genomes. Science , 259:946-951,1993.
    108. Logemann J., Schell J. and Willmitzer L. Improved method for the isolation of RNA from plant tissues. Analytical Biochemistry, 163: 16-20, 1987.
    109. Lohmann J. , Schickle H. and Bosch T.C.G. REN display, a rapid and efficient method for nonradioactive differential disply and mRNA isolation. BioTechniques, 18(2) :200-202, 1995 .
    110. Luck J E, Lawrence G J, Dodds P N et al. Regions outside of the leucine-rich
    
    repeats of flax rust resistance proteins play a role in specificity determination. The Plant Cell, 12: 1367-1377, 2000
    111. Malhotra K. , Foltz L. , Mahoney W.C. and et al. Interaction and effect of annealing temperature on primers used in differential display RT-PCR. Nucleic Acids Research, 26(3) :854-856,1998.
    112. Martin G.B., Brommonschenkel S.H., Chunwongse J. et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262(26) : 1432-1436, 1993.
    113. Martin-Laurent F, Franken P, and Gianinazzi S. Screening of cDNA fragments generated by differential RNA display. Analytical Biochemistry, 228:182-184, 1995
    114. Martin-Laurent F., Tuinen D.V., Dmas-Gaudot E. , et al. Differential display analysis of RNA accumulation in arbuscular mycorrhiza of pea and isolation of a novel symbiosis-regulated plant gene. Mol Gen Genet, 256:37-44, 1997.
    115. Mazeyrat F. , Mouzeyar S. , Nicolas P. , et al. Cloning, sequence and characterization of a sunflower (Helianthus annum L.) pathogen-induced gene showing sequence homology with auxin-induced genes from plants. Plant Molecular Biology, 38:899-903, 1998.
    116. McDowell J M, Dhandaydham M, Long T A et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. The Plant Cell, 10: 1861-1874,1998
    117. McIntoshi R A. Close genetics linkage of genes confering adult-plant resistance to leaf and stripe rust in wheat. Plant Pathology, 41: 523-527, 1992
    118. McIntoshi R A, Hart G E, Devos K M et al. Catalogue of gene symbols for wheat, Proceeding of the 9th international wheat genetics symposium.5:129-145, 1998
    119. McIntoshi R A, Art C J. Genetic linkage of the Yr1 and Pm4 for stripe rust and powdery mildew resistances in wheat. Euphytic, 89:401-403, 1996
    120. McIntoshi R A, Hart g e, Gale M D. Catalogue of gene symbols for wheat, Proceeding of the 8th international wheat genetics symposium., 1333-1500,1993
    
    
    121. Milligan S B, Bodeau J, Yaghoobi J et al. The root nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell, 10: 1307-1319,1998
    122. Mindrinos M., Katagiri F., Yu G. et al. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats . Cell, 78:1089-1099, 1994.
    123. Molina A., Gorlach J., Volrath S. et al. Wheat genes encoding two types of PR-1 proteins are pathogen inducible , but do not respond to activators of systemic acquired resistance. Molecular Plant-Microbe Interactions, 12(1) :53-58,1999.
    124. Mou L, Miller H, Li J, et al. Improvements to the differential display method for gene analysis. Biochem Biophys Res Commun, 199(4) : 564-569, 1994
    125. Mou L, Miller H, Li J, Wang E, and Chalifour L. Improvements to the differential display method for gene analysis. Biochemical and Biophysical Research Communications, 199(2) : 564-569,1994
    126. Mun oz C.I. , and Bailey A.M. A cutinase-encoding gene from Phytophthora capsici isolated by differential display RT-PCR. Curr Genet, 33:225-230, 1998.
    127. Nagaoka T. , Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet., 94:597-602, 1997.
    128. Ni W, Tahrendorf T, Balance M, et al. Stress response in alfalfa (Medicago sativa L.): Transcriptional activation of phenylpropanoid pathway genes in elicitor-induced cell suspension cultures. Plant Mol. Biol. [J]. 1995, 30: 427-438.
    129. Noel L., Moores T L, van der Biezen E A, et al. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis . The Plant Cell, 11:2099-2111, 1999.
    130. Pan Q, Liu Y, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D and Fluhr R. Comparative genetics of nucleotide binding site-Leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics, 155: 309-322, 2000
    
