热处理和变形对镁合金低频阻尼性能的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以研制和开发高阻尼镁合金为目的,设计和制备了具有不同固溶度合金元素的纯镁、Mg-Al系、Mg-Ni系和Mg-Si系合金。利用光学显微镜(OM)和透射电子显微镜(TEM)等方法观察合金的微观组织特征;通过拉伸试验和硬度测试评价合金的力学性能;通过机械动态分析仪(DMA)研究合金的低频阻尼性能随应变和温度的变化规律;通过热处理、热挤压变形和室温小变形量拉伸等手段研究合金阻尼性能的稳定性;通过正电子湮没等测试手段分析影响镁合金阻尼性能的点缺陷种类。揭示了镁合金低频阻尼行为的变化规律及其影响因素,为开发高阻尼、高性能镁基材料奠定了良好的基础。
     对铸态纯镁和镁合金阻尼性能的研究表明:纯镁和镁合金的阻尼机制属于位错型。镁合金的阻尼性能强烈地受到合金元素的种类和数量的影响;向纯镁中加入固溶度较高的Al元素,会极大降低镁合金与应变无关的阻尼值,但Al原子的加入可以改变铸态纯镁中点缺陷的分布形式,因此在大应变振幅下含Al量较少的镁合金(<1%)阻尼值大大超过纯镁的阻尼值。向纯镁中加入固溶度极低的Ni和Si元素,在合金中的初晶α-Mg相具有一定尺寸和体积比例的情况下,Mg-Ni和Mg-Si合金具有较高的阻尼性能;在小应变振幅下,由于初晶α-Mg相中具有高于纯镁的位错密度,这类合金的阻尼值高于纯镁的阻尼值。铸态纯镁、Mg-Ni和Mg-Si合金在室温附近的高阻尼值来源于80oC附近的阻尼峰P1,该峰是由初晶α-Mg相中的位错与晶格中的点缺陷交互作用引起的。在230oC附近的P2峰为晶界阻尼峰。当加入的Al元素含量超过1%时,阻尼-温度谱中的P1和P2阻尼峰被抑制。
     热处理对具有一定尺寸初晶α-Mg相的合金的阻尼性能有显著的影响,这种影响归因于初晶α-Mg相中非平衡状态的点缺陷受热处理的影响发生扩散,并重新分布造成的。铸态镁合金中的溶质原子以非平衡溶质原子团的状态存在于初晶α-Mg相中,钉扎在位错上的钉扎点较少;当热处理温度较低时,溶质原子沿位错扩散,使位错上的弱钉扎点数量明显增加,晶格中的点缺陷数量降低。对于超过350oC的高温热处理,点缺陷的扩散速度明显加快,溶质原子团快速分解,并且很快达到平衡状态,很多溶质原子扩散至晶界处,部分原子均匀分布在晶格中。虽然这类镁合金中杂质点缺陷数量并不多,但它们受热处理的影响发生重新分布后,对合金的阻尼性能和P1、P2阻尼峰有相当显著的影响。与上述镁合金相比,热处理对Mg-Al合金阻尼性能的影响非常小,这是由于Al含量较高,使位错上的弱钉扎点之间的长度LC降低到一定程度后,合金与应变振幅无关的阻尼值基本达到最小值,虽然热处理可以显著地改变合金的微观组织,但无法大幅度地改变固溶态Al原子的数量,因此该类合金的阻尼性能不会明显地受到热处理的影响;
     变形使Mg-1%Al和Mg-1%Si合金的室温阻尼值下降,并且相比之下,具有高阻尼性能的Mg-1%Si合金的阻尼值受变形的影响更大,3%以上的室温拉伸变形量即可抑制P1阻尼峰的出现,后续退火不能使由于挤压变形而消失的P1阻尼峰得到恢复。变形使Mg-1%Al和Mg-1%Si合金在高温测试范围内获得显著高于铸态合金的阻尼值,但这种高阻尼值是不稳定的,它与变形后的合金在高温范围内的回复再结晶有关,再结晶过程中位错和晶界的运动使合金得到高阻尼值,一旦再结晶过程结束,阻尼值就恢复到铸态合金的阻尼水平。
On the purpose to research and develop high damping Mg alloys, we designed and fabricated pure Mg, Mg-Al alloys, Mg-Ni alloys and Mg-Si alloys which containing elements which possess different solubilities in Mg. The microstructures characteristics of these Mg alloys were observed by OM and TEM. The mechanical properties were tested by tensile test and hardness test. The strain dependent and temperature dependent low frequency damping capacities of these alloys were studied by DMA. We studied the stabilities of the damping capacities in these Mg alloys by heat treatment, hot extrusion and small tensile deformation at room temperature. The point defects types which influence the damping capacities of Mg alloys were analyized by positron annihilation method. This paper revealed the low frequency damping behaviors of Mg alloys and their influence factors, established a good foundation to develop high damping Mg based materials with high performances.
