多维度多组分干预脑缺血药理机制的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     脑缺血是涉及一系列生物化学和分子机制变化的多基因、多通路和多靶点的复杂疾病。研究表明,许多基因、蛋白质和信号通路,如MAPK、PUK/Akt、 NF-κB、JAK-STAT和Wnt/beta-catenin等通路都与脑缺血再灌注损伤有关。网络药理学的一般观点认为,复杂疾病的治疗应该瞄准整个疾病网络,在疾病网络中只有同时调节多个靶蛋白才能有效地干扰疾病表型。药物作用于多个靶点,其疗效应该是干预复杂的靶点网络的结果。然而,目前大多数药物治疗脑缺血再灌注损伤的研究都仅局限于单一的靶点或通路,很少有人从多基因、多靶点、多通路和多层面来探索药物作用机制的,尚缺乏分子网络水平的认识。在生物网络中,模块性(modularity)是一种普遍存在的现象,探索模块化结构被认为是理解生物系统复杂性的一个关键因素。因此,要从网络水平研究疾病病理和药物作用机制,最关键一步就是要在疾病或药物相关网络中识别出具有相应生物学功能的功能模块(functional module)。因此,如何有效地识别这些模块成为了网络药理学研究中的热点和难点问题。同时,模块识别也成为模块药理学(modular pharmacology, MP)系统分析框架中的最基础的一个步骤。目前,学者们已经提出了大量的模块识别方法,虽然方法很多,但由于缺乏合理、统一的分类标准,实际应用中还存在很多问题和困难。因此,本研究前期收集了大量文献资料,初步确立了一个理论上较为合理的分类标准对现有的模块识别方法进行分类。此外,由于事先我们并不知道某个给定网络中所包含的功能模块的具体数量,因此,用不同的方法对同一个网络进行模块识别时,常常会产生不同的结果,那么,如何去判断模块识别结果的优劣就成为了一个非常棘手的问题。本研究中,我们应用不同的方法对几个网络进行分解,试图对模块识别结果的优劣进行判断。
     另外,我们课题组前期已经开展了一系列关于精制清开灵干预脑缺血再灌注损伤的研究,采用精制清开灵的4种单一组分黄芩苷(baicalin, BA)、栀子苷(jasminoidin, JA)、胆酸(cholic acid, CA)和珍珠母(concha margaritiferausta, CM)以及其组分配伍对脑缺血模型进行药物干预,通过基因芯片技术进行全基因表达谱的检测,来研究单一有效组分及其配伍治疗脑缺血再灌注损伤的药效学和药物作用机制。药效学结果显示,与模型组(vehicle)相比,除CM外,BA、CA和JA均能有效减少脑梗死体积(P<0.05)。在前期研究基础上,本研究拟进一步深入揭示BA、CA和JA三种单一有效组分治疗脑缺血再灌注损伤的药理作用机制,并对实验结果进行分析,以期初步回答上文所述的问题。
     研究目的:
     本研究的目的是要从信号通路、网络和功能模块三个不同的维度揭示不同的有效组分治疗脑缺血再灌注损伤的药理作用机制的相似性和差异性。
     研究方法:
     本研究以黄芩苷(BA)、栀子苷(JA)、胆酸(CA)三种单一有效组分干预小鼠大脑中动脉闭塞(middle cerebral artery occlusion, MCAO)模型的基因芯片实验为基础,首先借助Ingenuity Pathway Analysis (IPA)分析系统来寻找这三种组分干预脑缺血所影响到的信号通路和网络。其次,通过整合基因表达数据和蛋白质相互作用数据分别构建出BA, CA、JA相应的药物靶点网络,分别采用仿射传播聚类(Affinity propagation, AP)、马尔可夫聚类算法(Markov Cluster algorithm, MCL)和Molecular Complex Detection (MCODE)三种方法对上述网络进行模块识别,以“最小网络结构熵”为标准对结果进行判断,从而确定该网络的相对最优的模块识别结果。再用DAVID6.7软件对识别出来的模块进行GO功能富集分析。最后采用RT-PCR和Western blot的方法,分别从基因水平和蛋白水平对其中的两个功能模块(Mrml-Gukl-Hrsp12和Fos-Cebpg-Atf2)进行生物学实验验证。
     研究结果:
     1IPA网络分析在vehicle组与sham组、BA组与vehicle组、CA组与vehicle组、JA组与vehicle组之间分别识别出5个、8个、11个和9个有统计学意义的网络(P<0.05)。
     2IPA网络功能分析在vehicle组与sham组、BA组与vehicle组、CA组与vehicle组、JA组与vehicle组之间分别识别出78个、70个、77个和74个有统计学意义的生物学功能(P<0.05)。BA、CA和JA三组共同重叠的功能有60个,它们可分为疾病和紊乱、分子和细胞功能、生理系统发育和功能三大类,各类所占比例均为1/3。
     3IPA通路分析在vehicle组与sham组、BA组与vehicle组、CA组与vehicle组、JA组与vehicle组之间分别识别出6条、7条、40条和16条有统计学意义的canonical通路(P<0.05)。BA组与CA组、CA组与JA组共同重叠的通路分别有4条和7条。BA、CA和JA都影响了生长因子相关通路,包括EGF信号、PDGF信号、IGF-1信号。BA、CA和JA都作用于Ca2+依赖的信号级联上,BA主要干预了花生四烯酸(arachidonic acid, AA)代谢;JA主要作用于NRF2介导的氧化应激反应;CA则主要影响了类花生酸(eicosanoid)信号、周期蛋白依赖性蛋白激酶5(CDK5)信号、核转录因子κB(NF-κB)激活、IL-2信号以及TNF-α和受体信号。
     4Vehicle组、BA组、CA组和JA组对应的4个蛋白质相互作用网络除了在网络大小上略有差异外,在主要的拓扑参数上均没有显著的差异。
     5模块识别结果显示,分别用AP、MCL和MCODE三种不同的方法对同一个网络进行模块识别,最终识别出来的功能模块在数量、尺寸大小、模块性、网络结构熵等方面都有较大的差异。根据最小网络结构熵的判断,用MCODE方法(Parameters3或4)识别出模块之后所具有的网络结构熵值最小。BA组、CA组、JA组和vehicle组对应的最小网络结构熵分别为5.33077、5.3029、5.24152和5.44995。而且BA组、CA组、JA组和vehicle组原始网络的最小网络结构熵值与随机网络相比,差异具有统计学意义(P<0.05)。最后,用MCODE方法在vehicle组、BA组、CA组和JA组对应的网络中分别识别出50个、49个、41个和42个功能模块。
     6GO功能富集分析一共涉及到218个功能(即GO生物学过程)。Vehicle组、BA组、CA组和JA组分别富集到185个、153个、147个和192个GO功能。其中,四组共同重叠的功能有116个,BA、CA和JA三组共同重叠的功能只有17个,BA、CA和JA都富集到与神经递质相关的功能。BA组单独富集到L-抗坏血酸运输、神经发生等13个功能,CA组仅富集到阳离子运输1个功能。
     7模块的GO功能个数与节点个数、边条数之间没有显著的线性相关。每个节点的连接百分比与其所在模块的GO功能个数之间有显著的线性相关,相关系数为0.18。各组模块之间存在不同程度的重叠。
     8生物学实验结果
     8.1RT-PCR结果显示,与sham组相比,vehicle组中Mrml mRNA表达水平明显下调(P<0.01);与vehicle组相比,BA组中Mrml mRNA表达水平明显上调(P<0.01),而CA组中Mrml mRNA表达水平明显下调(P<0.01)。Gukl与Hrsp12mRNA表达水平在各组间均无明显变化(P>0.05)。
     8.2Western blot结果显示,与sham组相比,vehicle组中Atf2、Fos和Cebpg蛋白水平均明显上调(P<0.01);与vehicle组相比,JA、BA、CA三个治疗组中Fos与Cebpg蛋白水平均明显下调(P<0.05),但Atf2蛋白水平则无明显变化(P>0.05)。
     8.3STRING9.0分析结果显示,Atf2与Fos之间存在表达(expression)的相互作用关系,且相互作用得分为0.800。Gukl与Hrsp12、Guk1与Mrml之间的相互作用得分分别为0.796和0.571。
     结论:
     1不同组分干预脑缺血再灌注损伤的药理作用机制存在共性和差异性。BA、CA和JA对脑缺血的治疗效应是通过多靶点、多通路、多网络、多模块、多功能作用实现的。
     2对于揭示药物作用机制而言,信号通路、功能模块和网络三个不同维度的分析是相互补充的。在信号通路水平,BA、CA和JA影响了Ca2+依赖的信号级联的不同环节,BA干预花生四烯酸代谢,JA表现为抗氧化,CA涉及抗炎反应;在功能模块水平,BA主要涉及抗氧化和影响神经发生,CA侧重于调节阳离子运输,BA、CA和JA都影响了神经递质相关的功能。
