Mg_2(Si,Sn)合金的固溶限、点缺陷和热电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg2(Si,Sn)基合金热电材料具有成本低廉、环境友好等特点,是一类本领域同行广泛关注的新型绿色热电材料。但相比较目前性能最佳的热电材料而言,这个体系还存在制备困难、固溶限尚未确定、晶格热导率偏高、P型材料的性能太低等问题。本文重点研究了Mg2(Si,Sn)合金的固溶限、点缺陷和热电性能,取得如下主要成果:
     (一)确定了不同制备方法下Mg2Si1-xXSnx合金材料中的固溶区间。本文采用助熔剂法和钽管封装法制备了Mg2Sii-xSnx(x=0.2,0.4,0.5,0.6,0.8)的合金试样,根据XRD和EPMA分析,确定了MgzSi-Mg2Sn合金材料在不同制备方法下的固溶限。研究发现MgzSi1-xSnx材料中存在Mg空位和间隙Mg等点缺陷,点缺陷Mg空位的存在导致了第二相的产生,并对材料的热电性能有着显著的影响。
     (二)在Mg2Si0.4Sn0.6-xSbx体系中提出了点缺陷工程的概念。为了在保持电性能的前提下降低Mg2Si1-xSnx合金材料的晶格热导率,本文首次通过大量掺杂Sb和调节Mg含量,控制Sb掺杂原子、Mg空位和间隙位Mg原子三种点缺陷在合金材料中的协调作用,有效降低了晶格热导率并同时优化了载流子浓度,显著提升了材料的热电性能。研究发现,Mg2Si0.4Sn0.6-xSbx体系中,Mg空位和间隙位Mg原子可以稳定共存,通过调整Sb和Mg含量可以在一定范围内控制Mg空位和间隙位Mg原子浓度。Mg空位是一种有效的声子散射中心,对降低材料声子热导率具有显著作用。通过添加Zn,可以调节材料电子结构、优化材料电学性能。Zn掺杂Mg2Si0.4Sn0.5Sb0.1的ZT值在750K达到1.1以上。
     (三)通过受主掺杂和赝三元合金化提高P型Mg2X(X=Si,Ge,Sn)合金的热电性能。研究发现, Ag是一种比B更有效的受主杂质。通过控制材料中间隙Mg原子含量、减少材料的少子浓度,将材料的热电优值提高了35%。对Mg2(Si0.33Ge0.33Sn0.33)和Mg2(Si0.2Ge0.2Sn0.6)两个赝三元合金体系的高温霍尔测试结果表明,两个体系中电子/空穴迁移率的比值相差不大,但是Mg2(Si0.33Ge0.33Sn0.33)的电导率和热导率具有相对优势,更适合作为P型掺杂的基体。Ag掺杂Mg2(Si0.33Ge0.33Sn0.33)的ZT值达到0.4左右,是至今报道的P型Mg2Si基材料热电性能的最高值。
Mg2(Si,Sn)-based alloy system is a promising mid-temperature TE material and being paid increasing attention because of its low cost, environmental friendliness and high performance. However, compared with the best thermoelectric materials, there are still some problems to be solved in Mg2(Si,Sn)-based materials. Firstly, it's too hard to synthesize homogeneous and stoichiometric samples, and the miscibility gap of the alloys is still in controversy. Secondly, the high lattice thermal conductivity still suppresses their thermoelectric performance. Thirdly, the unmatched performance of n-type and p-type materials greatly limits their commercial application due to the quite low p-type ZT. Aiming at these problems, we systematically investigated the solid solubility, the point defects of Mg2(Si,Sn) alloys and improved the thermoelectric performance of n-type and p-type alloys. The main results are summarized as follows:
     (Ⅰ)We employed two preparation methods:B2O3flux-assistant melting and Ta-tube shielded melting followed by quenching to determine the miscibility gap of the solid solutions. Mg2Si1-xSnx(x=0.2,0.4,0.5,0.6,0.8) alloy samples were synthesized, whose XRD patterns showed their phase is strongly dependent on the cooling rate of quenching. Comparing with the previous results, we redetermined miscibility gap of the solid solutions of Mg2S1and Mg2Sn, and their binary phase diagram was reshaped. Two kinds of dominant point defects were found in the system:Mg interstitials and Mg vacancies, which can tune the electrical conductivities and reduce the thermal conductivities, respectively. The two point defects were believed to impose significant and direct impacts on the thermoelectric performance of Mg2(Si,Sn) system, which are more remarkable than those of the phase compositions and microstructures.
