大型风力机叶片的振动分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究叶片的气动性能对风力机叶片的设计意义重大。本文以风力机叶片为研究对象,首先用三维建模软件建立叶片的模型,在风机额定工况下对叶片进行了动态特性分析和模态分析,求解了叶片的前七阶振型和固有频率,这为实际设计和制造风机叶片提供了参考。
     为比较升力系数和阻力系数在翼型结冰和无冰两种状态下的变化趋势,文中采用CFD计算方法对叶片的气动性能进行了仿真,分析结果得知,升力系数受结冰影响较大,相比之下,阻力系数所受影响有限;雷诺数对升阻力系数影响也有限;叶片结冰对流场影响很大,叶片压力突变,尾流涡旋提前发生,这是结冰改变翼型外形,导致流场不对称所致。通过本文研究,为叶片设计者提供了理论参考,同时,也提供了风机叶片的分析的新思路。其次,介绍了基于模糊神经网络的风力机叶片故障识别方法,该方法根据风力机叶片振动频谱图的各个频段范围,对叶片是否发生故障进行诊断。实验结果表明,该方法可以对风力机叶片结冰、裂纹、点蚀、磨损等故障进行有效地识别,识别准确率均达到90%以上。
     最后,提出了风力机叶片的优化设计模型,该模型以动量—叶素理论为基础,根据作用在风力机叶片上的气动力,以风力机叶片每段的年能量输出最大为设计目标,使用遗传算法进行寻优搜索。利用开发的优化设计程序,针对特定风场设计截面的最佳弦长和扭角。仿真结果表明,采用改进的遗传算法在对风力机叶片在扭角值基本吻合的前提下,各种气动性能均较为理想。
The study of aerodynamic performance of wind turbine blades has the majorsignificance for the design of wind turbine blades. For the model of1.5MW wind turbineit is established by applying the first three-dimensional modeling software. Under the fanrated conditions, the blades of dynamic characteristics and modal are analyzed theseventh-order vibration and natural frequency are also solved, which provides a referencefor the actual design and manufacture of wind turbine blades.
     In order to obtain the comparing results of the lift coefficient and drag coefficientunder the condition of airfoil and icing airfoil, with the way of CFD calculations, thesimulation of aerodynamic performance is given. From the results, it is obtained that thelift coefficient is greatly impacted by icing airfoil; however, the drag coefficient has thelimited impact. When the values of Reynolds number are different, there is also has limitedimpact on the lift coefficients and drag coefficients. Convection field is greatly affected byicing airfoil, which leads to pressure mutations and wake vortex occurring in advance. Thekey reason for the phenomenon is the asymmetric of the flow field. Through this study, atheoretical reference and the analysis of new ideas are provided for blade designers.Secondly, this paper presents fault recognition method of wind turbine blade based onfuzzy neural network. This method carries out fault diagnosis according to vibrationspectrum diagram in each frequency band range of the wind turbine blade. Experimentalresults show that the method can recognize various faults of wind turbine blade such as icy,crack, wear and tear effectively, which has an accuracy rate above90%.
     Finally, a model for optimization design of wind turbine blades is presented. Thismodel bases on momentum-leaf pigment theory. Considering the aerodynamic forces ofwind turbine blades, optimization search is carried out by using of genetic algorithm with agoal of the annual energy output in every section of the wind turbine blades. The bestchord length and torsion angle of specific section wind field is designed by using thedeveloped program of the optimum design, Simulation results show that, with theoptimization of improved genetic algorithm, aerodynamic performance of wind turbine blade can be obviously i mproved.
引文
[1]张国伟,龚光彩,吴治.风能利用的现状及展望,节能技术,2007,25(1):71-77.
    [2]申宽育.中国的风能资源与风力发电,西北水电,2010(1):76-82.
    [3]李俊峰,施鹏飞,高虎.中国风电发展报告2010.海口:海南出版社,2010.