     The research results shown that, the damping mechanism of pure Mg and Mg alloys is dislocation damping. The damping capacities of Mg alloys were strongly influenced by the type and amount of alloying elements. When Al which has high solubility was added into Mg, the damping capacity will heavily decrease. But small amount of Al atoms (<1%) could changed the distribution condition of foreign atoms in Mg and predominantly increased the damping value at high strain level. When Ni or Si which has very low solubility was added in Mg, and there are still largeα-Mg phase in these alloys, the damping capacities of these alloys remain high value, especially at small strain level. There are damping peaks P1 and P2 in pure Mg, Mg-Ni and Mg-Si alloys, which located at 80oC and 230oC, respectively. P1 is considered to be induced by the interaction between dislocations and the point defects in the crystal lattice of Mg, and P2 is the grain boundaries damping peak which is caused by the grain boundaries sliding at high temperature.
     Heat treatment has remarkable influence on the damping capacities in Mg which possessα-Mg phase with certain size. This is caused by the diffusion and redistribution of the nonequilibrium point defects groups inα-Mg phase by heat treatment. The point defects of as-cast Mg are existed as nonequilibrium point defects groups inα-Mg phase, and the amount of weak pinning points on dislocations are very small; when the heat treatment temperature is relatively low, the point defects diffussed along dislocations, and this made the amount of weak pinning points on dislocations increased, and the amount of them in the crystal lattice decreased; when the heat treatment temperature is higher than 350oC, the diffusion rate of point defects is strongly increased, and the point defects groups decomposed rapidly and reach balance very fast. Some of the point defects are located in the grain boundaries, and parts of them are evenly distributed in the crystal lattice. Though the amount of these point defects is not large, they have strong influence on the damping capacities and P1 and P2 damping peaks in Mg alloys when the distribution condition of them is changed. Compared with Mg alloys withα-Mg phase, the influence of heat treatment on damping capacities of Mg-Al alloys is very small. This is because that the Al content is high enough, which made the length LC between weak pinning points on dislocations decreased to a certain value, therefore the Mg-Al alloys got the saturated damping values. Though heat treatment could remarkably changed the microstructures of these Mg-Al alloys, it will not strongly change the content of Al in it, and then, the damping capacities of these alloys will not strongly influenced by heat treatment.
     The room temperature damping capacities of Mg-1%Al and Mg-1%Si alloys were decreased after deformation, and the influence of deformation on the damping capacity of Mg-1%Si alloys is more remarkable than that of Mg-1%Al. When the room temperature tensile deformation is higher than 3%, the P1 peak will be inhibited; subsequent annealing will not recover the inhibitition of P1 peak which was caused by extrusion. Mg-1%Al and Mg-1%Si alloys could abtain high damping values at high temperature range after deformation, but these high damping values are not stable. The high damping values at high temperature region is related to the movement of dislocations and grain boundaries during recovery recrystalization. The damping capacity could reback to the damping level of as-cast alloys when the recrystalization process is finished.