     3模块化分析方法适用于多靶点药物治疗复杂疾病的研究,其为研究药理机制提供了一种新的方法。
Background
     Cerebral ischemia is a process related to a series of biochemical and molecular mechanisms involving changes of multiple genes, pathways and protein targets. It has been demonstrated that a number of genes, proteins and signaling pathways such as MAPK, PI3K/Akt, NF-κB, JAK-STAT and Wnt/beta-catenin have an impact on cerebral ischemia-reperfusion injury. Network pharmacology suggests that, targeting whole networks is maybe the key behavior of pharmacological intervention. Deletion of individual nodes has little effect on disease networks, modulating multiple proteins may be required to perturb robust phenotypes. Many drugs hit multiple targets, which exist within a complex network. The effects of the drug, both therapeutic actions and adverse events, are a result of perturbation of the complex network. However, most previous studies were limited to a single gene or a single pathway. Therefore, it is extremely important and necessary to identify functional modules in disease-and drug-associated networks accurately. Otherwise, module identification is also an essential step in the framework of Modular Pharmacology (MP) proposed recently. Currently, researchers have proposed a lot of methods or algorithms for module identification, however, there are still many problems for application, which due to lack of systematic and reasonable classification criteria. Therefore, we collected a large number of literatures, and preliminary established reasonable classification criteria to classify existing methods. Notably, we do not know the number of functional modules contained in a given network in advance, therefore, when the decomposition of the same network using different methods, it often leads to different results. Then, how can we determine the results of module identification? Previous studies have shown that BA, CA and JA were effective in reducing the ischemic infarct volume compared with the vehicle group (P<0.05). Our study intends to further reveal the pharmacological mechanisms of different compound treatments on cerebral ischemia.
     Objective
     The aim of our study was to reveal the overlapping and diverse pharmacological protective mechanisms of different compound treatments on cerebral ischemia at the signaling pathway, functional module and network level.
     Methods
     Firstly, in order to find signaling pathways and networks from gene expression profiles of hippocampus of ischemic mice treated with baicalin (BA), cholic acid(CA) and jasminoidin (JA), a microarray comprising16,463genes, FDA Arraytrack software and Ingenuity Pathway Analysis, were employed. Secondly, drug-target networks were constructed by integrating gene expression data and protein interaction data, and then functional modules were identified using Affinity propagation (AP), Markov Cluster algorithm (MCL) and Molecular Complex Detection (MCODE), respectively. Then, we could determine the relative optimal module identification result based on the minimum entropy criterion. GO functional enrichment analysis was performed with DAVID6.7software. Finally, both module (Mrml-Gukl-Hrsp12) and modules (Fos-Cebpg-Atf2) could be validated using RT-PCR and Western blot, respectively.
     Results
     1A total of5,8,11,9IPA networks were found in vehicle (vs sham), BA, CA and JA (vs vehicle), respectively (P<0.05).
     2A total of78,70,77,74IPA network functions were found in vehicle (vs sham), BA, CA and JA (vs vehicle), respectively (P<0.05). The total of60overlapping functions could be approximately divided into diseases and disorders, molecular and cellular functions, physiological system development and function as categories with ratio of1:1:1.