    [4] Tapia, Arantxa. Modeling and control of a wind turbine driven doubly fed induction generator,Energy Conversion,2003,18(2):194-204.
    [5] Li D., Ye Z., Bao N., et al. Vibration modal analysis of the rotating rotor of horizontal axis windtrbine, Acta Energiae Solaris Sinica,2004(1):72-77.
    [6] Liu W.Y., Zhang W.H., Han J.G., et al. A new wind turbine fault diagnosis method based on thelocal mean decomposition, Renewable Energy,2012,48:411-415.
    [7] Kusiak A., Li W.. The prediction and diagnosis of wind turbine faults, Renewable Energy,2011,36(1):16-23.
    [8] Liu W., Wang Z., Han J., et al. Wind turbine fault diagnosis method based on diagonal spectrumand clustering binary tree SVM, Renewable Energy,2013,50:1-6.
    [9] El-Sattar A.A., Saad N.H., El-Dein M.Z.S.. Dynamic response of doubly fed induction generatorvariable speed wind turbine under fault, Electric Power Systems Research,2008,78(7):1240-1246.
    [10] Entezami M., Hillmansen S., Weston P., et al. Fault detection and diagnosis within a wind turbinemechanical braking system using condition monitoring, Renewable Energy,2012,47:175-182.
    [11] Neumann D.. Fault diagnosis of machine-tools by estimation of signal spectra. Proceedings ofSAFEPROCESS’91, Baden-Baden,1991:73-80.
    [12] Schneider H, Frank PM. Observer-based supervision and fault detection for robots. Proceedings ofTOOLDIAG’93, Toulous,1993:773-779.
    [13] Lu B., Li Y., Wu X., et al. A Review of Recent Advances in Wind Turbine Condition Monitoringand Fault Diagnosis. PEMWA2009. IEEE.2009:1-7.
    [14] Ribrant J. Reliability performance and maintenance-a survey of failures in wind power systems:(Master thesis). Sweden: KTH School of Electrical Engineering,2005/2006.
    [15] Yang B., Sun D.. Testing, inspecting and monitoring technologies for wind turbine blades: Asurvey, Renewable and Sustainable Energy Reviews,2013,22:515-526.
    [16] Yokoyama S.. Lightning protection of wind turbine blades, Electric Power Systems Research,2013,94:3-9.
    [17] Toft H.S., S rensen J.D.. Reliability-based design of wind turbine blades, Structural Safety,2011,33(6):333-342.
    [18] Song F., Ni Y., Tan Z.. Optimization Design, Modeling and Dynamic Analysis for CompositeWind Turbine Blade, Procedia Engineering,2011,16:369-375.
    [19] Liao C.C., Zhao X.L., Xu J.Z.. Blade layers optimization of wind turbines using FAST andimproved PSO Algorithm, Renewable Energy,2012,42:227-233.
    [20] Maheri A., Noroozi S., Vinney J.. Application of combined analytical/FEA coupled aero-structuresimulation in design of wind turbine adaptive blades, Renewable Energy,2007,32(12):2011-2018.
    [21] Maalawi K.Y., Negm H.M.. Optimal frequency design of wind turbine blades, Journal of WindEngineering and Industrial Aerodynamics,2002,90(8):961-986.
    [22] Kevin C., Andreas E.. Structural Design and Analysis of a10MW Wind Turbine Blade, EnergyProcedia,2012,24:194-201.
    [23]陈雨.大型风力机叶片结构设计理论研究:(硕士学位论文).上海:同济大学,2008.
    [24] Habali S.M., Saleh I.A.. Local design, testing and manufacturing of small mixed airfoil windturbine blades of glass fiber reinforced plastics: Part I: Design of the blade and root, EnergyConversion and Management,2000,41(3):249-280.
    [25] Habali S.M.. Design and testing of small mixed airfoil wind turbine blades, Renewable Energy,1995,6(2):161-169.