引文
1 戴德沛. 阻尼技术的工程应用. 清华大学出版社. 1991: 1~14.
    2 赵稼祥. 加强发展军用功能材料. 材料工程. 1995, 3: 3~11.
    3 李沛勇, 戴圣龙, 刘大博. 材料阻尼及阻尼合金的研究现状. 材料工程. 1999, 8: 44~48.
    4 刘棣华. 粘弹阻尼减振降噪应用技术. 宇航出版社. 1990: 53~65.
    5 江东亮, 闻建勋, 陈国民. 新材料. 上海科学技术出版社. 1994: 25~30.
    6 I. G. Ritchie and Z. L. Pan. High Damping Metals and Alloys. Metall. Trans. A. 1991, 22A: 607~616.
    7 I. G. Ritchie, Z. L. Pan, and F. E. Goodwin. Characterization of the Damping Properties of Die Cast Zinc-Aluminum Alloys. Metall. Trans. A. 1991, 22A: 617~622.
    8 机械工程手册电机工程手册编辑委员会. 机械工程手册.工程材料. 机械工业出版社. 1996: 138~142.
    9 李思远, 杨伟, 杨鸣波. 降噪高分子材料及其应用. 工程塑料应用. 2004, 32 (5): 70~73.
    10 杨亦权, 杜淼, 郑强. 新型高聚物阻尼材料研究进展. 功能材料. 2002, 33 (3): 234~236.
    11 王渠东, 丁文江. 镁合金研究开发现状与展望. 世界有色金属. 2004, 7: 8~11.
    12 史文方, 周昆. 我国镁合金的开发应用现状及展望. 汽车工艺与材料. 2004, 6: 32~37.
    13 陈振华. 镁合金. 化学工业出版社. 2004: 17~18.
    14 葛庭燧. 固体内耗理论基础. 晶界弛豫与晶界结构. 科学出版社. 2000: 1~35.
    15 哈宽富. 金属力学性质的微观理论. 科学出版社. 1983: 187~190.
    16 王从曾. 材料性能学. 北京工业大学出版社. 2001: 9~13.
    17 A.S. Nowick, B.S. Berry. Anelastic Relaxation in Crystalline. Academic Press. New York. 1972: 130~132.
    18 C. Zener. Elasticity and Anelasticity of Metals. The University of Chicago Press.Chicago. 1984: 41~43.
    19 冯端. 金属物理学. 第三卷 金属力学性能. 科学出版社. 1999: 13~16.
    20 方前锋, 朱震刚, 葛庭燧. 高阻尼材料的阻尼机理及性能评估. 物理. 2000, 29 (9): 541~545.
    21 田莳, 李秀臣, 刘正堂. 金属物理性能. 航空工业出社. 1994: 143~156.
    22 过梅丽. 高聚物与复合材料的动态力学热分析. 化学工业出版社. 2002: 79~160.
    23 张小农. 金属基复合材料的阻尼行为研究. 上海交通大学博士学位论文. 1997: 1~79.
    24 李开明. 当代金属类阻尼材料及其应用. 上海航天. 1996, 1: 40~47.
    25 D. W. James. High Damping Metals for Engineering Application. Mater Sci Eng. 1969, 4: 1~8.
    26 J. Zhang, R.J. Perez, E.J. Lavernia. Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials. J. Mater. Sci. 1993, 28 (9): 2395~2404.
    27 李长龙, 李国彬, 吴玉会. 阻尼减振合金的研究现状. 金属功能材料. 2003,
    10 (4): 32~34.
    28 T.A. Read. The Internal Friction of Single Metal Crystals. Phys. Rev. 1940, 58: 371~380.
    29 A. Granato, K. Lüker. Theroy of Mechanical Damping Due to Dislocation. J. Appl. Phys. 1956, 27 (6): 583~593.
    30 A. Granato, K. Lüker. Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies. J. Appl. Phys. 1956, 27 (7): 789~805.
    31 方前锋, 葛庭燧. 与位错和点缺陷交互作用有关的非线性滞弹性内耗的研究. 中山大学学报(自然科学报). 2001, A40: 203~207.