     3A total of6,7,40,16canonical pathways were found in vehicle ((vs sham), BA, CA and JA (vs vehicle), respectively (P<0.05).4and7overlapping pathways were shared between BA and CA, CA and JA, respectively. BA, CA and JA affected some growth factor signaling pathways, including EGF signaling, PDGF signaling, IGF-1signaling. BA, CA and JA all acted on Ca2+-dependent signaling cascades in diverse links. BA intervened in arachidonic acid metabolism. JA might decrease oxidative damage via NRF2-mediated oxidative stress response. CA mainly affected eicosanoid signaling, cyclin-dependent kinase5(CDK5) signaling, nuclear factor kappa B (NF-κB) activation, IL-2Signaling as well as TNF-a receptor signaling.
     4Topological attributes of global networks among vehicle, BA, CA and JA groups were similar to each other, except that there was small difference in network size.
     5After the optimization of minimum entropy,50,49,41, and42modules (nodes≥3) were identified from related target networks by MCODE analysis.
     6GO functional enrichment analysis revealed218significantly enriched biological processes.185,153,147,192GO biological processes were enriched in vehicle, BA, CA and JA groups, respectively. BA, CA and JA were enriched for neurotransmitter-related functions. BA was enriched for L-ascorbic acid transport, neurogenesis, etc. CA was enriched for cation transport.
     7There were no significant linear correlations between the number of GO biological processes and the number of nodes or the number of edges in modules. There was significant linear correlation between the degree of each node and the number of GO biological processes in the same module, and the correlation coefficient value was 0.18. There were different degrees of overlap between modules among groups
     8The results of RT-PCR showed that, compared with the sham group, the mRNA level of Mrml was significantly down-regulated in vehicle group (P<0.01). Compared with the vehicle group, Mrml mRNA was significantly up-regulated by BA, while down-regulated by CA (P<0.01). The mRNA levels of Gukl and Hrsp12were not significantly different between groups (P>0.05). The results of Western blot showed that, compared with the sham group, the protein expression levels of Atf2, Fos, Cebpg were significantly up-regulated in vehicle group (P<0.01). Compared with the vehicle group, both Fos and Cebpg protein expression levels were significantly down-regulated by JA, BA and CA (P<0.05). There was no significant difference on Atf2protein expression among four groups (P>0.05).
     Conclusion
     1There were both overlapping and diverse pharmacological mechanisms of different compounds in the intervention of cerebral ischemia-reperfusion injury. BA, CA and JA exerted therapeutic effects in cerebral ischemia through multiple targets, multiple pathways, and multiple functions.
     2Analysis of signaling pathways, functional modules and networks may be complementary paradigms for revealing potential pharmacological mechanisms. At signaling pathway level, BA, CA and JA all acted on Ca2+-dependent signaling cascades in diverse links. At functional module level, BA was involved in antioxidation and neurogenesis, CA focused on regulating cation transport. BA, CA and JA affected neurotransmitter-related functions.
     3The method of modular analysis is suitable for multi-targeted drugs treatment on complex diseases, and provides a new method for pharmacological study in future.
引文
[1]Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov,2004,3(8):711-716.
    [2]Hopkins AL. Network pharmacology:the next paradigm in drug discovery. Nat Chem Biol,2008,4(11):682-690.
    [3]Berger SI, Iyengar R. Network analyses in systems pharmacology. Bioinformatics, 2009,25(19):2466-2472.
    [4]赵静,张卫东.基于系统生物学的多靶点及多组分药物研究的进展[J].中国药学杂志,2010,45(15):1121-1126.
    [5]Csermely P, Korcsmaros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks:A novel paradigm of drug discovery:A comprehensive review. Pharmacol therapeut,2013,138(3):333-408.
    [6]Lorenz DM, Jeng A, Deem MW. The emergence of modularity in biological systems. Phys life rev,2011,8(2):129-160.
    [7]Winther RG. Varieties of Modules:Kinds, Levels, Origins, and Behaviors. J Exp Zool,2001,291(2):116-129.
    [8]Hintze A, Adami C. Evolution of complex modular biological networks. PLoS Comput Biol,2008,4(2):e23.
    [9]Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature,1999,402:C47-C52.
    [10]Barabasi A-L, Gulbahce N, Loscalzo J. Network Medicine:A Network-based Approach to Human Disease. Nat Rev Genet,2011,12(1):56-68.
    [11]Tornow S, Mewes HW. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res,2003,31(21):6283-6289.
    [12]Conradi C, Flockerzi D, Raisch J, Stelling J. Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. PNAS,2007,104 (49):19175-19180.
    [13]Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. PNAS,2003,100(21):12123-12128.
    [14]Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network Motifs:Simple Building Blocks of Complex Networks. Science 2002,298(5594): 824-827.
    [15]Newman MEJ. Modularity and community structure in networks. PNAS,2006, 103(23):8577-8582.
    [16]Chen JC, Yuan B. Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics,2006,22(18):2283-2290.
    [17]Adamcsek B, Palla G, Farkas IJ, Derenyi I, Vicsek T. CFinder:locating cliques and overlapping modules in biological networks. Bioinformatics 2006,22(8): 1021-1023.
    [18]Palla G, Derenyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature,2005,435(7043): 814-818.
    [19]Rhrissorrakrai K, Gunsalus KC. MINE:Module Identification in Networks. BMC Bioinformatics,2011,12(1):192.
    [20]Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res,2002,30(7):1575-1584.
    [21]Song J, Singh M. How and when should interactome-derived clusters be used to predict functional modules and protein function? Bioinformatics,2009,25(23): 3143-3150.
    [22]Wang XW, Dalkic E, Wu M, Chan C. Gene-module level analysis:Identification to Networks and Dynamics. Curr Opin Biotechnol,2008,19(5):482-491.
    [23]Gu J, Chen Y, Li S, Li YD. Identification of responsive gene modules by network-based gene clustering and extending:application to inflammation and angiogenesis. BMC Syst Biol,2010,4(1):47.
    [24]Rajagopalan D, Agarwal P. Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics,2005,21(6): 788-793.
    [25]Wu ZK, Zhao XM, Chen LN. Identifying responsive functional modules from protein-protein interaction network. Mol Cell,2009,27(3):271-277.
    [26]Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and signaling circuits in molecular interaction networks. Bioinformatics,2002, 18(Suppl 1):S233-S240.