    [26] Singh R.K., Ahmed M.R.. Blade design and performance testing of a small wind turbine rotor forlow wind speed applications, Renewable Energy,2013,50:812-819.
    [27] Larsen J.W., Nielsen S.R.K., Krenk S.. Dynamic stall model for wind turbine airfoils, Journal ofFluids and Structures,2007,23(7):959-982.
    [28] Vitale A.J., Rossi A.P.. Computational method for the design of wind turbine blades, InternationalJournal of Hydrogen Energy,2008,33(13):3466-3470.
    [29] Castelli M.R., Monte A.D., Quaresimin M., et al. Numerical evaluation of aerodynamic andinertial contributions to Darrieus wind turbine blade deformation, Renewable Energy,2013,51:101-112.
    [30] Homola M.C., Virk M.S., Wallenius T., et al. Effect of atmospheric temperature and droplet sizevariation on ice accretion of wind turbine blades, Journal of Wind Engineering and IndustrialAerodynamics,2010,98(12):724-729.
    [31] Lee J.W., Lee J.S., Han J.H., et al. Aeroelastic analysis of wind turbine blades based on modifiedstrip theory, Journal of Wind Engineering and Industrial Aerodynamics,2012,110:62-69.
    [32] Maheri A., Noroozi S., Vinney J.. Decoupled aerodynamic and structural design of wind turbineadaptive blades, Renewable Energy,2007,32(10):1753-1767.
    [33] Theodorsen T.. General theory of aerodynamic instrability and the mechanism of flutter, ReportNational Advisory Committee for Aeronautics,1930(496):412-433.
    [34] Wendell J.H.. Aeroelastic stability of wind turbine rotor blade, Wind Energy Conversion,1978(10):184-200.
    [35] Chaviaropoulos P.K.. Flap/Lead-lag Aeroelastic Stability of Wind Turbine Blade Sections, WindEnergy,1999(2):99-112.
    [36] Chaviaropoulos. P.K. Flap/Lead-lag Aeroelastic Stability of Wind Turbine Blades, Wind Energy,2001(4):183-200.
    [37] Don W., Lobitz. Aeroelastic Stability Predictions for a MW-sized Blade, Wind Energy,2004(7):211-224.
    [38] Lee J.W., Lee J.S., Han J.H., et al. Aeroelastic analysis of wind turbine blades based on modifiedstrip theory, Journal of Wind Engineering and Industrial Aerodynamics,2012,110:62-69.
    [39] Cárdenas D., Elizalde H., Marzocca P., et al. A coupled aeroelastic damage progression model forwind turbine blades, Composite Structures,2012,94(10):3072-3081.
    [40] Prandtl L., Betz A.V.. Abhandlungen zur Hydrodynamik und Aerodynamik. G ttinger: G ttingenNachr,1927,88-92.
    [41] Cuerva, Sanz-Andres A.. The extended Betz–Lanchester limit, Renewable Energy,2005,30:783-794.
    [42] Glauert H.. The Elements of Aerofoil and Airscrew Theory. New York: Cambridge ScienceClassics,1947.
    [43] Wilson, R.E. Lissaman, P.B.S. Aerodynamic performance of wind turbines, In Energy research anddevelopment administration, ERDA: NSF,1976.
    [44] El-Chazly N.M.. Static and dynamic analysis of wind turbine blades using the finite elementmethod, Renewable Energy,1993,3(6-7):705-724.
    [45] Silva G.F., Marín J.C., Barroso A.. Evaluation of shear flow in composite wind turbine blades,Composite Structures,2011,93(7):1832-1841.
    [46] Jensen F.M., Falzon B.G., Ankersen J., et al. Structural testing and numerical simulation of a34mcomposite wind turbine blade, Composite Structures,2006,76(1-2):52-61.
    [47] Puterbaugh M., Beyene A.. Parametric dependence of a morphing wind turbine blade on materialelasticity, Energy,2011,36(1):486-474.