    
    13I.Parker J E, Coleman M J, Szabo V, et al. The arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. The Plant Cell, 9: 879-894,1997
    132. Poirier G M-C, Pyati J, Wan J S and Erlander M G. Screening differentially expressed cDNA clones obtained by differential display using amplified RNA. Nucleic Acids Research, 25(4) : 913-914,1997
    133. Reuber T.L. and Ausubel F.M. Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. The Plant Cell, 8:241-249, 1996.
    134. Rivkin M.I. , Vallejos C.E. and McClean. Disease-resistance related sequences in common bean. Genome, 42:41-47, 1999.
    135. Robert O. , Abelard C. and Dedryver F. Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Molecular Breeding, 5:167-175, 1999.
    136. Rommens C M, and Kishore G M. Exploiting the full potential of disease-resistance genes for agricultural use. Current Opinion in Biotechnology, 11(2) : 120-125, 2000
    137. Ross R, Kumpf K and Reske-Kunz A B. PCR-amplified cDNA probes for verification of differentially expressed genes. BioTechniques, 22(5) : 894-897, 1997
    138. Salmeron J M, Oldroyd G E D, Rommens C M T, et al. Tomato Prfis a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 86: 123-133,1996
    139. Schachermayr G., Feuillet C. and Keller B. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Molecular Breeding, 3: 65-74,1997.
    140. Seah S, Spielmeyer W, Jahier J, Sivasithamparam K, and Lagudah E S. Resistance gene analogs within an introgressed chromosomal segment derived from Ttiticum ventricosum that confers resistance to nematode and rust pathogens in wheat. MPMI, 13(3) : 334-341,2000
    
    
    141. Seah S., Sivasithamparam K., Karakousis A. et al. Cloning and characterisation of a fmily of disease resistance gene analogs from wheat and barley. Theor. Appl. Genet., 97:937-945, 1998.
    142. Sen A., Balyan H.S., Sharma P.C. et al. DNA amplification fingerprinting(DAF) as a new source of molecular markers in bread wheat. Wheat Information Service, 85:35-42,1997.
    143. Shan L, Thara V K, Martin G B, et al. The pseudomonas AvrPto protein is differentially recognized by tomato and tobacco is localized to the pjant plasma membrane. Plant Cell, 12: 2323-2338, 2000
    144. Shen K.A. , Meyers B.C. , Islam-Faridi et al. Reistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. MPMI, 11(8) :815-823, 1998.
    145. Silver sequence? DNA sequencing system technical manual. Promega Corporation.
    146. Simons G, Groenendijk J, Wijbrandi J et al. Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. The Plant Cell, 10: 1055-1068, 1998
    147. Singh R P. Genetic association of leaf rust resistance gene Lr34 with adult resistance to stripe rust in bread wheat. Phytopathology, 82:835-838, 1992
    148. Sompayrac L. , Jane S. , Bum T.C. and et al . Overcoming limitations of the mRNA differential display technique. Nucleic Acids Research, 23(22) :4738-4739,1995.
    149. Song W.Y., Wang G.L., Chen L.L. et al. A receptor kinase-like protein encoded by the rice disease resistance gene , Xa21 . Science , 270(15) : 1804-1806 ,1995.
    150. Speulman E., Bouchez D., Holub E.B. et al. Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana .The Plant Journal, 14(4) :467-474,1998.
    151. Spielmeyer W. , Robertson M. , Collins N. et al. A superfamily of disease resistance gene analogs is located on all homoeologous chromosome groups of wheat (Triticum aestivum). Genome, 41:782-788,1998.
    
    
    152. Staskawicz B.J. , Ausubel F.M. , Baker B.J. et al. Molecular genetics of plant disease resistance. Science, 268(5) :661-667,1995.
    153. Stein N, Feuillet C, Wicker T, et al. Subgenome chromosome walking in wheat: a 450-kb physical conting in Triticum monococcum L. Spans the Lr10 resistance locus in hexaploid wheat(Triticum aestivum L.). Proc. Natl. Acad. Sci. USA. [J]. 2000,97(24) : 13436-13441.
    154. Sun G.L. , Fahima T. , Korol A.B. et al. Identifiction of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat Triticum dicoccoides. Theor. Appl. Genet., 95:622-628,1997.
    155. Steiner JJ, Poklemba CJ, Fjellstrom RG and Elliott LF. A rapid one-tube genomic DNA extraction process for PCR and RAPD analyses. Nucleic Acids Research, 1995,23 (13) : 2569-2570.
    156. Sung Y. J. and Denman R.B. Use of two reverse transcriptases eliminates false-positive results in differential display. BioTechniques, 23:462-468,1997.
    157. Swiderski M R, Innes R W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J., 26(1) :101-12,2001.
    158. Tai T, Dahlbeck D, Clark E T et al. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. PNAS, 96(24) : 14153-14158,1999
    159. Takahashi N, Takahashi Y and Putnam F W. Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich α2-glycoprotein of human serum. Proc. Natl. Acad. Sci. USA, 82:1906-1910, 1985
    160. Takemoto D, Hayashi M, Doke N, Mishimura M and Kawakita K. Isolation of the gene for EILP, an elicitor-inducible LRR receptor-like protein, from tobacco by differential display. Plant Cell Physiol, 41(4) : 458-464,2000
    161. Takken F L W, Schipper D, Nijkamp H J J and Hille J. Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. The Plant Journal, 14(4) : 401-411, 1998
    162. Tang X, Xie M, Kim Y J, et al. Overexpression of Pto activates defense
    