    [27]Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Muller T. Identifying functional modules in protein-protein interaction networks:an integrated exact approach. Bioinformatics,2008,24 (ISMB):i223-i231.
    [28]Yoon J, Si Y, Nolan R, Lee K. Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection. Bioinformatics,2007, 23(18):2433-2440.
    [29]Li Y, Agarwal P, Rajagopalan D. A global pathway crosstalk network. Bioinformatics,2008,24(12):1442-1447.
    [30]Girvan M, Newman MEJ. Community structure in social and biological networks. PNAS,2002,99(12):7821-7826.
    [31]Luo F, Yang Y, Chen C-F, Chang R, Zhou J, Scheuermann RH. Modular organization of protein interaction networks. Bioinformatics,2007, 23(2):207-214.
    [32]Ulitsky I, Shamir R. Identification of functional modules using network topology and high-throughput data. BMC Syst Biol,2007,1(1):8.
    [33]Ulitsky I, Shamir R. Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics,2009,25(9):1158-1164.
    [34]Hou L, Wang L, Qian M, Li D, Tang C, Zhu Y, Deng M, Li F. Modular analysis of the probabilistic genetic interaction network. Bioinformatics,2011,27(6): 853-859
    [35]Zhang W, Edwards A, Fan W, Zhu D, Zhang K. svdPPCS:an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification. BMC Bioinformatics,2010,11(1):338.
    [36]Li H, Sun Y, Zhan M. The discovery of transcriptional modules by a two-stage matrix decomposition approach. Bioinformatics,2007,23(4):473-479.
    [37]Wang G, Du C, Chen H, Simha R, Rong Y, Xiao Y, Zeng C. Process-based network decomposition reveals backbone motif structure. PNAS,2010, 107(23):10478-10483.
    [38]Saez-Rodriguez J, Gayer S, Ginkel M, Gilles ED. Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules. Bioinformatics,2008,24 (ECCB):i213-i219.
    [39]Farkas IJ, Korcsmaros T, Kovacs IA, Mihalik A, Palotai R, Simko GI, Szalay KZ, Szalay-Beko M, Vellai T, Wang SJ, Csermely P. Network-Based Tools for the Identification of Novel Drug Targets. Sci Signal,2011,4(173):pt3.
    [40]Freyre-Gonzalez JA, Alonso-Pavon JA, Trevino-Quintanilla LG, et al. Functional architecture of Escherichia coli:new insights provided by a natural decomposition approach. Genome Biol,2008,9(10):R154.
    [41]Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC bioinformatics,2003,4(1):2.
    [42]Maraziotis IA, Dimitrakopoulou K, Bezerianos A. An in silico method for detecting overlapping functional modules from composite biological networks. BMC Syst Biol,2008,2(1):93.
    [43]Sameith K, Antczak P, Marston E, Turan N, Maier D, Stankovic T, Falciani F. Functional modules integrating essential cellular functions are predictive of the response of leukaemia cells to DNA damage. Bioinformatics,2008,24(22): 2602-2607.
    [44]Bachman P, Liu Y. Structure discovery in PPI networks using pattern-based network decomposition. Bioinformatics,2009,25(14):1814-1821.
    [45]Jaimovich A, Rinott R, Schuldiner M, Margalit H, Friedman N. Modularity and directionality in genetic interaction maps. Bioinformatics,2010,26(12): i228-i236.
    [46]Segre D, DeLuna A, George MC, Roy K. Modular epistasis in yeast metabolism. Nat Genet 2005,37(1):77-83.
    [47]徐炎,李学军.多靶点药物治疗及药物发现[J].药学学报,2009,44(3):226-230.
    [48]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi A-L. Hierarchical Organization of Modularity in Metabolic Networks. Science,2002,297(5586): 1551-1555.
    [49]Babu MM, Luscombe NM, Aravind L, et al. Structure and evolution of transcriptional regulatory networks. Curr Opin in Struc Biol,2004,14(3):283-291.
    [50]Wu XB, Jiang R, Zhang MQ, et al. Network-based global inference of human disease genes. Mol Syst Biol,2008,4(1):189.
    [51]Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS:dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics,2011,27(1):95-102.
    [52]Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. The human disease network. PNAS,2007,104(21):8685-8690.
    [53]Thiagalingam S. A cascade of modules of a network defines cancer progression. Cancer Res,2006,66(15):7379-7385.
    [54]Wang Z, Wang YY. Modular pharmacology:deciphering the interacting structural organization of the targeted networks. Drug Discov Today,2013. In Press.
    [55]Wang Z, Liu J, Yu Y, Chen Y, Wang Y. Modular pharmacology:the next paradigm in drug discovery. Expert Opin Drug Discov,2012,7(8):667-677.
    [56]Yu H, Kim PM, Sprecher E, et al. The importance of bottlenecks in protein networks:correlation with gene essentiality and expression dynamics. PLoS comput biol,2007,3(4):e59.
    [57]Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev,2007,54(1):34.
    [58]Chen YQ, Zhu J, Lum PY, et al. Variations in DNA elucidate molecular networks that cause Disease. Nature,2008,452(7186):429.
    [59]周才秀,王忠,张占军,等.清开灵有效组分调节小鼠海马缺血相关基因的共性与多样性分析[J].中国中药杂志,2010,35(18):2475-2479.
    [60]荆志伟.清开灵组分配伍治疗小鼠脑缺血的药理机制比较研究[D].北京:中国中医科学院,2007.
    [61]周才秀,王忠,荆志伟,张占军.清开灵有效组分药理通路的多样性分析[J].中国药理学通报,2010,26(4):547-551.
    [62]Chen YY, Zhou CX, Yu YN, Liu J, Jing ZW, Lv AP, Meng FY, Wang Z, Wang YY. Variations in target gene expression and pathway profiles in the mouse hippocampus following treatment with different effective compounds for ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol,2012, 385(8):797-806.
    [63]Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab,1996,16(4): 605-611.
    [64]Himori N, Watanabe H, Akaike N, Kurasawa M, Itoh J, Tanaka Y. Cerebral ischemia model with conscious mice:involvement of NMD A receptor activation and derangement of learning and memory ability. J Pharmacol Methods,1990, 23(4):311-327.