     (Ⅱ) It is first time that the concept of "point defect engineering" is proposed to reduce the thermal conductivities of Mg2Si1-xSnx alloys. We simultaneously controlled the content of defects in the alloys, i.e. Sb substitution, Mg vacancies and Mg interstitials, by adjusting the Mg content and Sb substitution on Si sites. As a result, two desirable effects were realized:the electrical properties were improved due to the optimized carrier concentration and the thermal conductivities were greatly reduced by the enhanced point scattering on phonons. It was proved that unlike Frenkel defects Mg vacancies and Mg interstitials can coexist in Mg2Si1-xSnx solid alloys instead of recombining. In the system, Mg interstitials mainly act as donors to increase carrier concentration while two roles are played by the Mg vacancies, one is to tune the carrier concentration as acceptors and the other one is to reduce the thermal conductivity as point scattering centers. The point defect engineering can be carried out through controlling the content of Sb and Mg. The electrical properties can be optimized by Zn doping and the maximum state-of-the-art figure of merit ZT>1.1was attained at750K in Mg2Si0.4Sn0.5Sb0.1specimen.
     (Ⅲ) We improved the thermoelectric performance of P-type Mg2X(X=Si,Ge,Sn) based materials by two methods:acceptor doping and pseudo-ternary alloying. It was found that Ag is a more effective acceptor dopant than B. Mg content was controlled to reduce the electron concentration. The ZT of p-type was increased by35%. The results of high temperature Hall measurements showed that the mobility ratio of electrons to holes of Mg2(Si0.33Ge0.33Sn0.33) and Mg2(Si0.2Ge0.2Sn0.6) pseudo-ternary alloys is almost the same. Mg2(Si0.33Ge0.33Sn0.33) is a better P-type thermoelectric system, which exhibits lower thermal conductivity and higher electrical properties. The reduction in thermal conductivities of Ag doped Mg2(Si0.33Ge0.33Sn0.33) resulted in an increase in ZT and the maximum figure of merit was0.4, which was the highest value ever reported.
引文
[1]Kamat P V. Meeting the clean energy demand:Nanostructure Architectures for Solar Energy Conversion [J]. J Phys Chem C,2007,111(7):2834-2860.
    [2]Bell L E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems [J]. Science,2008,321(5895):1457-1461.
    [3]Rowe D M. Thermoelectric-power Generation [J]. lee Reviews,1978,125(NOV): 1113-1136.
    [4]Disalvo F J. Thermoelectric Cooling and Power Generation [J]. Science,1999, 285(285):703-706.
    [5]Snyder G J, Toberer E S. Complex Thermoelectric Materials [J]. Nat Mater,2008, 7(2):105-114.
    [6]Tritt T M. Thermoelectric Materials-Holey and Unholey Semiconductors [J]. Science,1999,283(5403):804-805.
    [7]Cole T. Thermoelectric Energy-conversion with Solid Electrolytes [J]. Science, 1983,221(4614):915-920.
    [8]Sales B C. Thermoelectric Materials-Smaller is Cooler [J]. Science,2002, 295(5558):1248-1249.
    [9]Vining C B. An Inconvenient Truth About Thermoelectrics [J]. Nat Mater,2009, 8(2):83-85.