    32 T. Hinton, J.G. Rider. Dislocation Damping in Dilute Lead Alloys. J. Appl. Phys. 1966, 37 (2): 582~592.
    33 F.F. Nicholas, L.B. Pittsburgh. Dislocation Damping in Dilute Cu-Ge Alloys. J. Appl. Phys. 1964, 35 (7): 2242~2247.
    34 R.R. Hasiguti, N. Igata, K. Tanaka. Amplitude Dependent Internal Friction of an Aluminum Single Crystal. Acta Metall. 1965, 13: 1083~1084.
    35 N. Ide, T. Atsumi, Y. Nishino. Effect of Frequency on Amplitude-dependent Internal Friction in Niobium. Mater. Sci. Eng. A. 2006, 442: 156~159.
    36 易宏坤, 刘兆婷, 李飞虎, 张荻. Al-17Si-xLa 合金室温阻尼-应变振幅行为研究. 功能材料. 2003, 34 (5): 525~529.
    37 D.H. Rogers. An Extension of a Theory of Mechanical Damping Due to Dislocation. J. Appl. Phys. 1962, 33(3): 781~792.
    38 T.S. Ke. Anomalous Internal Friction Associated with the Precipitation of Copper in Cold-Worked Al-Cu Alloys. Phys. Rev. 1950, 78: 420~423.
    39 J. Weertman. Dislocation Damping at High Temperature. J. Appl. Phys. 1957, 28 (2): 193~196.
    40 G. Schoeck. Friccion Interna Debido A La Interaccion Entre Dislocaciones Y Atomos Solutos. Acta Metall. 1963, 6: 617~622.
    41 郑成琪, 程晓农. CuAlMn 形状记忆合金的高阻尼特性. 中国有色金属学报. 2004, 14 (2): 194~198.
    42 M. Fukuhara, F.X. Yin, Y. Ohsawa, S. Takamori. High-Damping Properties of Mn-Cu Sintered Alloys. Mater. Sci. Eng. A. 2006, 442: 439~443.
    43 N. Igata, N. Urahashi, M. Sasaki, Y. Kogo. High Damping Capacity due to Two-step Phase Transformation in Ni-Ti, Ni-Ti-Cu, and Fe-Cr-Mn alloys. J. Alloys Compd. 2003, 355: 85~89.
    44 I. Yoshida, D. Monma, K. Iino, K. Otsuka, M. Asai. Damping Properties of Ti50Ni50-xCux Alloys Utilizing Martensitic Transformation. J. Alloys Compd. 2003, 355: 79~84.
    45 D. Pulino-Sagradi, M. Sagradi, A. Karimi, J.L. Martin. Damping Capacity of Fe-Cr-X High-Damping Alloys and Its Dependence on Magnetic Domain Structure. Scripta Mater. 1998, 39 (2): 131~138.
    46 J.H. Jun, S.H. Lee, Y.K. Lee, C.S. Choi. Effect of Si Addition on the Damping Capacity of a High Carbon Steel. Mater. Sci. Eng. A. 1999, 267: 145~150.
    47 Y.K. Lee, T.J. Ha, J.H. Jun, C.S. Choi. Effects of Thermal ε Martensite Content and Deformation on Damping Capacity of a Co-32 wt.% Ni alloy. Mater. Sci. Eng. A. 2004, 370: 468~472.
    48 T. Murakami, T. Inoue, H. Shimura, M. Nakano, S. Sasaki. Damping and Tribological Properties of Fe-Si-C Cast Iron Prepared Using Various Heat Treatments. Mater. Sci. Eng. A. 2006, 432: 113-119.
    49 K. Matsui, A. Matsuno, M. Takahashi, H. Kanno, and K. Hatakeyama. Studies on the Damping of Carbon Steels. Trans. JIM. 1975, 39 (10): 1018~1024.