    [65]Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem1987,162: 156-159.
    [66]Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res,2002,30(4):e15.
    [67]Chen Y, Meng F, Fang H, Yu Y, Liu J, Jing Z, Lv A, Wang Z, Wang Y. Hierarchical Profiles of Signaling Pathways and Networks Reveal Two Complementary Pharmacological Mechanisms. CNS Neurol Disord Drug Targets, 2013 Feb 27. In Press.
    [68]Vincent AM, Mobley BC, Hiller A, Feldman EL. IGF-Ⅰ prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis,2004, 16(2):407-416.
    [69]Tang ZS, Arjunan P, Lee C, Li Y, Kumar A, Hou X, Wang B et al. Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by regulating GSK3β phosphorylation. J Exp Med,2010,207(4):867-880.
    [70]Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, Niizuma K, Katsu M, Okami N, Yoshioka H, Sakata H, Goeders CE, Chan PH. Reperfusion and Neurovascular Dysfunction in Stroke:From Basic Mechanisms to Potential Strategies for Neuroprotection. Mol Neurobiol,2010,41(2-3):172-179.
    [71]Rosa AO, Rapoport SI. Intracellular-and extracellular-derived Ca2+ influence phospholipase A2-mediated fatty acid release from brain phospholipids. Biochim Biophys Acta,2009,1791(8):697-705.
    [72]Nito C, Kamada H, Endo H, Niizuma K, Myer DJ, Chan PH. Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood-brain barrier disruption after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab,2008,28(10):1686-1696.
    [73]Zhao XR, Sun GH, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J. Transcription Factor Nrf2 Protects the Brain From Damage Produced by Intracerebral Hemorrhage. Stroke,2007,38(12):3280-3286.
    [74]Ridder DA, Schwaninger M. NF-κB signaling in cerebral ischemia. Neuroscience, 2009,158(3):995-1006.
    [75]Zhang W, Potrovita I, Tarabin V, et al. Neuronal activation of NF-κB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab,2005,25(1):30-40.
    [76]Menn B, Bach S, Blevins TL, et al. Delayed treatment with systemic (S)-roscovitine provides neuroprotection and inhibits in vivo CDK5 activity increase in animal stroke models. PloS one,2010,5(8):e12117.
    [77]Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells. Neuromol med, 2005,7(3):229-242.
    [78]Denes A, Thornton P, Rothwell NJ, et al. Inflammation and brain injury:acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun, 2010,24(5):708-723.
    [79]Papin JA, Price ND, Wiback SJ, et al. Metabolic pathways in the post-genome era. Trends biochem sci,2003,28(5):250-258.
    [80]Papin JA, Stelling J, Price ND, et al. Comparison of network-based pathway analysis methods. Trends biotechnol,2004,22(8):400-405.
    [81]Wang Z. The Emergence of Modularity in Biological Systems.2007.
    [82]Barabasi AL, Oltvai ZN. Network biology:understanding the cell's functional organization. Nat Rev Genet,2004,5(2):101-113.
    [83]Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Auken KV, Wang XD, Shi XQ, Reguly T, Rust JM, Winter A, Dolinski K, Tyers M. The biogrid interaction database:2011 update. Nucleic Acids Res,2011,39(Database issue):D698-D704.
    [84]Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C, Feuermann M, Ghanbarian AT, Kerrien S, Khadake J, Kerssemakers J, Leroy C, Menden M, Michaut M, Montecchi-Palazzi L, Neuhauser SN, Orchard S, Perreau V, Roechert B, Eijk K, Hermjakob H. The intact molecular interaction database in 2010. Nucleic Acids Res,2010,38(Database issue):D525-D531.
    [85]Ceol A, Aryamontri AC, Licata L, Peluso D, Briganti L, Perfetto L, Castagnoli L, Cesareni G. Mint, the molecular interaction database:2009 update. Nucleic Acids Res,2010,38(Database issue):D532-D539.
    [86]Yellaboina S, Dudekula DB, Ko MSH. Prediction of evolutionarily conserved interologs in mus musculus. BMC Genomics,2008,9(1):465.
    [87]Boyle El, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G. Go::termfinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics,2004,20(18):3710-3715.
    [88]Shannon P, Markiel A, Ozier O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks. Genome Res,2003, 13(11):2498-2504.
    [89]Frey BJ, Dueck D. Clustering by passing messages between data points. Science (New York, NY) 2007,315(5814):972-976.
    [90]Vlasblom J, Wodak SJ. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC bioinformatics,2009,10(1):99.
    [91]王开军,张军英,李丹,等.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246.
    [92]Van Dongen S. Graph clustering by flow simulation. In PhD thesis Centers for mathematics and computer science (CWI), University of Utrecht, Amsterdam, Netherlands,2000.
    [93]Brohee S, Van Helden J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC bioinformatics,2006,7(1):488.
    [94]Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat methods,2012,9 (5):471-472.
    [95]谭跃进,吴俊.网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践,2004,24(6):1-3.
    [96]徐峰,赵海,哈铁军,张永庆.互联网中的标准结构熵的时间演化分析[J].东北大学学报,2006,27(12):1324-1326.
    [97]李敏,陈建二,王建新.基于标准结构熵的PPI网络可靠性研究[J].计算机应用研究,2009,26(1):97-98.
    [98]The Gene Ontology Consortium, Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene Ontology:tool for the unification of biology. Nat Genet,2000,25(1):25-29.
    [99]The Gene Ontology Consortium. The Gene Ontology in 2010:extensions and refinements. Nucleic Acids Res,2010,38(Database issue):D331-D335.
    [100]Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc,2009; 4(1):44-57.
    [101]Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res,2009; 37(1):1-13.
    [102]Maslov S, Sneppen K. Specificity and Stability in Topology of Protein Networks. Science,2002,296(5569):910-913.
    [103]Hedtjarn M, Mallard C, Eklind S, et al. Global gene expression in the immature brain after hypoxia-ischemia. J Cereb Blood Flow Metab,2004,24(12): 1317-1332.