    [10]Littman H, Davidson B. Theoretical Bound on Thermoelectric Figure of Merit from Irreversible Thermodynamics [J]. J Appl Phys,1961,32(2):217-&.
    [11]Rowe D M, Modern Thermoelectrics [M]. Reston Publishing Company,Inc.,1996.
    [12]Rowe D M. Thermoelectrics Handbook:Macro to Nano [M]. Crc Press Taylor & Francis Group.2006.
    [13]Dresselhaus M S, Chen G, Tang M Y, Yang, R G, Lee H,Wang D Z, Ren Z F, Fleurial J P, Gogna P, New Directions For Low-Dimensional Thermoelectric Materials [J]. Adv Mater,2007,19(8):1043-1053.
    [14]Lan Y C, Minnich a J, Chen G, Ren Z F. Enhancement of Thermoelectric Figure-Of-Merit by a Bulk Nanostructuring Approach [J]. Adv Funct Mater,2010,20(3): 357-376.
    [15]Rowe D M. General Principles and Basic Consierations [M]. New York:Crc Press, 2005.
    [16]Seebeck T J, Magnetische Polarisation Der Metalle Und Erze Durch Temperatur-Differenz [J]. Abhandlungen Der Deutschen Akademie Der Wissenschaften Zu Berlin,1822,265-373.
    [17]Peltier J C, Nouvelles Experiences Sur La Caloricite Des Courans Electriques [J]. Annales De Chimie,1834,371-387.
    [18]Thomson W, On A Mechanical Theory of Thermoelectric Currents [J]. Proceedings of the Royal Society of Edinburgh,1851,91-98.
    [19]lordanishvili M V, A F loffe and Origin of Modern Semiconductor Thermoelectric Energy Conversion [J].17th Int Conf on Thermoelectrics,1998,1,37-42.
    [20]Blakemore J S. Semiconductor Statistics [M]. New York:Pergamon Press,1962.
    [21]Nolas G S, Morelli D T, Tritt T M. Skutterudites:a Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications [J]. Annu Rev Mater Sci,1999,29,89-116.
    [22]Kovnir K A, Shevelkov A V. Semiconducting Clathrates:Synthesis, Structure and Properties [J]. Uspekhi Khimii,2004,73(9):999-1015.
    [23]Toberer E S, May a F, Snyder G J. Zintl Chemistry For Designing High Efficiency Thermoelectric Materials [J]. Chem Mat,2010,22(3):624-634.
    [24]Mastronardi K, Young D, Wang C C,Khalifa P, Cava R J. Ramirez A P, Antimonides with the Half-Heusler Structure:New Thermoelectric Materials [J]. Appl Phys Lett,1999,74(10):1415-1417.
    [25]Hicks L D, Dresselhaus M S. Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit [J]. Phys Rev B,1993,47(19):12727-12731.
    [26]Yu H, Gibbons P C, Buhro W E. Bismuth, Tellurium, and Bismuth Telluride Nanowires [J]. J Mater Chem,2004,14(4):595-602.
    [27]Harman T C, Taylor P J, Walsh M P, LaForge B E, Quantum Dot Superlattice Thermoelectric Materials and Devices [J]. Science,2002,297(5590):2229-2232.
    [28]Takashiri M, Borca-Tasciuc T, Jacquot A, Miyazaki K, Chen G, Structure and Thermoelectric Properties of Boron Doped Nanocrystalline Si0.8Ge0.2 Thin Film [J]. J Appl Phys,2006,100(5):054315.
    [29]Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B, Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites [J]. Appl Phys Lett,2005,86(6):062111
    [30]Zhao X B, Ji X H, Zhang Y H, Lu B H, Effect of Solvent on the Microstructures of Nanostructured Bi2Te3 Prepared by Solvothermal Synthesis [J]. J Alloy Compd, 2004,368(1-2):349-352.
    [31]Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States [J]. Science,2008,321(5888): 554-557.
