低频率深部脑刺激对大鼠电点燃癫痫的干预作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是神经科常见突发性脑功能紊乱综合征,一旦发病往往相伴终身,其反复发作容易引发意外更会逐渐损害患者认知功能。由于发病机制尚不清楚,药物及手术等临床方法治疗癫痫效果有限。约30%的癫痫患者(颞叶癫痫患者最为常见)会对抗癫痫药物耐受,成为难治性癫痫。外科手术切除灶点不但适用患者人群较少而且对脑组织造成较大损伤。如何防治难治性癫痫发病一直是临床癫痫治疗的重大难题。
     低频率电刺激(low frequency stimulation, LFS)具有可逆性、可调性和微创性等优点,为难治性癫痫治疗提供新的选择。LFS癫痫灶点及灶点外靶点可以有效抑制病人和实验动物的癫痫发作。但是由于机制不清,LFS对癫痫的治疗尚有很多不明确的地方和不少相互矛盾的报道,限制了其临床应用;刺激靶点脑区及参数的优化还值得进一步研究。内嗅皮层(entorhinal cortex, EC)是信息进入海马的门户,是LFS治疗颞叶癫痫的潜在靶点。此外,近来临床开发出一种依据患者脑电变化反馈性给予电刺激的闭环刺激模式(closed-loop),相对于以往程序化定时定量的开环模式(open-loop)可能具有更小的副作用。然而,新的技术带来了新的问题:闭环刺激模式检测脑电变化会带来刺激延时,这可能会影响LFS的抗癫痫作用。课题组前期在大鼠杏仁核点燃癫痫模型中已经发现LFS小脑顶核和杏仁核的抗癫痫作用可能受癫痫发作状态的影响,提示LFS可能更适用于closed-loop模式。因此,我们首先观察了LFS EC是否具有抗癫痫作用并且评价了刺激延时对其抗癫痫作用的影响。
     另一方面,癫痫环路的概念逐渐被人们接受和关注,癫痫网络既包括灶点及周边网络也涉及一些遥远的脑区结构。LFS直接作用癫痫灶点(如点燃灶点)及其他环路关键节点的作用目前都还不清楚。海马齿状回(dentate gyrus, DG)区域是颞叶癫痫环路的关键节点,被认为是癫痫形成和传播的关键区域之一。在颞叶癫痫患者及动物模型中,海马DG区抑制性中间神经元大量丢失,而大量存活的颗粒细胞表现出异常的兴奋性、分布和轴突苔藓纤维出芽。课题组的前期研究发现,在杏仁核点燃癫痫的形成过程伴随着DG区星形胶质细胞内与谷氨酸代谢相关的关键酶——谷氨酰胺合成酶(glutamine synthetase)的一过性增加,并且在形成过程中关键时间点选择性抑制其活性可以有效抑制癫痫形成,提示DG区在癫痫发病中的关键作用。解剖学上,DG区主要接受EC直接投射(perforant pathway, PP通路),DG区颗粒细胞被认为对来自EC传入进行调节过滤。更有意思的是,DG区颗粒细胞的兴奋性、结构功能及神经再生等都会受EC的调节。LFS EC有可能通过调节DG区神经活动干预癫痫的产生和传播。
     因此,本课题进一步观察了LFS对杏仁核点燃灶点直接作用并意外发现了灶点LFS的极性特异性效应;同时我还在麻醉状态的颞叶癫痫模型中观察了LFSEC对DG区的神经元活动和痫样放电的作用,对LFS EC抗癫痫作用的环路机制进行了初步的探讨。模式。同时,我们还在AD过程中发现LFS作用的有效“治疗时间窗”,提示时间延时可能是临床LFS closed-loop模式应用的关键。
     第二部分低频率电刺激杏仁核对大鼠杏仁核电点燃癫痫极性依赖性效应
     电极极性与点燃刺激相同的双极LFS能有效抑制大鼠杏仁核电点燃癫痫形成过程,而电极极性与点燃刺激相反的双极LFS没有明显抗癫痫作用。正极而非负极的单极LFS能有效抑制大鼠杏仁核电点燃癫痫形成过程和大发作。双极LFS抗癫痫作用略强于单极LFS。进一步研究发现,LFS的正电极(无论是双极还是单极)降低杏仁核灶点的EEG能量,而LFS的负电极增加了杏仁核灶点的EEG能量。最主要EEG能量变化频段为0.5-4Hz的delta波段。Delta波段能量在杏仁核点燃癫痫形成过程中特异性上升。这些的结果直接证明癫痫电点燃灶点LFS存在极性特异性,并且其机制可能与LFS正负极对杏仁核活性尤其是Delta波段的活性存在不同的作用有关。因此,电极极性特别是正电极可能是影响LFS抗癫痫作用的另一个关键因素。
     第三部分低频率电刺激内嗅皮层抗癫痫作用的潜在环路机制初步研究
     在乌拉坦麻醉大鼠在体实验中我们发现:(1)单个脉冲刺激EC和PP通路会短暂抑制DG区神经元放电;Hz LFS EC能显著减低DG区神经元放电频率,并随着时间增加抑制效果加强。(2)预给15min LFS EC可以抑制DG区最大齿状回兴奋(Maximal dentate activation, MDA),包括延长MDA潜时,抑制ADD和MDA持续时间;MDA诱导同时给予LFS EC主要影响MDA的潜时而对MDA持续时间和后放电没有明显影响;(3)MDA诱导后给予LFS不但没有抑制作用反而延长MDA和后放电持续时间,并且可能调控AD节律。这些结果证明LFS EC可能可以干预复杂局灶性TLE发作,提示其抗癫痫作用机制可能通过抑制DG神经元放电,并且再一次证实“时间窗”对LFS的重要性。DG区神经元可能是临床干预复杂局灶TLE的潜在靶点。此外,对侧CA3诱导DG MDA后,再给予同侧EC LFS刺激可以调控DG区AD频率,提示一次癫痫发作的起始和发作节律的调节有可能通过三个甚至多个独立的脑区(诱发区如对侧CA3、调控区如EC区和放电区如DG区)共同完成,这为癫痫灶点网络提供了一定的实验证据。
     总之,本课题发现LFS EC及癫痫灶点可以有效抑制癫痫形成过程和大发作;LFS EC干预癫痫发作存在“时间窗”效应,其机制可能与LFS EC调节DG区神经元发放有关;在灶点给予LFS时,电极极性,特别是阳极电流,对于LFS的抗癫痫作用的发挥非常重要,其机制可能与LFS正负极对灶点delta节律的不同调节作用有关;最后,我们还发现对侧CA3诱导DG区MDA后,LFS EC可以调控DG区AD频率,提示三个独立的脑区有可能不同分工地完成一次癫痫发作,这为癫痫灶点网络提供了较为直接的证据。
     因此,本论文的研究结果阐明了LFS抗癫痫的作用及部分机制,初步解析了癫痫发生灶点网络特征,为将来LFS临床应用治疗癫痫提供了重要的实验依据。
Epilepsy is a common chronic neurological disorder and usually lifelong. Recurrent epileptic seizures may lead to accidents and cognitive impairment. Due to the lack of understanding of the complex pathogenesis of epilepsy, clinical treatment of epilepsy is not satisfactory so far. Approximately30%of patients (more in patients with temporal lobe epilepsy, TLE) continue to have seizures and develop intractable epilepsy even a variety of antiepileptic drugs are currently available. Although surgery may be considered as an option in some patients with intractable epilepsy, many are not appropriate candidates for surgery. Therefore, treatment of intractable epilepsy is a major problem for clinical antiepileptic practice.