    [104]Hwang IK, Yoo K-Y, Kim DW, Kim SY, ParkJH, Ryoo ZY, Kim J, Choi SY, Won M-H. Ischemia-induced ribosomal protein S3 expressional changes and the neuroprotective effect against experimental cerebral ischemic damage. J Neurosci Res,2008,86(8):1823-1835.
    [105]Ahn EH, Kim DW, Shin MJ, et al. Chlorogenic Acid Improves Neuroprotective Effect of PEP-1-Ribosomal Protein S3 Against Ischemic Insult. Exp Neurobiol, 2011,20(4):169-175.
    [106]Kim MS, Muratore C, Snelling L, Mandelbaum DE, McEachern R, Mangray S, Faizan M, Quintos JB. Ischemic stroke and rhabdomyolysis in a 15-year-old girl with paraganglioma due to an SDHB exon 6 (Q214X) mutation. J Pediatr Endocrinol Metal,2009,22(6):565-571.
    [107]Mao P, Meshul CK, Thuillier P, Goldberg NRS, Reddy PH. CART Peptide Is a Potential Endogenous Antioxidant and Preferentially Localized in Mitochondria. PLoS ONE,2012,7(1):e29343.
    [108]Hu X, Wu X, Xu J, Zhou J, Han X, Guo J. Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2 A following cerebral ischemia. BMC Neurosci,2009,10(1):74.
    [109]Mitsios N, Saka M, Krupinski J, Pennucci R, Sanfeliu C, Wang Q, Rubio F, Gaffhey J, Kumar P, Kumar S, Sullivan M, Slevin M. Amicroarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion. BMC Neurosci,2007,8(1):93.
    [110]Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. Expert Opin Ther Targets,2010,14(7):703-725.
    [111]Zhao H, Yao R, Cao X, et al. Neuroimmune modulation following traumatic stress in rats:evidence for an immunoregulatory cascade mediated by c-Src, miRNA222 and PAK1. J Neuroinflamm,2011,8(1):159.
    [112]Zhao J, Pei DS, Zhang QG, et al. Down-regulation Cdc42 attenuates neuronal apoptosis through inhibiting MLK3/JNK3 cascade during ischemic reperfusion in rat hippocampus. Cell signal,2007,19(4):831-843.
    [113]Zhang QG, Wang R, Han D, et al. Role of Racl GTPase in JNK signaling and delayed neuronal cell death following global cerebral ischemia. Brain Res,2009, 1265:138-147.
    [114]Sawada N, Kim H-H, Moskowitz MA, Liao JK. Racl Is a Critical Mediator of Endothelium-Derived Neurotrophic Activity. Sci Signal,2009,2(61):ra10.
    [115]HirkoA, Dallasen R, Jomura S, Xu Y. Modulation of Inflammatory Responses after Global Ischemia by Transplanted Umbilical-Cord Matrix Stem Cells. Stem Cells,2008,26(11):2893-2901.
    [116]Jiang SX, Slinn J, Aylsworth A, et al. Vimentin participates in microglia activation and neurotoxicity in cerebral ischemia. J Neurochem,2012, 122(4):764-774.
    [117]Cho S, Park EM, Kim Y, et al. Early c-Fos Induction After Cerebral Ischemia: A Possible Neuroprotective Role. J Cereb Blood Flow Metab,2001,21(5):550-556.
    [118]Yi JH, Park SW, Kapadia R, et al. Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem Int,2007, 50(7):1014-1027.
    [119]Ferrer I, Planas AMI. Signaling of cell death and cell survival following focal cerebral ischemia:life and death struggle in the penumbra. J Neuropath Exp Neur,2003,62(4):329-339.
    [120]Ohba N, Maeda M, Nakagomi S, et al. Biphasic expression of activating transcription factor-3 in neurons after cerebral infarction. Mol brain Res, 2003,115(2):147-156.
    [121]Martin-Villalba A, Winter C, Brecht S, et al. Rapid and long-lasting suppression of the ATF-2 transcription factor is a common response to neuronal injury. Mol brain Res,1998,62(2):158-166.
    [122]Ackermann J, Ashton G, Lyons S, et al. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development. PloS one,2011,6(4):e19090.
    [123]Barua A, Standen NB, Galinianes M. Dual role of nNOS in ischemic injury and preconditioning. BMC physiology,2010,10(1):15.
    [124]Love S. Oxidative stress in brain ischemia. Brain Pathol,1999,9(1): 119-131.
    [125]Osuka K, Watanabe Y, Usuda N, et al. Modification of endothelial NO synthase through protein phosphorylation after forebrain cerebral ischemia/reperfusion. Stroke,2004,35(11):2582-2586.
    [126]Buttner F, Cordes C, Gerlach F, et al. Genomic response of the rat brain to global ischemia and reperfusion. Brain Res,2009,1252:1-14.
    [127]Chen SD, Lin TK, Lin JW, et al. Activation of calcium/calmodulin-dependent protein kinase IV and peroxisome proliferator-activated receptor Y coactivator-1 a signaling pathway protects against neuronal injury and promotes mitochondrial biogenesis in the hippocampal CA1 subfield after transient global ischemia. J Neurosci Res,2010,88(14):3144-3154.
    [128]Kuramoto N, Wilkins ME, Fairfax BP, et al. Phospho-Dependent Functional Modulation of GAB A< sub> B Receptors by the Metabolic Sensor AMP-Dependent Protein Kinase. Neuron,2007,53(2):233-247.
    [129]Schafer MKH, Schwaeble WJ, Post C, et al. Complement C1q Is Dramatically Up-Regulated in Brain Microglia in Response to Transient Global Cerebral Ischemia. J Immunol,2000,164(10):5446-5452.
    [130]Chen MJ, Wong CHY, Peng ZF, Manikandan J, Melendez AJ, Tan TM, Crack PJ, Cheung NS. A global transcriptomic view of the multifaceted role of glutathione peroxidase-1 in cerebral ischemic-reperfusion injury. Free Radical Bio Med,2011,50(6):736-748.
    [131]Abumiya T, Lucero J, Heo JH, et al. Activated microvessels express vascular endothelial growth factor and integrin αVβ3 during focal cerebral ischemia. J Cereb Blood Flow Metab,1999,19(9):1038-1050.