    [32]Jaworski C M, Kulbachinskii V. Heremans J P. Resonant Level Formed by Tin in Bi2Te3 and the Enhancement of Room-Temperature Thermoelectric Power [J]. Phys Rev B,2009,80(23):233201.
    [33]Pei Y Z, Lalonde a D, Heinz N A, Shi X Y, Iwanaga S, Wang H, Chen L D, Snyder G J, Stabilizing the Optimal Carrier Concentration For High Thermoelectric Efficiency [J]. Adv Mater,2011,23(47):5674-5678.
    [34]Poudel B, Hao Q, Ma Y, Lan Y C, Minich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z, High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys [J]. Science,2008,320(5876):634-638.
    [35]Shen J J, Zhu T J, Zhao X B, Zhang S N, Yang S H, Yin Z Z, Recrystallization Induced in Situ Nanostructures in Bulk Bismuth Antimony Tellurides:a Simple Top Down Route and Improved Thermoelectric Properties [J]. Energy Environ Sci, 2010,3(10):1519-1523.
    [36]Hu L P, Liu X H, Xie H H, Shen J J, Zhu T J, Zhao X B, Improving Thermoelectric Properties of N-Type Bismuth-Telluride-Based Alloys by Deformation-Induced Lattice Defects and Texture Enhancement [J]. Acta Mater,2012,60(11):4431-4437.
    [37]Hu L P, Gao H L, Liu X H, Xie H H, Shen J J, Zhu T J, Zhao X B, Enhancement in Thermoelectric Performance of Bismuth Telluride Based Alloys by Multi-Scale Microstructural Effects [J]. J Mater Chem,2012,22(32):16484-16490.
    [38]Spitzer D P. Lattice Thermal Conductivity of Semiconductors. a Chemical Bond Approach [J]. J Phys Chem Solids,1970,31(1):19-23.
    [39]Sootsman J R, Kong H, Uher C, D'Angelo J J, Wu C I, Hogan T P, Cailat T M, Kanatzidis M G, Large Enhancements in the Thermoelectric Power Factor of Bulk Pbte at High Temperature by Synergistic Nanostructuring [J]. Angew Chem-Int Edit,2008,47(45):8618-8622.
    [40]Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Lanatzidis M G, Cubic AgPbmSbTe2+m:Bulk Thermoelectric Materials with High Figure of Merit [J]. Science,2004,303(5659):818-821.
    [41]Ikeda T, Collins L A. Ravi V A, Gascoin F S, Haile S M, Synder G J, Self-Assembled Nanometer Lamellae of Thermoelectric PbTe and Sb2Te3 with Epitaxy-Like Interfaces [J]. Chem Mat,2007,19(4):763-767.
    [42]Ikeda T, Haile S M, Ravi V A, Azizgolshani H, Gascoin F, Synder G J, Solidification Processing of Alloys in the Pseudo-Binary PbTe-Sb2Te3 System [J]. Acta Mater,2007,55(4):1227-1239.
    [43]Ikeda T, Ravi V, Collins L A, Haile S M, Synder G J, Development of Nanostructures in Thermoelectric Pb-Te-Sb Alloys [M]. New York:IEEE,2006.
    [44]Poudeu P F P, D'angelo J, Kong H J, Downey A, Short J L, Pcionk R, Hogan T P, Uher C, Kanatzidis M G, Nanostructures Versus Solid Solutions:Low Lattice Thermal Conductivity and Enhanced Thermoelectric Figure of Merit in Pb9.6Sb0.2Te10-xSex Bulk Materials [J]. J Am Chem Soc,2006,128(44):14347-14355.
    [45]Girard S N, He J Q, Zhou X Y, Shoemaker D, Jaworski C M, Uher C, Dravid V P, Heremans J P, Kanatzidis M G, High Performance Na-Doped PbTe-PbS Thermoelectric Materials:Electronic Density of States Modification and Shape-Controlled Nanostructures [J]. J Am Chem Soc,2011,133(41):16588-16597.