     Low-frequency stimulation (LFS,1-3Hz) targeting deep brain region is emerging as a new option for the treatment of intractable epilepsy with the advantages of reversiblity, adjustability and minimally invasive surgery. LFS of epileptic focus and some other brain areas can suppress seizures in patients and experimental animals. However, because of the complex mechanisms underlying LFS treatment for epilepsy, the optimal strategy for LFS remains unclear. Moreover, contradictory reports regarding the effects of LFS on epilepsy limited the clinical application of LFS. To find suitable stimulation targets and modes are important for LFS treatment of epilepsy. The entorhinal cortex (EC) serves as a gateway to the hippocampus and might be a promising target for LFS to treat epilepsy. On the other hand, closed-loop is a novel clinic mode for LFS which means that the stimulation is delivered in response to the electroencephalographic (EEG) activity. Comparing with open-loop mode in which stimulation delivery follows preset programming, closed-loop may minimize the side effects of LFS. However, new technology has brought new problems:the closed-loop mode inevitably has seconds delay for detecting the seizure and giving the stimulation, and such delay may influence the anticonvulsive effects of LFS. Recently, we reported LFS delivered daily immediately after the kindling stimulation inhibits amygdaloid-kindling seizures, while LFS after the cessation of afterdischarge (AD) has no effect or even augments epileptic activities, suggesting it may be reasonable to deliver LFS in the closed-loop mode. Therefore, we first evaluated whether delayed LFS of EC has antiepileptic effect, which is important for the clinical use of LFS in closed-loop mode.
     Recently, the epileptic networks have been increasingly accepted and aroused wide concern. Epileptic networks include both the seizure focus and the remote brain structures outside of the focus. The effects of LFS on seizure focus (such as kindling focus) and other critical areas of the epileptic networks are poorly known. The dentate gyrus (DG) of hippocampus has been considered as a critical part of epilepsy circuits. Loss of inhibitory interneurons and many granule cell survived with hyper-excitability, abnormal dispersion and mossy fiber sprouting were found in the dentate gyrus both in animal models and patients with TLE. Our unpublished data found a transient increase of glutamine synthetase in the ipsilateral DG during amygdaloid kindling acquisition, and inhibition of GS in the ipsilateral DG to an adequate degree at the appropriate time retards kindling acquisition in the rat. Anatomically, DG granule cells mainly receive direct projections from EC, the perforant pathway (PP), and may filter the inputs from EC. Furthermore, the excitability, structures and regeneration of granule cells can be regulated by the inputs from EC. Thus, LFS EC may interfere with epilepsy by affecting the granule cells of DG.
     Therefore, we further observed the effect of focal LFS on the EEG activity of the kindling focus and accidently found a polarity-specific effect of LFS; we also investigate the effect of LFS of the EC on neuronal activities and epileptic discharges of DG in maximal dentate activation (MDA) seizure model in rats.
     1Therapeutic time window of low-frequency stimulation at entorhinal cortex for amygdaloid-kindling seizures in rats
     LFS at the EC immediately or4seconds after kindling stimulation exhibited a strong anticonvulsive effect and4seconds-delayed LFS exhibited better effect than immediate LFS on both kindling and kindled seizures. However, LFS delivered after the cessation of AD or10seconds after the kindling stimulation augmented the epileptic activity in kindling progression. In addition, the immediate and4seconds-delayed LFS groups showed less decrease in AD threshold and more increase in the current intensity difference between AD threshold and'generalized seizure threshold. These results provide direct evidence that LFS of the EC can control temporal lobe epilepsy, and confirmed that there is a "time window" in AD duration for LFS therapy, indicating the time delay of closed-loop may be the key factor to LFS clinical treatment and optimization of stimulation timing is crucial.
     2Polarity-dependent effect of low-frequency stimulation on amygdaloid kindling in rats
     Bipolar LFS in the same direction of polarity as the kindling stimulation but not in the reverse direction retarded kindling acquisition. And anodal rather than cathodal monopolar LFS inhibited kindling acquisition and kindled seizures. Bipolar LFS showed a stronger anti-epileptic effect than monopolar LFS. Furthermore, anode of LFS (both bipolar and monopolar) deceased, while cathode of LFS increased the power of EEG of the amygdala in normal and kindled rats; the main changes in power of LFP frequency bands were in the delta (0.5-4Hz) band, which was specifically increased during kindling acquisition.Our results provide the first evidence that the effect of LFS at kindling focus is polarity-dependent, which may be due to the different effects of the anode and cathode of LFS on the activity of amygdala, especially on the delta band oscillation. It is likely that the electrode polarity is a key factor affecting the clinical effect of LFS on epilepsy.
     3Preliminary study on potential circuit mechanism of the antiepileptic effect of low-frequency stimulation at the entorhinal cortex in urethane-anesthetized rats
     In urethane-anesthetized rats, we found that:(1) a single pulse stimulation of the EC and PP pathway induced100-300ms inhibition in neuronal firing in the ipsilateral DG; LFS (15min) of the EC reduced the ipsilateral firing rate of DG neurons with an accumulation effect.(2) pre-treatment with LFS of the ipsilateral EC inhibited MDA induced by kindling stimulation at the contralateral CA3, demonstrated by increased MDA latency, decreased MDA duration and AD duration (ADD); LFS delivered together with kindling stimulation only increased the MDA latency but had no effect on MDA duration and ADD; however, LFS delivered after kindling stimulation prolonged MDA duration and ADD, and even regulated AD frequency. Thus, our results suggest LFS at the EC may control the complex focal TLE, possibly through inhibiting the neuronal activity in the DG, and the timing of LFS onset may be important for using LFS at the EC to treat epilepsy. The DG neurons may be one therapeutic target for clinical treatment of complex focal TLE. We also found the frequency of ADs in the DG, induced by kindling stimulation of the contralateral CA3, can be reglated by LFS of the ipsilateral EC. These results suggest that a seizure may be accomplished by three individual brain regions (the inducing region:the contralateral CA3; the frequency regulating region:the ipsilateral EC; and the discharge region:the ipsilateral DG).
     In conclusion, we found LFS of the EC and kindling focus inhibit epileptogenesis and epileptic seizures. The antiepileptic effect of LFS of the EC exhibits the "time-window" phenomenon, and inhibition of DG neuronal firing may be involved in the antiepileptic mechanisms. LFS at the kinlding focus shows a polarity dependent property, which may be due to the different effects of the anode and cathode of LFS on the delta band oscillation, suggesting the electrode polarity, especially polarity for anode current, is a key factor affecting the clinical effect of LFS on epilepsy. In addition, we also found kindling stimulation at the contralateral CA3induces ADs at DG, while LFS EC can regulate the AD frequency, suggesting that a seizure may be carried out by three individual brain regions (the inducing region:the contralateral CA3; the frequency regulating region:the ipsilateral EC; and the discharge region:the ipsilateral DG), which provides direct evidence for the network hypothesis of epilepsy.
     Therefore, the present study reveales some important characteristics and mechanisms for LFS interfering with kindling seizures, and also preliminarily found a focal network characteristic of TLE. These results provide an important experimental basis for clinical application of LFS treatment of epilepsy.
引文
1. Bialer M and White HS, Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 2010; 9(1):68-82.
    2. Berg AT, Epilepsy:Efficacy of epilepsy surgery:what are the questions today? Nat Rev Neurol 2011; 7(6):311-312.
    3. Kringelbach ML, Jenkinson N, Owen SL, and Aziz TZ, Translational principles of deep brain stimulation. Nat Rev Neurosci 2007; 8(8):623-635.
    4. Gubellini P, Salin P, Kerkerian-Le Goff L, and Baunez C, Deep brain stimulation in neurological diseases and experimental models:from molecule to complex behavior. Prog Neurobiol 2009; 89(1):79-123.