    50 K. Matsui, A. Matsuno, F. Kizu, M. Takahashi, and H. Kanno. Study on The Damping Capacity of Flaky Graphite Cast Irons. Trans. JIM. 1976, 40 (10): 1062~1068.
    51 K. Sugimoto, K. Niiya, T. Okamoto, K. Kishitake. A Study of Damping Capacity in Magnesium Alloys. Trans. JIM. 1977, 18: 277~288.
    52 刘楚明, 朱秀荣, 周海涛. 镁合金相图集. 中南大学出版社. 2006: 3~64.
    53 丁文江. 镁合金科学与技术. 科学出版社. 2007: 179~190.
    54 黄良余, 叶青, 翟春泉. 高阻尼高强度镁合金 ZMJD-1S 的应用研究. 特种铸造及有色合金. 1992, 5: 15~20.
    55 叶青. ZMTD-1S 阻尼合金研制. 上海交通大学硕士学位论文. 1988: 8~19.
    56 刘忠德. 亚共晶 Mg-Ni 合金. 上海交通大学硕士学位论文. 1988: 27~49.
    57 K. Nishiyama, R. Matsui, Y. Ikeda, S. Niwa, T. Sakaguchi. Damping Properties of a Sintered Mg-Cu-Mn Alloy. J. Alloys Compd. 2003, 355: 22~25.
    58 J. G?KER, W. Riehemann. Damping Behaviour of AZ91 Magnesium Alloy with Cracks. Mater. Sci. Eng. A. 2004, 370: 417~421.
    59 O.A. Lanbri, W. Riehemann, Z. Trojanova. Mechanical Spectroscopy of Commercial AZ91 Magnesium Alloy. Scripta Mater. 2001, 45: 1365~1371.
    60 Z. Trojanova, P. Lukac, W. Riehemann, B.L. Mordike. Influence of Rapid Solidification of the Damping Behavior of Some Magnesium Alloys. Mater. Sci. Eng. A. 1997, 226-228: 867~870.
    61 Z. Trojanová, W. Riehemann, F. Buch, P. Lukac, and B.L. Mordike. Damping in Mg-Sc Alloys after Thermal Treatment. Phys. Stat. Sol. (a). 1999, 175: 555~560.
    62 马春江, 张荻, 覃继宁, 丁文江. Mg-Li-Al 合金阻尼性能的研究. 材料工程. 2001, 5: 12~14.
    63 Z. Trojanova, P. Lukac, W. Riehemann, B.L. Mordike. Effect of Ageing on Damping Properties in Commercially Pure Magnesium and MMCs. Proc. of the 3rd International Magnesium Conference. 1997: 359~368.
    64 L.H. Liao, X.Q. Zhang, H.W. Wang, X.F. Li, N.H. Ma. Influence of Sb on Damping Capacity and Mechanical Properties of Mg2Si/Mg-9Al Composite Materials. J. Alloys Compd. 2007, 430: 292~296.
    65 N. Srikanth, C.H. Gaofeng, M. Gupta. Enhanced Damping of a Magnesium Alloy by Addition of Copper. J. Alloys Compd. 2003, 352: 106~110.
    66 L.H. Liao, X.Q. Zhang, X.F. Li, H.W. Wang, N.H. Ma. Effect of Silicon on Damping Capacities of Pure Magnesium and Magnesium Alloys. Mater. Lett. 2007, 61: 231~234.
    67 王建强, 关绍康, 王迎新. Re 对 Mg28Zn24Al2013Mn 镁合金阻尼性能的影响. 材料科学与工程学报. 2004, 22 (2): 280~283.
    68 王建强, 赵田臣, 王迎新. Re 及 Al5TiB 对 ZA84 镁合金阻尼性能的影响. 宇航材料工艺. 2006, 4: 42~45.
    69 X.Q. Xie, T.X. Fan, D. Zhang, T. Sakata, H. Mori. Mechanical Properties and Damping Behavior of Woodceramics/ZK60 Mg Alloy Composite. Mater. Res. Bull. 2002, 37 (6): 1133~1140.