    [132]Okada Y, Copeland BR, Hamann GF, et al. Integrin alphavbeta3 is expressed in selected microvessels after focal cerebral ischemia. Am J Pathol,1996,149(1): 37.
    [133]Mabuchi T, Kitagawa K, Ohtsuki T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke,2000,31(7): 1735-1743.
    [134]Mandai K, Matsumoto M, Kitagawa K, et al. Ischemic damage and subsequent proliferation of oligodendrocytes in focal cerebral ischemia. Neuroscience,1997, 77(3):849-861.
    [135]Soga Y, Yamanaka R, Nishino K, Tanaka R. CCAAT/enhancer binding proteins are expressed in the gerbil hippocampus after transient forebrain ischemia. Neurosci Lett,2003,337(2):106-110.
    [136]Yang W, Sheng H, Warner DS, Paschen W. Transient global cerebral ischemia induces a massive increase in protein sumoylation. J Cereb Blood Flow Metab, 2008,28(2):269-279.
    [137]Lee Y, Mou Y, Maric D, et al. Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PloS one, 2011,6(10):e25852.
    [138]Mengesdorf T, Jensen PH, Mies G, et al. Down-regulation of parkin protein in transient focal cerebral ischemia:A link between stroke and degenerative disease? PNAS,2002,99(23):15042-15047.
    [139]Goto S, Xue R, Sugo N, et al. Poly (ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke,2002,33(4):1101-1106.
    [140]Li X, Klaus JA, Zhang J, et al. Contributions of poly (ADP-ribose) polymerase-1 and-2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia. J Neurochem,2010,113(4):1012-1022.
    [141]Narasimhan P, Fujimura M, Noshita N, Chan PH. Role of superoxide in poly (ADP-ribose) polymerase upregulation after transient cerebral ischemia. Brain Res Mol Brain Res,2003,113(1-2):28-36.
    [142]Li P, Hu X, Gan Y, et al. Mechanistic insight into DNA damage and repair in ischemic stroke:Exploiting the base excision repair pathway as a model of neuroprotection. Antioxid Redox Sign,2011,14(10):1905-1918.
    [143]Imperlini E, Mancini A, Spaziani S, Martone D, Alfieri A, Gemei M, Vecchio LD, Buono P, Orru S. Androgen receptor signaling induced by supraphysiological doses of dihydrotestosterone in human peripheral blood lymphocytes. Proteomics,2010,10(17):3165-3175.
    [144]Kim GW, Noshita N, Sugawara T, et al. Early decrease in DNA repair proteins, Ku70 and Ku86, and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke,2001,32(6):1401-1407.
    [145]Allard L, Turck N, Burkhard PR, et al. Ubiquitin fusion degradation protein 1 as a blood marker for the early diagnosis of ischemic stroke. Biomarker insights, 2007:2:155-164
    [146]Turck N, Allard L, Walter N, et al. GSTP1 and UFD1 as early blood biomarkers of acute stroke. Cerebrovasc Dis,2006,21:125.
    [147]Whiteley W, Tseng MC, Sandercock P. Blood Biomarkers in the Diagnosis of Ischemic Stroke A Systematic Review. Stroke,2008,39(10):2902-2909.
    [148]Yun HM, Baik JH, Kang I, et al. Physical interaction of Jabl with human serotonin 6 G-protein-coupled receptor and their possible roles in cell survival. J Biol Chem,2010,285(13):10016-10029.
    [149]李兵,章翔,蒋晓帆,等.全脑缺血后海马区单胺类神经递质的变化[J].中华神经外科疾病研究杂志,2006,5(3):244-247.
    [150]Chao X, Fei F, Fei Z. The role of excitatory amino acid transporters in cerebral ischemia. Neurochem Res,2010,35(8):1224-1230.
    [151]Mao X, Ji C, Sun C, et al. Topiramate attenuates cerebral ischemia/reperfusion injury in gerbils via activating GABAergic signaling and inhibiting astrogliosis. Neurochem Int,2012,60(1):39-46.
    [152]Hu WW, Chen Z. Role of Histamine and Its Receptors in Cerebral Ischemia [J]. ACS Chem Neurosci,2012,3(4):238-247.
    [153]Candelario-Jalil E, Akundi RS, Bhatia HS, et al. Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production. J neuroimmunol,2006,174(1-2):39-51.
    [154]Rosa KA, Gadotti VM, Rosa AO, et al. Evidence for the involvement of glutamatergic system in the antinociceptive effect of ascorbic acid. Neurosci Lett, 2005,381(1):185-188.
    [155]May JM. Vitamin C Transport and Its Role in the Central Nervous System. Subcell Biochem,2012,56:85-103.
    [156]Gess B, Sevimli S, Strecker JK, et al. Sodium-dependent vitamin C transporter 2 (SVCT2) expression and activity in brain capillary endothelial cells after transient ischemia in mice. PloS one,2011,6(2):e17139.
    [157]Kato N, Yanaka K, Nagase S, et al. The antioxidant EPC-K1 ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischemia. Acta Neurochir,2003,145(6):489-493.
    [158]Huang J, May JM. Ascorbic acid protects SH-SY5Y neuroblastoma cells from apoptosis and death induced by beta-amyloid. Brain Res,2006,1097(1):52-58.
    [159]Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. PNAS,2001, 98(8):4710-4715.
    [160]Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med,2002,8(9): 963-970.
    [161]Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci,1998,18(19): 7768-7778.
    [162]Jin K, Xie L, Mao XO, et al. Effect of human neural precursor cell transplantation on endogenous neurogenesis after focal cerebral ischemia in the rat. Brain Res,2011,1374:56-62.
    [163]Hoehn BD, Palmer TD, Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke,2005,36(12):2718-2724.
    [164]Tanaka Y, Tanaka R, Liu M, et al. Cilostazol attenuates ischemic brain injury and enhances neurogenesis in the subventricular zone of adult mice after transient focal cerebral ischemia. Neuroscience,2010,171(4):1367-1376.