    5. Pena C, Bowsher K, Costello A, De Luca R, Doll S, Li K, Schroeder M, and Stevens T, An overview of FDA medical device regulation as it relates to deep brain stimulation devices. IEEE Trans Neural Syst Rehabil Eng 2007; 15(3):421-424.
    6. Li Y and Mogul DJ, Electrical control of epileptic seizures. J Clin Neurophysiol 2007; 24(2):197-204.
    7. Yamamoto J, Ikeda A, Satow T, Takeshita K, Takayama M, Matsuhashi M, Matsumoto R, Ohara S, Mikuni N, Takahashi J, Miyamoto S, Taki W, Hashimoto N, Rothwell JC, and Shibasaki H, Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy. Epilepsia 2002; 43(5):491-495.
    8. Gaito J, Nobrega JN, and Gaito ST, Interference effect of 3 Hz brain stimulation on kindling behavior induced by 60 Hz stimulation. Epilepsia 1980; 21(1):73-84.
    9. Weiss SR, Li XL, Rosen JB, Li H, Heynen T, and Post RM, Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport 1995; 6(16):2171-2176.
    10. Lopez-Meraz ML, Neri-Bazan L, and Rocha L, Low frequency stimulation modifies receptor binding in rat brain. Epilepsy Res 2004; 59(2-3):95-105.
    11. Ozen LJ and Teskey GC, One hertz stimulation to the corpus callosum quenches seizure development and attenuates motor map expansion. Neuroscience 2009; 160(2):567-575.
    12. Wyckhuys T, De Smedt T, Claeys P, Raedt R, Waterschoot L, Vonck K, Van den Broecke C, Mabilde C, Leybaert L, Wadman W, and Boon P, High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats. Epilepsia 2007; 48(8):1543-1550.
    13. Vercueil L, Benazzouz A, Deransart C, Bressand K, Marescaux C, Depaulis A, and Benabid AL, High-frequency stimulation of the subthalamic nucleus suppresses absence seizures in the rat:comparison with neurotoxic lesions. Epilepsy Res 1998; 31(1):39-46.
    14. Hamani C, Ewerton FI, Bonilha SM, Ballester G, Mello LE, and Lozano AM, Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus. Neurosurgery 2004; 54(1):191-195; discussion 195-197.
    15. Mirski MA, Rossell LA, Terry JB, and Fisher RS, Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res 1997;28(2):89-100.
    16. Osorio I, Overman J, Giftakis J, and Wilkinson SB, High frequency thalamic stimulation for inoperable mesial temporal epilepsy. Epilepsia 2007; 48(8):1561-1571.
    17. Khan S, Wright I, Javed S, Sharples P, Jardine P, Carter M, and Gill SS, High frequency stimulation of the mamillothalamic tract for the treatment of resistant seizures associated with hypothalamic hamartoma Epilepsia 2009; 50(6):1608-1611.
    18. Feddersen B, Vercueil L, Noachtar S, David O, Depaulis A, and Deransart C, Controlling seizures is not controlling epilepsy:a parametric study of deep brain stimulation for epilepsy. Neurobiol Dis 2007; 27(3):292-300.
    19. Sato M, Racine RJ, and McIntyre DC, Kindling:basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol 1990; 76(5):459-472.
    20. Racine RJ, Modification of seizure activity by electrical stimulation:cortical areas. Electroencephalogr Clin Neurophysiol 1975; 38(1):1-12.
    21. Goodman JH, Berger RE, and Tcheng TK, Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures. Epilepsia 2005;46(1):1-7.
    22. Ullal GR, Ninchoji T, and Uemura K, Low frequency stimulation induces an increase in after-discharge thresholds in hippocampal and amygdaloid kindling. Epilepsy Res 1989; 3(3):232-235.
    23. Cain DP and Corcoran ME, Kindling with low-frequency stimulation:generality, transfer, and recruiting effects. Exp Neurol 1981; 73(1):219-232.
    24. Corcoran ME and Cain DP, Kindling of seizures with low-frequency electrical stimulation. Brain Res 1980; 196(1):262-265.
    25. Yang LX, Jin CL, Zhu-Ge ZB, Wang S, Wei EQ, Bruce IC, and Chen Z, Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats. Neuroscience 2006; 138(4):1089-1096.
    26. Sun HL, Zhang SH, Zhong K, Xu ZH, Zhu W, Fang Q, Wu DC, Hu WW, Xiao B, and Chen Z, Mode-dependent effect of low-frequency stimulation targeting the hippocampal CA3 subfield on amygdala-kindled seizures in rats. Epilepsy Res 2010; 90(1-2):83-90.
    27. Zhang SH, Sun HL, Fang Q, Zhong K, Wu DC, Wang S, and Chen Z, Low-frequency stimulation of the hippocampal CA3 subfield is anti-epileptogenic and anti-ictogenic in rat amygdaloid kindling model of epilepsy. Neurosci Lett 2009; 455(1):51-55.
    28. Wang S, Wu DC, Ding MP, Li Q, Zhuge ZB, Zhang SH, and Chen Z, Low-frequency stimulation of cerebellar fastigial nucleus inhibits amygdaloid kindling acquisition in Sprague-Dawley rats. Neurobiol Dis 2008; 29(1):52-58.
    29. Solger J, Heinemann U, and Behr J, Electrical and chemical long-term depression do not attenuate low-Mg2+-induced epileptiform activity in the entorhinal cortex. Epilepsia 2005; 46(4):509-516.
    30. Weiss SR, Eidsath A, Li XL, Heynen T, and Post RM, Quenching revisited:low level direct current inhibits amygdala-kindled seizures. Exp Neurol 1998; 154(1):185-192.
    31. D'Arcangelo G, Panuccio G, Tancredi V, and Avoli M, Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks. Neurobiol Dis 2005; 19(1-2):119-128.
    32. Boex C, Vulliemoz S, Spinelli L, Pollo C, and Seeck M, High and low frequency electrical stimulation in non-lesional temporal lobe epilepsy. Seizure 2007; 16(8):664-669.
    33. Wu DC, Xu ZH, Wang S, Fang Q, Hu DQ, Li Q, Sun HL, Zhang SH, and Chen Z, Time-dependent effect of low-frequency stimulation on amygdaloid-kindling seizures in rats. Neurobiol Dis 2008; 31(1):74-79.
    34. Sun FT, Morrell MJ, and Wharen RE, Jr., Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 2008; 5(1):68-74.
    35. Bertram EH, Functional anatomy of spontaneous seizures in a rat model of limbic epilepsy. Epilepsia 1997; 38(1):95-105.
    36. Armand V, Hoffmann P, Vergnes M, and Heinemann U, Epileptiform activity induced by 4-aminopyridine in entorhinal cortex hippocampal slices of rats with a genetically determined absence epilepsy (GAERS). Brain Res 1999; 841(1-2):62-69.
    37. Barbarosie M and Avoli M, C A3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J Neurosci 1997; 17(23):9308-9314.
    38. Bernasconi N, Bernasconi A, Caramanos Z, Dubeau F, Richardson J, Andermann F, and Arnold DL, Entorhinal cortex atrophy in epilepsy patients exhibiting normal hippocampal volumes. Neurology 2001; 56(10):1335-1339.
    39. Bonilha L, Yasuda CL, Rorden C, Li LM, Tedeschi H, de Oliveira E, and Cendes F, Does resection of the medial temporal lobe improve the outcome of temporal lobe epilepsy surgery? Epilepsia 2007; 48(3):571-578.
    40. Savage DD, Rigsbee LC, and McNamara JO, Knife cuts of entorhinal cortex: effects on development of amygdaloid kindling and seizure-induced decrease of muscarinic cholinergic receptors. J Neurosci 1985; 5(2):408-413.