    70 J.H. Gu, X.N. Zhang, M.Q. Gu. Mechanical Properties and Damping Capacity of (SiCp+Al2O3+SiO2)/Mg Hybrid Metal Matrix Composite. J. Alloys Compd. 2004, 385 (1~2): 104~108.
    71 X.N. Zhang, D. Zhang, R.J. Wu, Z.Q. Zhu, C. Wang. Mechanical Properties and Damping Capacity of (SiCw+B4Cp)/ZK60 Alloy Matrix Composite. Scripta Mater. 1997, 37 (11): 1631~1635.
    72 I.S. Golovin, H.-R. Sinning, J. G?ken, and W. Riehemann. Fatigue-related Damping in Some Celluar Metallic Materials. Mater. Sci. Eng. A. 2004, 370: 537~541.
    73 马中华, 韩福生, 魏健宁, 高俊昌. 宏观体缺陷对材料阻尼行为的影响. 中国科学(A 辑). 2001, 31 (3): 255~260.
    74 贾莉蓓, 郝刚领, 韩福生. 多孔 Mg 的低频阻尼行为. 铸造. 2006, 55 (3): 242~244.
    75 K. Sugimoto, K. Matsui, T. Okamoto, and K. Kishitake. Effect of Crystal Orientation on Amplitude-Dependent Damping in Magnesium. Trans. JIM, 1975, 16: 647~655.
    76 A.E. Schwaneke, R.W. Nash. Effect of Preferred Orientation on the Damping Capacity of Magnesium Alloys. Metal. Trans. 1971, 2: 3454~3457.
    77 C. Mayencourt, R. Schaller. Development of a High-Damping Composite: Mg2Si/Mg. Phys. Stat. Sol. (a). 1997, 163: 357~368.
    78 W. Riehemann, F. Abed. Influence of Ageing on the Internal Friction of Magnesium. J. Alloys Compd. 2000, 310: 127~130.
    79 Z.Y. Zhang, X.Q. Zeng, W.J. Ding. The Influence of Heat Treatment onDamping Response of AZ91D Magnesium Alloy. Mater. Sci. Eng. A. 2005, 392: 150~155.
    80 S. Erchov, W. Riehemann, P. Gabor, K. Eigenfeld, and O. Podobed. Damping Capacity of Sand Cast Magnesium Alloy AZ91. Mater. Sci. Tech. 2002, 18: 198~200.
    81 H. Watanabe, T. Mukai, M. Sugioka and K. Ishikawa. Elastic and Damping Properties from Room Temperature to 673K in An AZ31 Magnesium Alloy. Scripta Mater. 2004, 51: 291.
    82 V.N. Chuvil’deev, T.G. Nieh, M.Y. Gryaznov, A.N. Sysoev and V.I. Kopylov. Low-temperature Superplasticity and Internal Friction in Microcrystalline Mg Alloys Processed by ECAP. Scripta Mater. 2004, 50: 861~865.
    83 X.S. Hu, K. Wu, M.Y. Zheng, S.W. Xu, and Y.K. Zhang. Effect of Deformation on the Damping Capacity of Magnesium Alloys. Mater. Sci. Forum. 2005, 488~489: 737~740.
    84 K. Wu, X.S. Hu, M.Y. Zheng. Mechanical Properties and Damping Capacities of Magnesium Alloys Processed by Equal Channel Angular Extrusion (ECAE). Trans. Nonferrous Met. Soc. China. 2005, 15 (S2): 276~279.
    85 M.Y. Zheng, X.S. Hu, S.W. Xu, X.G. Qiao, K. Wu, S. Kamado, and Y. Kojima. Mechanical Properties and Damping Behavior of Magnesium Alloys Processed by Equal Channel Angular Pressing. Mater. Sci. Forum. 2007, 539~543: 1685~1690.