    [46]Androulakis J, Lin C H, Kong H J,Uher C, Wu C I, Horgan T, Cook B A, Cailit T, Paraskevopoulos K M, Kanatzidis M G, Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics:Enhanced Performance in Pb1-xSnxTe-PbS [J]. J Am Chem Soc,2007,129(31):9780-9788.
    [47]Zhang Q, Cao F, Liu W S, Lukas K, Yu B, Chen S, Opeil C, Broido D, Chen G, Ren Z F, Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in P-Type PbTe, PbSe, and PbTe1-ySey [J]. J Am Chem Soc,2012,134(24):10031-10038.
    [48]Lalonde a D, Pei Y Z, Wang H, Snyder G S, Lead Telluride Alloy Thermoelectrics [J]. Mater Today,2011,14(11):526-532.
    [49]Pei Y Z, Shi X Y, Lalonde A, Wang H, Chen L D, Snyder G J, Convergence of Electronic Bands For High Performance Bulk Thermoelectrics [J]. Nature,2011, 473(7345):66-69.
    [50]Sales B C, Mandrus D, Williams R K. Filled Skutterudite Antimonides:A New Class of Thermoelectric Materials [J]. Science,1996,272(5266):1325-1328.
    [51]Uher C. Skutterudites:Prospective Novel Thermoelectrics [J]. Recent Trends in Thermoelectric Materials Research I,2001,69,139-253.
    [52]Shi X, Bai S Q, Xi L L, Yang J, Zhang W Q, Chen L D, Yang J H, Realization of High Thermoelectric Performance in N-Type Partially Filled Skutterudites [J]. JMater Res,2011,26(15):1745-1754.
    [53]Feldman J L, Dai P C, Enck T, Sales B C, Mandrus D, Singh D J, Lattice Vibrations in La(Ce)Fe4Sb12 and CoSb3:Inelastic Neutron Scattering and Theory [J]. Phys Rev B,2006,73(1):
    [54]Lamberton G A, Bhattacharya S, Littleton R T, Kaeser M A, Tedrtrom R H, Tritt T M, Yang J, Nolas G S, High Figure of Merit in Eu-Filled CoSb3-Based Skutterudites [J]. Appl Phys Lett,2002,80(4):598-600.
    [55]Lamberton G A, Tedstrom R H, Tritt T M, Nolas G S, Thermoelectric Properties of Yb-Filled Ge-Compensated CoSb3 Skutterudite Materials [J]. J Appl Phys, 2005,97(11):113715
    [56]Li H, Tang X F, Zhang Q J, Uher C, High Performance InxCeyCo4sb12 Thermoelectric Materials with in situ Forming Nanostructured InSb Phase [J]. Appl Phys Lett,2009,94(10):102114
    [57]Chen L D, Kawahara T, Tang X F, Goto T, Hirai T, Dyck J S, Chen W, Uher C, Anomalous Barium Filling Fraction and N-Type Thermoelectric Performance of BaYCo4Sbl2 [J]. J Appl Phys,2001,90(4):1864-1968.
    [58]Shi X, Chen L, Yang J, Meisner G P, Enhanced Thermoelectric Figure of Merit of CoSb3 via Large-Defect Scattering [J]. Appl Phys Lett,2004,84(13):2301-2303.
    [59]He Z M, Stiewe C, Platzek D, Karpinski G, Muller E, Li S H, Toprak M, Muhammed M, Effect of Ceramic Dispersion on Thermoelectric Properties of Nano-Zro2/Cosb3 Composites [J]. J Appl Phys,2007,101(4):043707
    [60]Casper F, Graf T, Chadov S, Balke B, Felser C, Half-Heusler Compounds:Novel Materials For Energy and Spintronic Applications [J]. Semicond Sci Technol, 2012,27(6):063001
    [61]Yu C, Zhu T J, Shi R Z, Zhang Y, Zhao X B, He J, High-Performance Half-Heusler Thermoelectric Materials Hf1-xZrxNiSn1-ySby Prepared by Levitation Melting and Spark Plasma Sintering [J]. Acta Mater,2009,57(9):2757-2764.