    41. Gnatkovsky V, Librizzi L, Trombin F, and de Curtis M, Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol 2008; 64(6):674-686.
    42. Izumi Y and Zorumski CF, Direct cortical inputs erase long-term potentiation at Schaffer collateral synapses. J Neurosci 2008; 28(38):9557-9563.
    43. Mouly AM and Di Scala G, Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat. Neuroscience 2006; 137(4):1131-1141.
    44. Valenti O and Grace AA, Entorhinal cortex inhibits medial prefrontal cortex and modulates the activity states of electrophysiologically characterized pyramidal neurons in vivo. Cereb Cortex 2008.
    45. Paxinos G and Watson C, eds. The Rat Brain in Stereotaxic Coordinates.2004, Academic Press:New York.
    46. Racine RJ, Modification of seizure activity by electrical stimulation. Ⅱ. Motor seizure. Electroencephalogr Clin Neurophysiol 1972; 32(3):281-294.
    47. Reissmuller E, Ebert U, and Loscher W, Anticonvulsant efficacy of topiramate in phenytoin-resistant kindled rats. Epilepsia 2000; 41(4):372-379.
    48. Ebert U, Cramer S, and Loscher W, Phenytoin's effect on the spread of seizure activity in the amygdala kindling model. Naunyn Schmiedebergs Arch Pharmacol 1997; 356(3):341-347.
    49. Loscher W, Rundfeldt C, and Honack D, Pharmacological characterization of phenytoin-resistant amygdala-kindled rats, a new model of drug-resistant partial epilepsy. Epilepsy Res 1993; 15(3):207-219.
    1. Xu ZH, Wu DC, Fang Q, Zhong K, Wang S, Sun HL, Zhang SH, and Chen Z, Therapeutic time window of low-frequency stimulation at entorhinal cortex for amygdaloid-kindling seizures in rats. Epilepsia 2010; 51(9):1861-1864.
    2. Weiss SR, Li XL, Rosen JB, Li H, Heynen T, and Post RM, Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport 1995; 6(16):2171-2176.
    3. Weiss SR, Eidsath A, Li XL, Heynen T, and Post RM, Quenching revisited:low level direct current inhibits amygdala-kindled seizures. Exp Neurol 1998; 154(1):185-192.
    4. D'Arcangelo G, Panuccio G, Tancredi V, and Avoli M, Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks. Neurobiol Dis 2005; 19(1-2):119-128.
    5. Solger J, Heinemann U, and Behr J, Electrical and chemical long-term depression do not attenuate low-Mg2+-induced epileptiform activity in the entorhinal cortex. Epilepsia 2005; 46(4):509-516.
    6. Boex C, Vulliemoz S, Spinelli L, Pollo C, and Seeck M, High and low frequency electrical stimulation in non-lesional temporal lobe epilepsy. Seizure 2007; 16(8):664-669.
    7. Yamamoto J, Ikeda A, Satow T, Takeshita K, Takayama M, Matsuhashi M, Matsumoto R, Ohara S, Mikuni N, Takahashi J, Miyamoto S, Taki W, Hashimoto N, Rothwell JC, and Shibasaki H, Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy. Epilepsia 2002; 43(5):491-495.
    8. Wang S, Wu DC, Ding MP, Li Q, Zhuge ZB, Zhang SH, and Chen Z, Low-frequency stimulation of cerebellar fastigial nucleus inhibits amygdaloid kindling acquisition in Sprague-Dawley rats. Neurobiol Dis 2008; 29(1):52-58.
    9. Wu DC, Xu ZH, Wang S, Fang Q, Hu DQ, Li Q, Sun HL, Zhang SH, and Chen Z, Time-dependent effect of low-frequency stimulation on amygdaloid-kindling seizures in rats. Neurobiol Dis 2008; 31(1):74-79.
    10. Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, Bakos R, and Nedergaard M, Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 2008; 14(1):75-80.
    11. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, and Lu B, Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 2010; 66(2):198-204.
    12. Reibel S, Larmet Y, Le BT, Carnahan J, Marescaux C, and Depaulis A, Brain-derived neurotrophic factor delays hippocampal kindling in the rat. Neuroscience 2000; 100(4):777-788.
    13. Heinrich C, Lahteinen S, Suzuki F, Anne-Marie L, Huber S, Haussler U, Haas C, Larmet Y, Castren E, and Depaulis A, Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiol Dis 2011; 42(1):35-47.
    14. Boison D, The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 2008; 84(3):249-262.
    15. Dragunow M and Goddard GV, Adenosine modulation of amygdala kindling. Exp Neurol 1984; 84(3):654-665.
    16. Jahanshahi A, Mirnajafi-Zadeh J, Javan M, Mohammad-Zadeh M, and Rohani R, The antiepileptogenic effect of electrical stimulation at different low frequencies is accompanied with change in adenosine receptors gene expression in rats. Epilepsia 2009; 50(7):1768-1779.
    17. Manola L, Holsheimer J, Veltink P, and Buitenweg JR, Anodal vs cathodal stimulation of motor cortex:a modeling study. Clin Neurophysiol 2007; 118(2):464-474.
    18. Kombos T and Suss O, Neurophysiological basis of direct cortical stimulation and applied neuroanatomy of the motor cortex:a review. Neurosurg Focus 2009; 27(4):E3.
    19. Paxinos G and Watson C, eds. The Rat Brain in Stereotaxic Coordinates.2004, Academic Press:New York.
    20. Racine RJ, Modification of seizure activity by electrical stimulation.Ⅱ. Motor seizure. Electroencephalogr Clin Neurophysiol 1972; 32(3):281-294.
    21. Lian J, Bikson M, Sciortino C, Stacey WC, and Durand DM, Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J Physiol 2003; 547(Pt 2):427-434.
    22. Jiruska P, Powell AD, Deans JK, and Jefferys JG, Effects of direct brain stimulation depend on seizure dynamics. Epilepsia 2010; 51 Suppl 3:93-97.
    23. Jaffe LF and Poo MM, Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 1979; 209(1):115-128.
    24. Patel N and Poo MM, Orientation of neurite growth by extracellular electric fields. J Neurosci 1982; 2(4):483-496.
    25. Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, Loscher W, Paulus W, and Tergau F, Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 2006; 47(7):1216-1224.
    26. Fernandez-Guardiola A, Martinez A, Valdes-Cruz A, Magdaleno-Madrigal VM, Martinez D, and Fernandez-Mas R, Vagus nerve prolonged stimulation in cats: effects on epileptogenesis (amygdala electrical kindling):behavioral and electrographic changes. Epilepsia 1999; 40(7):822-829.
    27. Gubellini P, Salin P, Kerkerian-Le Goff L, and Baunez C, Deep brain stimulation in neurological diseases and experimental models:from molecule to complex behavior. Prog Neurobiol 2009; 89(1):79-123.
    28. Walckiers G, Fuchs B, Thiran JP, Mosig JR, and Pollo C, Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation. J Neurosci Methods 2010; 186(1):90-96.
    29. Reiher J, Beaudry M, and Leduc CP, Temporal intermittent rhythmic delta activity (TIRDA) in the diagnosis of complex partial epilepsy:sensitivity, specificity and predictive value. Can J Neurol Sci 1989; 16(4):398-401.
    30. Panet-Raymond D and Gotman J, Asymmetry in delta activity in patients with focal epilepsy. Electroencephalogr Clin Neurophysiol 1990; 75(6):474-481.
    31. Gambardella A, Gotman J, Cendes F, and Andermann F, Focal intermittent delta activity in patients with mesiotemporal atrophy:a reliable marker of the epileptogenic focus. Epilepsia 1995; 36(2):122-129.