    86 王仕村. 变形对 Mg-Si 合金阻尼性能和力学性能的影响. 哈尔滨工业大学毕业设计论文. 2005: 26~40.
    87 刘宁波. ECAP 变形对挤压态 Mg-Cu-Mn 合金组织结构与阻尼性能的影响. 哈尔滨工业大学毕业设计论文. 2007: 26~39.
    88 肖凯. ECAP 变形对 AZ31 镁合金力学性能与阻尼性能的影响. 哈尔滨工业大学硕士学位论文. 2007: 40~64.
    89 C.M. Liu, J. Zhang, H.T. Zhou, R.F. Ji, and M.A. Chen. A Study of Damping Capacities of Mg-Zr Alloys after Hot Rolling and Annealing. Magnes. Technol. TMS 2006 Annual Meeting- Magnesium Technology. 2006, 2006: 165~170.
    90 R.T.C. Tsui, H.S. Sack. Internal Friction and Transmission Electron Microscopy Studies of Magnesium-?. Internal Friction. Acta Metall. 1967, 15: 1715~1722.
    91 R.T.C. Tsui. Internal Friction and Transmission Electron Microscopy Studies ofMagnesium-??. Electron Microscopy. Acta Metall. 1967, 15: 1723~1730.
    92 G. Fantozzi, C. Esnouf, S. M. Seyed Reihani, and G. Revel. Anelastic Behaviour of Plastically Deformed High Purity Magnesium between 10 and 500 K. Acta Metall. 1984, 32 (12): 2175~2183.
    93 M.L. Nó, A. Oleaga, C. Esnouf, J. San Juan. Internal Friction at Medium Temperatures in High Purity Magnesium. Phys. Stat. Sol. (a). 1990, 120 (2): 419~427.
    94 L.H. Liao, X.Q. Zhang, H.W. Wang, X.F. Li, and N.H. Ma. The Characteristic of Damping Peak in Mg-9Al-Si Alloys. J. Alloys Compd. 2007, 429: 163~166.
    95 C. Mayencourt, R. Schaller. A Theoretical Approach to the Thermal Transient Mechanical Loss in Mg Matrix Composite. Acta Mater. 1998, 46 (17): 6103~6114.
    96 T.S. Kê. Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals. Phys. Rev. 1947, 71 (8): 533~546.
    97 T.S. Kê. Internal Friction of Metals at Very High Temperature. J. Appl. Phys. 1950, 21 (5): 414~419.
    98 朱祖芳. 有色金属的耐腐蚀性能及其应用. 化学工业出版社. 1995: 61~74.
    99 G.L. Makar, J. Kurger. Corrosion of Magnesium. Int. Mater. Rev. 1993, 38: 138~153.
    100 M.M. Avedesian, H. Baker. ASM Specialty Handbook. Magnesium and Magnesium Alloys. ASM International. 1999: 78~79.
    101 H. Modin, S. Modin. Metallurgical Microscopy. Butterworths. London. 1973: 352.
    102 T.S. Kê. Stress Relaxation across Grain Boundaries in Metals. Phys. Rev. 1947, 72 (1): 41~46.
    103 T.S. Kê, Q. Tan, Q.F. Fang. Further Experiments on the Anomalously Amplitude-Dependent Internal Friction Peaks in Polycrystalline and Single-Crystal Al-Mg. Phys. Stat. Sol. (a). 1987, 103(2): 421~429.
    104 Q. Tan, T.S. Kê. Double Amplitude Internal Friction Peaks in Al-0.02 wt% Mg Single Crystals. Phys. Stat. Sol. (a). 1987, 104 (2): 723~729.
    105 O. Mercier, K.N. Melton. The Influence of an Anisotrophic Elastic Medium on the Motion of Dislocations: Application to the Martensitic Transformation. Scripta Metall. 1976, 10 (12): 1075~1080.
    106 J.N. Wei, D.Y. Wang, W.J. Xie, J.L. Luo, F.S. Han. Effects of Macroscopic Graphite Particulates on the Damping Behavior of Zn-Al Eutectoid Alloy. Phys. Lett. A. 2007, 366: 134~136.