    responses and confers broad resistance. The Plant Cell, 11: 15-29,1999
    163. Taylor C.B. Unraveling disease resistance specificities. The Plant Cell, 9(4) :466-469 ,1997.
    164. Thomma B P H J, Eggermont K, Penninckx I, et al. Separate jasmonate-dependent and salicylate-dependent defense pathways in Arabidopsis are essential for resistant to distinct microbial pathogens [J]. Proc. Natl. Acad. Sci. USA, 1998,95: 15107-15111.
    165. Traut T W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. J Biochem, 222: 9-19, 1994
    166. Truesdell G.M. and Dikman M.B. Isolation of pathogen/stress-inducible cDNAs from alfalfa by mRNA differential display. Plant Molecular Biology, 33:737-743, 1997.
    167. Ukens S, Mauch-mani B, Moyer M, et al. Acquired resistance in Arabidopsis[J]. Plant Cell, 1992,4:645-656.
    168. van der Vossen E A, van der Voort J N, Kanyuka K, et al. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant Journal, 23(5) : 567-76, 2000
    169. Van Gelder R N, Zastrow M E, Yool A, et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA, 87: 1663-1667, 1990
    170. V6geli-Lange R. , Burckert N. , Boiler T. , et al. Rapid selection nd classification of positive clones generated by mRNA differential display. Nucleic Acids Research , 24(7) : 1385-1386, 1996.
    171. V6 geli-Lange, Biirckert N, Boiler T and Wiemken A. Rapid selection and classification of positive clones generated by mRNA differential display. Nucleic Acids Research, 24(7) : 1385-1386, 1996
    172. Vos P, Simons G, Jesse T, et al. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids, Nat Biotechnol, 16(13) : 1365-1369, 1998
    
    
    173. Wang X.K. , Li X. and Feuerstein G.Z. Use of novel downstream primers for differential display RT-PCR. BioTechniques, 24:382-386,1998.
    174. Wang Z, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal, 19(1) : 55-64, 1999
    175. Warren R F, Henk A, Mowery P, Holub E and Innes R W. A mutation within the leucine-rich repeat domain of the arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. The Plant Cell, 10:1439-1452, 1998
    176. Weaver K.R., Caetano-Anolles G., Gresshoff P.M. and Callahan L.M. Isolation and cloning of DNA amplification products from silver-stained polyacrylamide gels. BioTechniques , 16(2) :226-227, 1994.
    177. Whitham S A, Anderberg R J, Chisholm S T and Carrington J C. Arabidopsis RTM2 gene is necessary for specific restriction of tobacco Etch virus and encodes an unusual small heat shock-like protein. The Plant Cell, 12: 569-582, 2000
    178. Whitham S. , Dinesh-Kumar S.P. , Choi D. et al. The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the Interleukin-1 receptor. Cell, 78:1101-1115,1994.
    179. Williams g k, Kubelid A R, Kenneth J L et al. DNA polymorphism amplified by arbitry primers are useful as genetic markers. Nuleic. Acids Res., 18: 6531-6535, 1990
    180. Wu S.M., Blomberg L.A. and Chan W.Y. Recovery of unabeled PCR product from polyacrylamide gel for sequencing . BioTechniques,21(3) :358-362, 1996 .
    181. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M and Turner J G. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science, 291(5501) : 118-120,2001
    182. Yoshimura S. , Yamanouchi U. , Katayose Y. et al. Expression of Xal, a bacterial blight-resistance gene in rice , is induced by bacterial inoculation . Proc. Natl. Acad. Sci. USA, 95: 1663-1668 ,1998.
    
    
    183. Yu Y.G. , Buss G.R. and Saghai Maroof M.A. Isolation of a superfamily of candidate disease-resistance gene in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA , 93:11751-11756, 1996.
    165. Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application. Publication No. EP0534858. Paris: European Patent Office. 1993
    184. Zhang H, Zhang R, and Liang P. Differential screening of gene expression difference enriched by differential display. Nucleic Acids Research, 24(12) : 2454-2455, 1996
    185. Zhao S.C. , Ooi S.L., and Pardee A.B. New primer strategy improves precision of differential disply. BioTechniques, 18(5) :842-850, 1995 .
    186. Zhen W, Chen X, Liang H et al. Enhanced late blight resistance of transgenic potato expressing glucose oxidase under the control of pathogen-inducible promoter. Chinese Science Bulletin, 45(21) : 1982-1986, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700