    32. Geyer JD, Bilir E, Faught RE, Kuzniecky R, and Gilliam F, Significance of interictal temporal lobe delta activity for localization of the primary epileptogenic region. Neurology 1999; 52(1):202-205.
    33. Huppertz HJ, Hof E, Klisch J, Wagner M, Lucking CH, and Kristeva-Feige R, Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions. Neuroimage 2001; 13(1):15-28.
    34. Jan MM, Sadler M, and Rahey SR, Lateralized postictal EEG delta predicts the side of seizure surgery in temporal lobe epilepsy. Epilepsia 2001; 42(3):402-405.
    35. Koutroumanidis M, Martin-Miguel C, Hennessy MJ, Akanuma N, Valentin A, Alarcon G, Jarosz JM, and Polkey CE, Interictal temporal delta activity in temporal lobe epilepsy:correlations with pathology and outcome. Epilepsia 2004; 45(11):1351-1367.
    36. Tao JX, Chen XJ, Baldwin M, Yung I, Rose S, Frim D, Hawes-Ebersole S, and Ebersole JS, Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy. Epilepsia 2011; 52(3):467-476.
    37. Nazer F and Dickson CT, Slow oscillation state facilitates epileptiform events in the hippocampus. J Neurophysiol 2009; 102(3):1880-1889.
    38. Clemens B, Menes A, Piros P, Bessenyei M, Altmann A, Jerney J, Kollar K, Rosdy B, Rozsavolgyi M, Steinecker K, and Hollody K, Quantitative EEG effects of carbamazepine, oxcarbazepine, valproate, lamotrigine, and possible clinical relevance of the findings. Epilepsy Res 2006; 70(2-3):190-199.
    39. Besser R, Hornung K, Theisohn M, Rothacher G, and Kramer G, EEG changes in patients during the introduction of carbamazepine. Electroencephalogr Clin Neurophysiol 1992; 83(1):19-23.
    40. Mecarelli O, Vicenzini E, Pulitano P, Vanacore N, Romolo FS, Di Piero V, Lenzi GL, and Accornero N, Clinical, cognitive, and neurophysiologic correlates of short-term treatment with carbamazepine, oxcarbazepine, and levetiracetam in healthy volunteers. Ann Pharmacother 2004; 38(11):1816-1822.
    41. Cho JR, Koo DL, Joo EY, Yoon SM, Ju E, Lee J, Kim DY, and Hong SB, Effect of levetiracetam monotherapy on background EEG activity and cognition in drug-naive epilepsy patients. Clin Neurophysiol 2011123(5):883-91.
    42. Kopp C, Rudolph U, Low K, and Tobler I, Modulation of rhythmic brain activity by diazepam:GABA(A) receptor subtype and state specificity. Proc Natl Acad Sci U S A 2004; 101(10):3674-3679.
    43. Lopez-Meraz ML, Neri-Bazan L, and Rocha L, Low frequency stimulation modifies receptor binding in rat brain. Epilepsy Res 2004; 59(2-3):95-105.
    44. Constantinescu AO, Hie A, Ciocan D, Zagrean AM, Zagrean L, and Moldovan M, Endogenous adenosine A1 receptor activation underlies the transient post-ischemic rhythmic delta EEG activity. Clin Neurophysiol 2011; 122(6):1117-1126.
    45. Cunha RA, Vizi ES, Ribeiro JA, and Sebastiao AM, Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J Neurochem 1996; 67(5):2180-2187.
    46. Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M, Jahanshahi A, Noorbakhsh SM, and Motamedi F, The role of adenosine A(1) receptors in mediating the inhibitory effects of low frequency stimulation of perforant path on kindling acquisition in rats. Neuroscience 2009; 158(4):1632-1643.
    47. Hattori Y, Moriwaki A, and Hori Y, Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci Lett 1990; 116(3):320-324.
    48. Herrmann CS and Demiralp T, Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 2005; 116(12):2719-2733.
    49. Levesque M, Langlois JM, Lema P, Courtemanche R, Bilodeau GA, and Carmant L, Synchronized gamma oscillations (30-50 Hz) in the amygdalo-hippocampal network in relation with seizure propagation and severity. Neurobiol Dis 2009; 35(2):209-218.
    1. Xu ZH, Wu DC, Fang Q, Zhong K, Wang S, Sun HL, Zhang SH, and Chen Z, Therapeutic time window of low-frequency stimulation at entorhinal cortex for amygdaloid-kindling seizures in rats. Epilepsia 2010; 51(9):1861-1864.
    2. Wu DC, Xu ZH, Wang S, Fang Q, Hu DQ, Li Q, Sun HL, Zhang SH, and Chen Z, Time-dependent effect of low-frequency stimulation on amygdaloid-kindling seizures in rats. Neurobiol Dis 2008; 31(1):74-79.
    3. Reissmuller E, Ebert U, and Loscher W, Anticonvulsant efficacy of topiramate in phenytoin-resistant kindled rats. Epilepsia 2000; 41(4):372-379.
    4. Sato M, Racine RJ, and McIntyre DC, Kindling:basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol 1990; 76(5):459-472.
    5. Lothman EW, Bertram EH,3rd, and Stringer JL, Functional anatomy of hippocampal seizures. Prog Neurobiol 1991; 37(1):1-82.
    6. Nadler JV, The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 2003; 28(11):1649-1658.
    7. Morgan RJ and Soltesz I, Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 2008;105(16):6179-6184.
    8. Stringer JL, Williamson JM, and Lothman EW, Induction of paroxysmal discharges in the dentate gyrus:frequency dependence and relationship to afterdischarge production. J Neurophysiol 1989; 62(1):126-135.
    9. Sloviter RS, The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 1994; 35(6):640-654.
    10. Hunt RF, Scheff SW, and Smith BN, Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice. J Neurosci 2011; 31(18):6880-6890.
    11. Hunt RF, Scheff SW, and Smith BN, Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol 2009; 215(2):243-252.
    12. Hunt RF, Scheff SW, and Smith BN, Regionally localized recurrent excitation in the dentate gyrus of a cortical contusion model of posttraumatic epilepsy. J Neurophysiol 2010; 103(3):1490-1500.
    13. Bonde S, Ekdahl CT, and Lindvall O, Long-term neuronal replacement in adult rat hippocampus after status epilepticus despite chronic inflammation. Eur J Neurosci 2006; 23(4):965-974.
    14. Buckmaster PS and Jongen-Relo AL, Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci 1999; 19(21):9519-9529.
    15. Buckmaster PS and Dudek FE, In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 1999; 81(2):712-721.
    16. Canto CB, Wouterlood FG, and Witter MP, What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2008; 2008:381243.
    17. Lisman J, Formation of the non-functional and functional pools of granule cells in the dentate gyrus:role of neurogenesis, LTP and LTD. J Physiol 2011; 589(Pt 8):1905-1909.
    18. Vuksic M, Del Turco D, Vlachos A, Schuldt G, Muller CM, Schneider G, and Deller T, Unilateral entorhinal denervation leads to long-lasting dendritic alterations of mouse hippocampal granule cells. Exp Neurol 2011; 230(2):176-185.
    19. Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM, and Frankland PW, Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 2011; 31(38):13469-13484.
    20. Stringer JL and Lothman EW, Maximal dentate gyrus activation:characteristics and alterations after repeated seizures. J Neurophysiol 1989; 62(1):136-143.
    21. Stringer JL and Lothman EW, Maximal dentate activation:a tool to screen compounds for activity against limbic seizures. Epilepsy Res 1990; 5(3):169-176.
    22. Stringer JL and Lothman EW, Al adenosinergic modulation alters the duration of maximal dentate activation. Neurosci Lett 1990; 118(2):231-234.
    23. Stringer JL and Lothman EW, Use of maximal dentate activation to study the effect of drugs on kindling and kindled responses. Epilepsy Res 1990; 6(3):180-186.