    107 R. Schaller. Mechanical Spectroscopy of Interface Stress Relaxation in Metal-matrix Composites. Mater. Sci. Eng. A. 2006, 442: 423~428.
    108 (?). Bremnes, B. Carreno-Morelli, G. Gremaud. Influence of the Interaction between Dislocations and Mobile Point-defects on the Damping Spectrum of Aluminium. J. Alloys Compd. 2000, 310: 62~67.
    109 R.R. Mulyukov, A.I. Pshenichnyuk. Structure and Damping of Nanocrystalline Metals and Alloys Prepared by High Plastic Deformation Techniques. J. Alloys Compd. 2003, 355: 26~30.
    110 I. Aaltio, M. Lahelin, O. S?derberg, O. Heczko, B. L?fgren. Temperature Dependence of the Damping Properties of Ni-Mn-Ga Alloys. Mater. Sci. Eng. A. 2007 (article in press).
    111 刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用. 机械工业出版社. 2002: 16~17.
    112 J. G?ken, W. Riehemann. Thermoelastic Damping of the Low Density Metals AZ91 and DISPAL. Mater. Sci. Eng. A. 2002, 324: 134~140.
    113 C. Belamri, S. Belhas, A. Rivière. Damping of a High-purity Aluminum Single Crystal at High Temperatures. Mater. Sci. Eng. A. 2006, 442: 142~146.
    114 A. Rivière. High Temperature Relaxation in Single Crystals. Scripta Mater. 2000, 43: 991~995.
    115 Y.Z. Lü, Q.D. Wang, X.Q. Zeng, Y.P. Zhu, W.J. Ding. Behavior of Mg-6Al-xSi Alloys during Solution Heat Treatment at 420oC. Mater. Sci. Eng. A. 2001, 301: 255~258.
    116 滕敏康. 正电子湮没谱学及其应用. 原子能出版社. 2000: 1~78.
    117 郁伟中. 正电子物理及其应用. 科学出版社. 2003: 1~240.
    118 吴奕初, 张晓红. 正电子湮没技术在金属和合金研究中的应用进展. 物理. 2000, 29 (7): 401~405.
    119 C.J. Beevers. Electrical Resistivity Observations on Quenched and Cold-worked Magnesium. Acta Metall. 1963, 11: 1029~1034.
    120 C. Panseri, F. Gatto, T. Federighi. Interaction between Solute Magnesium Atoms and Vacancies in Aluminium. Acta Metall. 1958, 6: 198~204.
    121 H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, M. Kiritani. Positron Annihilation Study of Vacancy-type Defects in High-speed Deformed Ni, Cu and Fe. Mater. Sci. Eng. A. 2003, 350: 95~101.
    122 A. Dupasquier, G. K?gel, A. Somoza. Studies of Light Alloys by Positron Annihilation Techniques. Acta Mater. 2004, 52: 4707~4726.
    123 A. Somoza, M.P. Petkov, K.G. Lynn. Stability of Vacancies during Solute Clustering in Al-Cu-based Alloys. Phys. Rev. B. 2002, 65: 094107.
    124 O.A. Lambri, M. Massot, W. Riehemann, E.J. Lucioni, F. Plazaola, J.A. García. The Role of Vacancies in the Mobility of Dislocations and Grain Boundaries in Magnesium. Phys. Stat. Sol. (a). 2007, 204 (4): 1077~1092.
    125 Y. Ortega, J. del Río. Study of Mg-Ca Alloys by Positron Annihilation Technique. Scripta Mater. 2005, 52: 181~186.
    126 J. G?ker, J. Swiostek, D. Letzig, K. U. Kainer. Damping Measurements of the Magnesium Wrought Alloys AZ31, AZ61 and AZ80 after Indirect and Hydrostatic Extrusion. Mater. Sci. Forum. 2005, 428: 387~390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700