    [62]Graf T, Klaer P, Barth J, Balke B, Elmers H J, Felser C, Phase Separation in the Quaternary Heusler Compound CoTi(1-X)MnxSb-A Reduction in the Thermal Conductivity For Thermoelectric Applications [J]. Scr Mater,2010,63(12):1216-1219.
    [63]Yan X A, Joshi G, Liu W S, Lan Y C, Wang H, Lee S, Simonson J W, Poon S J, Tritt T M, Chen G. Ren Z F, Enhanced Thermoelectric Figure of Merit of P-Type Half-Heuslers [J]. Nano Lett.2011,11(2):556-560.
    [64]Wang X W, Lee H, Lan Y C, Zhu G H. Joshi G, Wang D Z, Yang J, Muto A J, Tang M Y, Klatsky J, Song S, Dresselhaus M S, Chen G, Ren Z F, Enhanced Thermoelectric Figure of Merit in Nanostructured N-Type Silicon Germanium Bulk Alloy [J]. Appl Phys Lett,2008,93(19):193121
    [65]Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F, Enhanced Thermoelectric Figure-Of-Merit in Nanostructured P-Type Silicon Germanium Bulk Alloys [J]. Nano Lett, 2008,8(12):4670-4674.
    [66]Zhu G H, Lee H, Lan Y C, Wang X W, Joshi G, Wang D Z, Yang J, Vashaee D, Guilbert H, Pillitteri A, Dresselhaus M S, Chen G, Ren Z F, Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium [J]. Phys Rev Lett,2009,102(19):196803
    [67]Gao H L, Zhu T J, Liu X X, Chen L X, Zhao X B, Flux Synthesis and Thermoelectric Properties of Eco-Friendly Sb Doped Mg2Si0.5Sn0.5 Solid Solutions For Energy Harvesting [J]. J Mater Chem,2011,21(16):5933-5937.
    [68]Fedorov M I, Zaitsev V K, Vedernikov M V, Some Peculiarities of Development of Efficient Thermoelectrics Based on Silicon Compounds [M]. New York:IEEE, 2006.
    [69]Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C, Convergence of Conduction Bands As a Means of Enhancing Thermoelectric Performance of N-Type Mg2Si1-xSnx Solid Solutions [J]. Phys Rev Lett,2012,108(16):166601
    [70]Pei Y Z, Lalonde a D, Wang H, Snyder G J, Low Effective Mass Leading to High Thermoelectric Performance [J]. Energy Environ Sci,2012,5(7):7963-7969.
    [71]Zaitsev V K, Fedorov M 1, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Y, Vedernikov M V, Highly Effective Mg2si1-xSnx Thermoelectrics [J]. Phys Rev B,2006,74(4):045207
    [72]Zhang Q, He J, Zhu T J, Zhang S N, Zhao X B, Tritt T M, High Figures of Merit and Natural Nanostructures in Mg2Si0.4Sn0.6 Based Thermoelectric Materials [J]. Appl Phys Lett,2008,93(10):102109.
    [73]Zhang Q, He J, Zhao X B, Zhang S N, Zhu T J, Yin H, Tritt T M, In Situ Synthesis and Thermoelectric Properties of La-Doped Mg-2(Si, Sn) Composites [J]. Journal of Physics D-Applied Physics,2008,41(18):185103.
    [74]Kato A, Yagi T, Fukusako N. First-Principles Studies of Intrinsic Point Defects in Magnesium Silicide [J]. J Phys-Condes Matter,2009,21(20):205801
    [75]Han X P, Shao G S. Origin of N-Type Conductivity of Sn-Doped Mg2Si From First Principles [J]. J Appl Phys,2012,112(1):013715
    [76]Du Z L, Zhu T J, Chen Y, He J, Gao H L, Jiang G Y, Tritt T M, Zhao X B, Roles of Interstitial Mg in Improving Thermoelectric Properties of Sb-Doped Mg2Si0.4Sn0.6 Solid Solutions [J]. J Mater Chem,2012,22(14):6838-6844.