    24. Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, and Aston-Jones G, Linking context with reward:a functional circuit from hippocampal CA3 to ventral tegmental area. Science 2011; 333(6040):353-357.
    25. Thompson KW, Genetically engineered cells with regulatable GABA production can affect afterdischarges and behavioral seizures after transplantation into the dentate gyrus. Neuroscience 2005; 133(4):1029-1037.
    26. Rosen JB and Berman RF, Differential effects of adenosine analogs on amygdala, hippocampus, and caudate nucleus kindled seizures. Epilepsia 1987; 28(6):658-666.
    27. Barcia JA, Castillo A, Gutierrez R, Gallego JM, Ortiz L, and Hernandez ME, Continuous intra-amygdalar infusion of GABA in the amygdala kindling model of epilepsy in rat. Epilepsy Res 2004; 58(1):19-26.
    28. Buzsaki G and Czeh G, Commissural and perforant path interactions in the rat hippocampus. Field potentials and unitary activity. Exp Brain Res 1981; 43(3-4):429-438.
    29. Halasz P, The concept of epileptic networks. Part 2. Ideggyogy Sz 2010; 63(11-12):377-384.
    30. Halasz P, The concept of epileptic networks. Part 1. Ideggyogy Sz 2010; 63(9-10):293-303.
    31. Gnatkovsky V, Librizzi L, Trombin F, and de Curtis M, Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol 2008; 64(6):674-686.
    32. Truccolo W, Donoghue JA, Hochberg LR, Eskandar EN, Madsen JR, Anderson WS, Brown EN, Halgren E, and Cash SS, Single-neuron dynamics in human focal epilepsy. Nat Neurosci 2011; 14(5):635-641.
    33. Motamedi GK, Lesser RP, Miglioretti DL, Mizuno-Matsumoto Y, Gordon B, Webber WR, Jackson DC, Sepkuty JP, and Crone NE, Optimizing parameters for terminating cortical afterdischarges with pulse stimulation. Epilepsia 2002; 43(8):836-846.
    34. Bowden JB, Abraham WC, and Harris KM, Differential effects of strain, circadian cycle, and stimulation pattern on LTP and concurrent LTD in the dentate gyrus of freely moving rats. Hippocampus 2012; 22(6):1363-1370.
    35. Racine RJ, Modification of seizure activity by electrical stimulation. Ⅱ. Motor seizure. Electroencephalogr Clin Neurophysiol 1972; 32(3):281-294.
    36. Velisek L, Veliskova J, and Stanton PK, Low-frequency stimulation of the kindling focus delays basolateral amygdala kindling in immature rats. Neurosci Lett 2002; 326(1):61-63.
    37. Solger J, Heinemann U, and Behr J, Electrical and chemical long-term depression do not attenuate low-Mg2+-induced epileptiform activity in the entorhinal cortex. Epilepsia 2005; 46(4):509-516.
    38. D'Arcangelo G, Panuccio G, Tancredi V, and Avoli M, Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks. Neurobiol Dis 2005; 19(1-2):119-128.
    1. Bialer M and White HS, Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 2010; 9(1):68-82.
    2. Berg AT, Epilepsy:Efficacy of epilepsy surgery:what are the questions today? Nat Rev Neurol 2011;7(6):311-312.
    3. Loscher W and Brandt C, Prevention or modification of epileptogenesis after brain insults:experimental approaches and translational research. Pharmacol Rev 2010; 62(4):668-700.
    4. Pitkanen A and Lukasiuk K, Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011; 10(2):173-186.
    5. Engel J, Biomarkers in epilepsy:foreword. Biomark Med 2011; 5(5):529-530.
    6. Pitkanen A and Sutula TP, Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurology 2002; 1(3):173-181.
    7. Trusheim MR, Berndt ER, and Douglas FL, Stratified medicine:strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov 2007; 6(4):287-293.
    8. Engel J, Jr., Biomarkers in epilepsy:introduction. Biomark Med 2011; 5(5):537-544.
    9. Noebels JL, The biology of epilepsy genes. Annu Rev Neurosci 2003; 26:599-625.
    10. Williams CA and Battaglia A, Molecular biology of epilepsy genes. Exp Neurol 2011.
    11. Zara F and Bianchi A, The impact of genetics on the classification of epilepsy syndromes. Epilepsia 2009; 50 Suppl 5:11-14.
    12. Ferraro TN, Dlugos DJ, and Buono RJ, Role of genetics in the diagnosis and treatment of epilepsy. Expert Rev Neurother 2006; 6(12):1789-1800.
    13. Mulley JC, Scheffer IE, Harkin LA, Berkovic SF, and Dibbens LM, Susceptibility genes for complex epilepsy. Hum Mol Genet 2005; 14 Spec No. 2:R243-249.
    14. Lopes-Cendes I, The genetics of epilepsies. J Pediatr (Rio J) 2008; 84(4 Suppl):S33-39.
    15. Gutierrez-Delicado E and Serratosa JM, Genetics of the epilepsies. Curr Opin Neurol 2004; 17(2):147-153.
    16. Helbig I, Scheffer IE, Mulley JC, and Berkovic SF, Navigating the channels and beyond:unravelling the genetics of the epilepsies. Lancet Neurol 2008; 7(3):231-245.
    17. Levisohn PM, The autism-epilepsy connection. Epilepsia 2007; 48 Suppl 9:33-35.
    18. Kanner AM, Depression and epilepsy:A bidirectional relation? Epilepsia 2011; 52 Suppl 1:21-27.
    19. Chang YT, Chen PC, Tsai IJ, Sung FC, Chin ZN, Kuo HT, Tsai CH, and Chou IC, Bidirectional relation between schizophrenia and epilepsy:a population-based retrospective cohort study. Epilepsia 2011; 52(11):2036-2042.
    20. Ferraro TN, Smith GG, Schwebel CL, Doyle GA, Ruiz SE, Oleynick JU, Lohoff FW, Berrettini WH, and Buono RJ, Confirmation of multiple seizure susceptibility QTLs on chromosome 15 in C57BL/6J and DBA/2J inbred mice. Physiol Genomics 2010; 42A(1):1-7.
    21. Stewart LR, Hall AL, Kang SH, Shaw CA, and Beaudet AL, High frequency of known copy number abnormalities and maternal duplication 15q11-q13 in patients with combined schizophrenia and epilepsy. BMC Med Genet 2011; 12:154.
    22. Mulley JC, Dibbens LM, Mullen S, Helbig I, Mefford HC, Bayly MA, Bellows S, Leu C, Trucks H, Obermeier T, Wittig M, Franke A, Caglayan H, Yapica Z, Sander T, Eichler EE, Scheffer IE, Berkovic SF, and Consortium EE, Familial and Sporadic 15q13.3 Microdeletions in Idiopathic Generalized Epilepsy:A Model for Disorders with Complex Inheritance. Epilepsia 2009; 50:151-152.
    23. Dibbens LM, Mullen S, Helbig I, Mefford HC, Bayly MA, Bellows S, Leu C, Trucks H, Obermeier T, Wittig M, Franke A, Caglayan H, Yapici Z, Sander T, Eichler EE, Scheffer IE, Mulley JC, Berkovic SF, and Consortium E, Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Human Molecular Genetics 2009; 18(19):3626-3631.
    24. Ben-Shachar S, Lanpher B, German JR, Qasaymeh M, Potocki L, Nagamani SC, Franco LM, Malphrus A, Bottenfield GW, Spence JE, Amato S, Rousseau JA, Moghaddam B, Skinner C, Skinner SA, Bernes S, Armstrong N, Shinawi M, Stankiewicz P, Patel A, Cheung SW, Lupski JR, Beaudet AL, and Sahoo T, Microdeletion 15q13.3:a locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders. J Med Genet 2009; 46(6):382-388.