    [165]Cross JL, Meloni BP, Bakker AJ, Lee S, Knuckey NW. Modes of neuronal calcium entry and homeostasis following cerebral ischemia. Stroke Res Treat.2010,2010:316862.
    [166]McCULLOCH J. Excitatory amino acid antagonists and their potential for the treatment of ischaemic brain damage in man. Br J clin Pharmac,1992,34(2): 106-114.
    [167]Colbourne F, Li H, Buchan AM. Continuing postischemic neuronal death in CA1 influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke,1999,30(3):662-668.
    [168]Iwamoto T, Kita S. YM-244769, a novel Na+/Ca2+exchange inhibitor that preferentially inhibits NCX3, efficiently protects against hypoxia/reoxygenation-induced SH-SY5Y neuronal cell damage. Mol pharmacol, 2006,70(6):2075-2083.
    [169]Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists. Nucleic acids res,2009,37(1):1-13.
    [170]Farber CR. Systems-Level Analysis of Genome-Wide Association Data. G3: Genes|Genomes|Genetics,2013,3(1):119-129.
    [171]Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol,2007,3(1):88.
    [172]Tornow S, Mewes HW. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res,2003,31(21):6283-6289.
    [173]Andrianantoandro E, Basu S, Karig DK, et al. Synthetic biology:new engineering rules for an emerging discipline. Mol Syst Biol,2006,2(1): 2006.0028.
    [174]Diez D, Goto S, Fahy JV, et al. Network analysis identifies a putative role for the PPAR and type 1 interferon pathways in glucocorticoid actions in asthmatics. BMC Med Genomics,2012,5(1):27.
    [175]Zhao J, Jiang P, Zhang WD. Molecular networks for the study of TCM pharmacology. Brief Bioinform,2010,11(4):417-430.
    [176]Hatfield G, Hung S, Baldi P. Differential analysis of DNA microarray gene expression data. Mol Microbiol,2003,47(4):871-877.
    [177]Li XL, Foo CS, Ng SK. Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. Comput Syst Bioinformatics Conf,2007,6:157-168.
    [178]Jin Y, Ratnam K, Chuang PY, et al. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat Med,2012,18,580-588.
    [179]Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 1986,17(3):472-476.
    [180]Welsh FA, Moyer DJ, Harris VA. Regional expression of heat shock protein-70 mRNA and c-fos mRNA following focal ischemia in rat brain. J Cereb Blood Flow Metab,1992,12(2):204-212.
    [181]Onodera H, Kogure K, Ono Y, Igarashi K, Kiyota Y, Nagaoka A. Proto-oncogene c-fos is transiently induced in the rat cerebral cortex after forebrain ischemia. Neurosci Lett,1989,98(1):101-104.
    [182]Gillardon F, Lenz C, Waschke KF, Krajewski S, Reed JC, Zimmermann M, Kuschinsky W. Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res,1996,40(2):254-260.
    [183]An G, Lin TN, Liu JS, et al. Expression of c-fos and c-jun family genes after focal cerebral ischemia. Ann Neurol,1993,33(5):457-464.
    [184]Mengozzi M, Cervellini I, Villa P, et al. Erythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke. PNAS,2012,109(24):9617-9622.
    [185]Ohba N, Maeda M, Nakagomi S, et al. Biphasic expression of activating transcription factor-3 in neurons after cerebral infarction. Mol Brain Res,2003, 115(2):147-156.
    [186]Martin-Villalba A, Winter C, Brecht S, et al. Rapid and long-lasting suppression of the ATF-2 transcription factor is a common response to neuronal injury. Mol Brain Res,1998,62(2):158-166.
    [187]Ackermann J, Ashton G, Lyons S, et al. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development. PloS one,2011, 6(4):e19090.
    [188]Hu BR, Fux CM, Martone ME, et al. Persistent phosphorylation of cyclic AMP responsive element-binding protein and activating transcription factor-2 transcription factors following transient cerebral ischemia in rat brain. Neuroscience,1999,89(2):437-452.
    [189]Hu BR, Liu CL, Park DJ. Alteration of MAP kinase pathways after transient forebrain ischemia. J Cereb Blood Flow Metab,2000,20(7):1089-1095.
    [190]Soga Y, Yamanaka R, Nishino K, et al. CCAAT/enhancer binding proteins are expressed in the gerbil hippocampus after transient forebrain ischemia. Neurosci Lett,2003,337(2):106-110.
    [191]Yi JH, Park SW, Kapadia R, et al. Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem Int,2007, 50(7-8):1014-1027.
    [192]Cortes-Canteli M,Luna-Medina R,Sanz-SanCristobal M, et al. CCAAT/enhancer binding protein β deficiency provides cerebral protection following excitotoxic injury. J Cell Sci,2008,121(8):1224-1234.
    [193]Kaiser S, Nisenbaum LK. Evaluation of common gene expression patterns in the rat nervous system. Physiol Genomics,2003,16(1):1-7.
    [194]Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic acids res,2011,39(suppl 1):D561-D568.
    [195]Li X, LuValle P. Activating transcription factor 2 targets c-Fos, but not c-Jun, in growth plate chondrocytes. J Cell Biochem,2011,112(1):211-216.
    [196]Miyamoto-Sato E, Fujimori S, Ishizaka M, et al. A comprehensive resource of interacting protein regions for refining human transcription factor networks. PLoS One,2010,5(2):e9289.
    [197]Davydov IV, Bohmann D, Krammer PH, Li-Weber M. Cloning of the cDNA encoding human C/EBP gamma, a protein binding to the PRE-I enhancer element of the human interleukin-4 promoter. Gene,1995,161(2):271-275.
    [198]Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium,2010,47(2):122-129.
    [199]Kennedy MB. The postsynaptic density at glutamatergic synapses. Trends neurosci,1997,20(6):264-268.
    [200]Takagi N, Logan R, Teves L, et al. Altered Interaction Between PSD-95 and the NMDA Receptor Following Transient Global Ischemia. J neurochem,2000, 74(1):169-178.
    [201]Hedtjarn M, Mallard C, Eklind S, et al. Global gene expression in the immature brain after hypoxia-ischemia. J Cereb Blood Flow Metab,2004,24(12): 1317-1332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700