    [77]Liu W, Tang X F, Li H, Sharp J, Zhou X Y, Uher C, Optimized Thermoelectric Properties of Sb-Doped Mg2(1-z)Si0.5-ySn0.5Sby Through Adjustment of the Mg Content [J]. Chem Mat,2011,23(23):5256-5263.
    [78]Nolas G S, Wang D, Beekman M. Transport Properties of Polycrystalline Mg2Si1-ySby (0<=y< 0.4) [J]. Phys Rev B,2007,76(23):235204
    [79]Nolas G S, Wang D, Lin X. Synthesis and Low Temperature Transport Properties of Mg2Ge1-ySby [J]. Phys Status Solidi-Rapid Res Lett,2007,1(6):223-225.
    [80]Jiang G, He J, Zhu T, Fu C G, Liu X H, Hu L P, Zhao X B, High Performance Mg2(Si,Sn) Solid Solutions:a Point Defect Chemistry Approach to Enhancing Thermoelectric Properties [J]. Adv Funct Mater,2014, DOI:10.1002/adfm.201400123
    [81]Nikitin E N, T R N, Zaitsev V K, Zaslavskii A I, Kuznetsov A K, A Study of the Phase Diagram For the Mg2Si-Mg2Sn System and the Properties of Certain of Its Solid Solutions [J]. Inorg Mater,1968,4,1656-1659.
    [82]Luxin Chen G J, Yi Chen, Zhengliang Du, Xinbing Zhao, and Tiejun Zhu; Jian He and Terry M. Tritt. Miscibility Gap and Thermoelectric Properties of Ecofriendly Mg2Si1-xSnx (0.K X< 0.8) Solid Solutions by Flux Method [J]. J Mater Res,2011, 26(24):3038.
    [83]Luo W, Yang M J, Chen F, Shen Q, Jiang H Y, Zhang L M, Fabrication and Thermoelectric Properties of Mg2Si1-xSnx (0<= x<= 1.0) Solid Solutions by Solid State Reaction and Spark Plasma Sintering [J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2009,157(1-3):96-100.
    [84]Y.Isoda., T.Nagai., H.Fujiu., Imai Y, Shinohara Y, Thermoelectric Properties of Sb-Doped Mg2Si0.5Sn0.5 [J]. International Conference on Thermoelectric,2006,406, 406-410.
    [85]Song R B, Aizawa T, Sun J Q. Synthesis of Mg2Si1-xSnx Solid Solutions As Thermoelectric Materials by Bulk Mechanical Alloying and Hot Pressing [J]. Materials Science and Engineering B-Solid State Materials For Advanced Technology,2007,136(2-3):111-117.
    [86]Zhang Q, Zhu T J, Zhou A J, Yin H, Zhao X B, Preparation and Thermoelectric Properties of Mg(2)Si(1-x)Sn(x) [J]. Phys Scr,2007,129,123-126.
    [87]D Rner P. K H, Lukas H.L., M Ller R., Petzow G. the System Mg-Si Optimized by a Least Squares Method [J]. Calphad,1981,5,41-54.
    [88]Bhardwaj A, Rajput A, Shukla a K, Dhar A, Gupta G, Auluck S, Misra D K, Budhani R C, Mg3Sb2-Based Zintl Compound:a Non-Toxic, Inexpensive and Abundant Thermoelectric Material For Power Generation [J]. Rsc Adv,2013, 3(22):8504-8516.
    [89]Kajikawa T, Kimura N, Yokoyama T, Thermoelectric Properties of Intermetallic Compounds:Mg3B12 and Mg3Sb2 For Medium Temperature Range Thermoelectric Elements [M]. New York:IEEE,2003.