    25. Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A, Muhle H, de Kovel C, Baker C, von Spiczak S, Kron KL, Steinich I, Kleefuss-Lie AA, Leu C, Gaus V, Schmitz B, Klein KM, Reif PS, Rosenow F, Weber Y, Lerche H, Zimprich F, Urak L, Fuchs K, Feucht M, Genton P, Thomas P, Visscher F, de Haan GJ, Moller RS, Hjalgrim H, Luciano D, Wittig M, Nothnagel M, Elger CE, Nurnberg P, Romano C, Malafosse A, Koeleman BP, Lindhout D, Stephani U, Schreiber S, Eichler EE, and Sander T,15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 2009; 41(2):160-162.
    26. Pagnamenta AT, Wing K, Sadighi Akha E, Knight SJ, Bolte S, Schmotzer G, Duketis E, Poustka F, Klauck SM, Poustka A, Ragoussis J, Bailey AJ, and Monaco AP, A 15q13.3 microdeletion segregating with autism. Eur J Hum Genet 2009; 17(5):687-692.
    27. Rare chromosomal deletions and duplications increase risk of schizophrenia Nature 2008; 455(7210):237-241.
    28. Wang YY, Smith P, Murphy M, and Cook M, Global expression profiling in epileptogenesis:does it add to the confusion? Brain Pathol 2010; 20(1):1-16.
    29. Xiao Z, Shen L, Chen D, Wang L, Xi Z, Xiao F, and Wang X, Talin 2 concentrations in cerebrospinal fluid in patients with epilepsy. Clin Biochem 2010;43(13-14):1129-1132.
    30. Xiao F, Chen D, Lu Y, Xiao Z, Guan LF, Yuan J, Wang L, Xi ZQ, and Wang XF, Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy. Brain Res 2009; 1255:180-189.
    31. Wang L, Pan Y, Chen D, Xiao Z, Xi Z, Xiao F, and Wang X, Tetranectin is a potential biomarker in cerebrospinal fluid and serum of patients with epilepsy. Clin Chim Acta 2010; 411(7-8):581-583.
    32. Wang W, Wang L, Luo J, Xi Z, Wang X, Chen G, and Chu L, Role of a neural cell adhesion molecule found in cerebrospinal fluid as a potential biomarker for epilepsy. Neurochem Res 2012; 37(4):819-825.
    33. Liu XY, Yang JL, Chen LJ, Zhang Y, Yang ML, Wu YY, Li FQ, Tang MH, Liang SF, and Wei YQ, Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 2008; 8(3):582-603.
    34. Pitkanen A and Lukasiuk K, Molecular biomarkers of epileptogenesis. Biomark Med 2011;5(5):629-633.
    35. Vezzani A and Friedman A, Brain inflammation as a biomarker in epilepsy. Biomarkers in Medicine 2011; 5(5):607-614.
    36. Ravizza T, Balosso S, and Vezzani A, Inflammation and prevention of epileptogenesis. Neurosci Lett 2011; 497(3):223-230.
    37. Temkin NR, Preventing and treating posttraumatic seizures:the human experience. Epilepsia 2009; 50 Suppl 2:10-13.
    38. Bartfai T, Sanchez-Alavez M, Andell-Jonsson S, Schultzberg M, Vezzani A, Danielsson E, and Conti B, Interleukin-1 system in CNS stress:seizures, fever, and neurotrauma Ann N Y Acad Sci 2007; 1113:173-177.
    39. Auvin S, Shin D, Mazarati A, and Sankar R, Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia 2010; 51 Suppl 3:34-38.
    40. Ravizza T, Noe F, Zardoni D, Vaghi V, Sifringer M, and Vezzani A, Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-lbeta production. Neurobiol Dis 2008; 31(3):327-333.
    41. Jung KH, Chu K, Lee ST, Kim J, Sinn DI, Kim JM, Park DK, Lee JJ, Kim SU, Kim M, Lee SK, and Roh JK, Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis 2006; 23(2):237-246.
    42. Polascheck N, Bankstahl M, and Loscher W, The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp Neurol 2010; 224(1):219-233.
    43. Holtman L, van Vliet EA, van Schaik R, Queiroz CM, Aronica E, and Gorter JA, Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Research 2009; 84(1):56-66.
    44. Zeng LH, Rensing NR, and Wong M, The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009; 29(21):6964-6972.
    45. Buckmaster PS and Lew FH, Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci 2011; 31(6):2337-2347.
    46. Huang X, Zhang H, Yang J, Wu J, McMahon J, Lin Y, Cao Z, Gruenthal M, and Huang Y, Pharmacological inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis 2010; 40(1):193-199.
    47. Tao JX, Chen XJ, Baldwin M, Yung I, Rose S, Frim D, Hawes-Ebersole S, and Ebersole JS, Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy. Epilepsia 2011; 52(3):467-476.
    48. Reiher J, Beaudry M, and Leduc CP, Temporal intermittent rhythmic delta activity (TIRDA) in the diagnosis of complex partial epilepsy:sensitivity, specificity and predictive value. Can J Neurol Sci 1989; 16(4):398-401.
    49. Gambardella A, Gotman J, Cendes F, and Andermann F, Focal intermittent delta activity in patients with mesiotemporal atrophy:a reliable marker of the epileptogenic focus. Epilepsia 1995; 36(2):122-129.
    50. Panet-Raymond D and Gotman J, Asymmetry in delta activity in patients with focal epilepsy. Electroencephalogr Clin Neurophysiol 1990; 75(6):474-481.
    51. Chauviere L, Rafrafi N, Thinus-Blanc C, Bartolomei F, Esclapez M, and Bernard C, Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy. J Neurosci 2009; 29(17):5402-5410.
    52. Marcelin B, Chauviere L, Becker A, Migliore M, Esclapez M, and Bernard C, h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiol Dis 2009; 33(3):436-447.
    53. Herrmann CS and Demiralp T, Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 2005; 116(12):2719-2733.
    54. Levesque M, Langlois JM, Lema P, Courtemanche R, Bilodeau GA, and Carmant L, Synchronized gamma oscillations (30-50 Hz) in the amygdalo-hippocampal network in relation with seizure propagation and severity. Neurobiol Dis 2009; 35(2):209-218.
    55. Zeng LH, Xu L, Gutmann DH, and Wong M, Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 2008; 63(4):444-453.
    56. Zhou J, Blundell J, Ogawa S, Kwon CH, Zhang W, Sinton C, Powell CM, and Parada LF, Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci 2009; 29(6):1773-1783.
    57. Ljungberg MC, Sunnen CN, Lugo JN, Anderson AE, and D'Arcangelo G, Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical dysplasia Dis Model Mech 2009; 2(7-8):389-398.
    58. Pitkanen A and Lukasiuk K, Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 2009; 14 Suppl 1:16-25.
    59. Hellier JL, Patrylo PR, Dou P, Nett M, Rose GM, and Dudek FE, Assessment of inhibition and epileptiform activity in the septal dentate gyrus of freely behaving rats during the first week after kainate treatment. Journal of Neuroscience 1999; 19(22):10053-10064.
    60. White A, Williams PA, Hellier JL, Clark S, Edward Dudek F, and Staley KJ, EEG spike activity precedes epilepsy after kainate-induced status epilepticus. Epilepsia 2010; 51(3):371-383.
    61. Urrestarazu E, Chander R, Dubeau F, and Gotman J, Interictal high-frequency oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients. Brain 2007; 130(Pt 9):2354-2366.
    62. Jacobs J, LeVan P, Chander R, Hall J, Dubeau F, and Gotman J, Interictal high-frequency oscillations (80-500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 2008; 49(11):1893-1907.
    63. Urrestarazu E, Jirsch JD, LeVan P, Hall J, Avoli M, Dubeau F, and Gotman J, High-frequency intracerebral EEG activity (100-500 Hz) following interictal spikes. Epilepsia 2006; 47(9):1465-1476.
    64. Bragin A, Engel J, Wilson CL, Fried I, and Mathern GW, Hippocampal and entorhinal cortex high-frequency oscillations (100-500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 1999; 40(2):127-137.
    65. Bragin A, Engel J, Wilson CL, Fried I, and Buzsaki G, High-frequency oscillations in human brain. Hippocampus 1999; 9(2):137-142.
    66. Bragin A, Wilson CL, Staba RJ, Reddick M, Fried I, and Engel J, Interictal high-frequency oscillations (80-500Hz) in the human epileptic brain:Entorhinal cortex. Annals of Neurology 2002; 52(4):407-415.
    67. Staba RJ, Wilson CL, Bragin A, Fried I, and Engel J, Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. Journal of Neurophysiology 2002; 88(4):1743-1752.
    68. Bragin A, Engel J, and Staba RJ, High-frequency oscillations in epileptic brain. Current Opinion in Neurology 2010; 23(2):151-156.
    69. Ogren JA, Staba RJ, Lin JJ, Salamon N, Dutton RA, Luders E, Toga AW, Engel J, Thompson PM, and Wilson CL, Fast ripple oscillations correlate with increases in local hippocampal atrophy in unilateral mesial temporal lobe epilepsy\. Epilepsia 2005; 46:8-9.
    70. Bragin A, Claeys P, Vonck K, Van Roost D, Wilson C, Boon P, and Engel J, Analysis of initial slow waves (IS Ws) at the seizure onset in patients with drug resistant temporal lobe epilepsy. Epilepsia 2007; 48(10):1883-1894.
    71. Staba RJ, Frighetto L, Behnke EJ, Mathern G, Fields T, Bragin A, Ogren J, Fried I, Wilson CL, and Engel J, Increased fast ripple to ripple ratios correlate with reduced hippocampal volumes and neuron loss in temporal lobe epilepsy patients. Epilepsia 2007; 48(11):2130-2138.
    72. Worrell G and Gotman J, High-frequency oscillations and other electrophysiological biomarkers of epilepsy:clinical studies. Biomark Med 2011; 5(5):557-566.
    73. Staba RJ and Bragin A, High-frequency oscillations and other electrophysiological biomarkers of epilepsy:underlying mechanisms. Biomark Med 2011; 5(5):545-556.
    74. Engel J, Progress in epilepsy:reducing the treatment gap and the promise of biomarkers. Current Opinion in Neurology 2008; 21(2):150-154.
    75. Bragin A, Engel J, Wilson CL, Vizentin E, and Mathern GW, Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection. Epilepsia 1999; 40(9):1210-1221.
    76. Bragin A, Wilson CL, and Engel J, Spatial stability over time of brain areas generating fast ripples in the epileptic rat Epilepsia 2003; 44(9):1233-1237.
    77. Jacobs J, Levan P, Chatillon CE, Olivier A, Dubeau F, and Gotman J, High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type. Brain 2009; 132(Pt 4):1022-1037.
    78. Bragin A, Azizyan A, Almajano J, Wilson CL, and Engel J, Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats. Epilepsia 2005; 46(10):1592-1598.
    79. Le Van Quyen M, Staba R, Bragin A, Dickson C, Valderrama M, Fried I, and Engel J, Large-Scale Microelectrode Recordings of High-Frequency Gamma Oscillations in Human Cortex during Sleep. Journal of Neuroscience 2010; 30(23):7770-7782.
    80. Engel J, Bragin A, Staba R, and Mody I, High-frequency oscillations:What is normal and what is not? Epilepsia 2009; 50(4):598-604.
    81. Bragin A, Benassi SK, Kheiri F, and Engel J, Jr., Further evidence that pathologic high-frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus. Epilepsia 2011; 52(1):45-52.
    82. Cymerblit-Sabba A and Schiller Y, Network dynamics during development of pharmacologically induced epileptic seizures in rats in vivo. J Neurosci 2010; 30(5):1619-1630.
    83. Truccolo W, Donoghue JA, Hochberg LR, Eskandar EN, Madsen JR, Anderson WS, Brown EN, Halgren E, and Cash SS, Single-neuron dynamics in human focal epilepsy. Nat Neurosci 2011; 14(5):635-641.
    84. Gomes WA and Shinnar S, Prospects for imaging-related biomarkers of human epileptogenesis:a critical review. Biomark Med 2011; 5(5):599-606.
    85. Hesdorffer DC, Benn EK, Bagiella E, Nordli D, Pellock J, Hinton V, and Shinnar S, Distribution of febrile seizure duration and associations with development Ann Neurol 2011; 70(1):93-100.
    86. Herrera EA, Alvarez SY, Cobox O, and Villeda T, Phenomenology of prolonged febrile seizures:results of the FEBSTAT study. Neurology 2009; 72(17):1533; author reply 1533-1534.
    87. Scott RC and Neville BG, Phenomenology of prolonged febrile seizures:results of the FEBSTAT study. Neurology 2009; 72(17):1532; author reply 1532-1533.
    88. Shinnar S, Hesdorffer DC, Nordli DR, Jr., Pellock JM, O'Dell C, Lewis DV, Frank LM, Moshe SL, Epstein LG, Marmarou A, and Bagiella E, Phenomenology of prolonged febrile seizures:results of the FEBSTAT study. Neurology 2008; 71(3):170-176.
    89. Nehlig A, Hippocampal MRI and other structural biomarkers:experimental approach to epileptogenesis. Biomark Med 2011; 5(5):585-597.
    90. Provenzale JM, Barboriak DP, VanLandingham K, MacFall J, Delong D, and Lewis DV, Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. American Journal of Roentgenology 2008; 190(4):976-983.
    91. Scott RC, King MD, Gadian DG, Neville BG, and Connelly A, Hippocampal abnormalities after prolonged febrile convulsion:a longitudinal MRI study. Brain 2003; 126(Pt 11):2551-2557.
    92. VanLandingham KE, Heinz ER, Cavazos JE, and Lewis DV, Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 1998; 43(4):413-426.
    93. Guo Y, Gao F, Wang S, Ding Y, Zhang H, Wang J, and Ding MP, In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis:an 18F-fluorodeoxyglucose-small animal positron emission tomography study. Neuroscience 2009; 162(4):972-979.
    94. Goffin K, Van Paesschen W, Dupont P, and Van Laere K, Longitudinal microPET imaging of brain glucose metabolism in rat lithium-pilocarpine model of epilepsy. Exp Neurol 2009; 217(1):205-209.
    95. Yakushev IY, Dupont E, Buchholz HG, Tillmanns J, Debus F, Cumming P, Heimann A, Fellgiebel A, Luhmann HJ, Landvogt C, Werhahn KJ, Schreckenberger M, Potschka H, and Bartenstein P, In vivo imaging of dopamine receptors in a model of temporal lobe epilepsy. Epilepsia 2010; 51(3):415-422.
    96. Chahboune H, Mishra AM, DeSalvo MN, Staib LH, Purcaro M, Scheinost D, Papademetris X, Fyson SJ, Lorincz ML, Crunelli V, Hyder F, and Blumenfeld H, DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. Neuroimage 2009; 47(2):459-466.
    97. Otte WM, van Eijsden P, Sander JW, Duncan JS, Dijkhuizen RM, and Braun KP, A meta-analysis of white matter changes in temporal lobe epilepsy as studied with diffusion tensor imaging. Epilepsia 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700