    [90]Winkler, Ulrich. Die Elektrischen Eigenschaften Der Intermetallischen Verbindungen Mg2Si, Mg2Ge,Mg2Sn Und Mg2pb [J]. Helvetica Physica Acta, 1955,28(7):663-667.
    [91]Labotz R J, Mason D R. the Thermal Conductivities of Mg2Si and Mg2Ge [J]. Journal of the Electrochemical Society,1963,110(2):121-126.
    [92]Rowe D M, Bhandari C M. Morden Thermoelectrics [M]. Englewood Cliffs, Nj; Reston Publishing Co.1983.
    [93]Tani J I, Kido H. Thermoelectric Properties of P-Doped Mg2Si Semiconductors [J]. Jpn J Appl Phys Part 1-Regul Pap Brief Commun Rev Pap,2007,46(6a): 3309-3314.
    [94]Isoda Y, Nagai T, Fujiu H, Imai Y, Shinobara Y, The Effect of Bi Doping on Thermoelectric Properties of Mg2Si0.5Sn0.5 [M]//Kim I. Proceedings let 07: Twenty-Sixth International Conference on Thermoelectrics. New York; IEEE. 2008:256-260.
    [95]Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Y, Vedernikov M V, Thermoelectrics of N-Type with ZT> 1 Based on Mg2Si-Mg2Sn Solid Solutions [M]. New York:IEEE,2005.
    [96]Fedorov M 1, Zaitsev V K, Eremin I S, Gurieva E A, Burkov A T, Konstantinov P P, Vedernikov M V, Samunin A Y, Isachenko G N, Shabaldin A A, Transport Properties of Mg2x0.4Sn0.6 Solid Solutions (X= Si, Ge) with P-Type Conductivity [J]. Physics of the Solid State,2006,48(8):1486-1490.
    [97]Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S. Konstantinov P P, Samunin A Y, Vedernikov M V, Highly Effective Mg2Si1-xSnx Thermoelectrics [J]. Phys Rev B,2006,74,045207
    [98]Zwolenski P, Tobola J, Kaprzyk S. a Theoretical Search For Efficient Dopants in Mg2X (X= Si, Ge, Sn) Thermoelectric Materials [J]. J Electron Mater,2011,40(5): 889-897.
    [99]Ihou-Mouko H, Mercier C, Tobola J, Pont G, Scherrer H, Thermoelectric Properties and Electronic Structure of P-Type Mg2Si and Mg2Si0.6Ge0.4 Compounds Doped with Ga [J]. J Alloy Compd,2011,509(23):6503-6508.
    [100]Fedorov M I, Zaitsev V K, Eremin IS, Gurieva E A, Burkov A T, Konstantinov P P, Vedernikov MV, Samunin A Y, Isachenko G N, Kinetic Properties of P-Type Mg2Sio.4Sno.6 Solid Solutions [M]. New York:IEEE,2003.
    [101]Fedorov M I, Zaitsev V K, Isachenko G N, Eremin I S, Gurieva E A, Konstantinov P P, Shabaldin A A, Kinetic Properties of P-Type Mg2Ge0.4Sn0.6 Solid Solutions [M].2005.
    [102]Jiang G, Chen L, He J, Gao H L, Du Z L, Zhao X B, Tritt T M, Zhu T J, Improving P-Type Thermoelectric Performance of Mg2(Ge,Sn) Compounds Via Solid Solution and Ag Doping [J]. Intermetallics,2013,32(0):312-317.
    [103]Fedorov M I, Zaitsev V. Optimization of Thermoelectric Parameters in Some Silicide Based Materials; Proceedings of the 19th International Conference on Thermoelectrics Cardiff, Uk, F,2000 [C].
    [104]Abeles B. Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures [J]. Physical Review,1963,131(5):1906-1911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700