    [48] El-Chazly N.M.. Static and dynamic analysis of wind turbine blades using the finite elementmethod, Computers&Structures,1993,48(2):273-290.
    [49] Horgan C.. Using energy payback time to optimise onshore and offshore wind turbine foundations,Renewable Energy,2013,53:287-298.
    [50] Arroyo, Manana M., Gomez C., et al. A methodology for the low-cost optimisation of small windturbine performance, Applied Energy,2013,104:1-9.
    [51] Boukhezzar, Siguerdidjane H.. Nonlinear control with wind estimation of a DFIG variable speedwind turbine for power capture optimization, Energy Conversion and Management,2009,50(4):885-892.
    [52] Abdeddaim S., Betka A.. Optimal tracking and robust power control of the DFIG wind turbine,International Journal of Electrical Power&Energy Systems,2013,49:234-242.
    [53] Lanzafame R., Messina M.. Fluid dynamics wind turbine design: Critical analysis, optimizationand application of BEM theory, Renewable Energy,2007,32(14):2291-2305.
    [54]韩中合,吴铁军.基于遗传算法的风力机桨叶优化设计,风机技术,2008(1):46-51.
    [55]刘雄,陈严,叶枝全.遗传算法在风力机风轮叶片优化设计中的应用,太阳能学报,2006,27(2):180-185.
    [56] Holland, J.H.. Adaptation innatural and artificial systems. Ann Aebor MI: University of MichiganPress,1975.
    [57] Samanlioglu F., Ferrell W.G., Kurz M.E.. A memetic random-key genetic algorithm for asymmetric multi-objective traveling salesman problem, Computers&Industrial Engineering,2008,55(2):439-449.
    [58] Gladwin, Stewart P., Stewart J.. A controlled migration genetic algorithm operator forhardware-in-the-loop experimentation, Engineering Applications of Artificial Intelligence,2011,24(4):586-594.
    [59] Chiu N.C., Fang S.C., Lee Y.S.. Sequencing parallel machining operations by genetic algorithms,Computers&Industrial Engineering,1999,36(2):259-280.
    [60] Zakaria Z., Petrovic S.. Genetic algorithms for match-up rescheduling of the flexiblemanufacturing systems, Computers&Industrial Engineering,2012,62(2):670-686.
    [61] Koonce D.A., Tsai S.C.. Using data mining to find patterns in genetic algorithm solutions to a jobshop schedule, Computers&Industrial Engineering,2000,38(3):361-374.
    [62] Sloth C., Esbensen T., Stoustrup J.. Robust and fault-tolerant linear parameter-varying control ofwind turbines, Mechatronics,2011,21(4):645-659.
    [63] Schlechtingen M., Santos I.F., Achiche S.. Wind turbine condition monitoring based on SCADAdata using normal behavior models. Part1: System description, Applied Soft Computing,2013,13(1):259-270.
    [64] Aguglia D., Viarouge P., Wamkeue R., et al. Determination of fault operation dynamicalconstraints for the design of wind turbine DFIG drives, Mathematics and Computers in Simulation,2010,81(2):252-262.
    [65] Márquez F.P.G., Tobias A.M., Pérez J.M.P., et al. Condition monitoring of wind turbines:Techniques and methods, Renewable Energy,2012,46:169-178.
    [66] Hameed Z., Hong Y.S., Cho Y.M., et al. Condition monitoring and fault detection of wind turbinesand related algorithms: A review, Renewable and Sustainable Energy Reviews,2009,13(1):1-39.
    [67] Kraj A.G., Bibeau E.L.. Phases of icing on wind turbine blades characterized by ice accumulation,Renewable Energy,2010,35(5):966-972.
    [68] Kraj A.G., Bibeau E.L.. Measurement method and results of ice adhesion force on the curvedsurface of a wind turbine blade., Renewable Energy,2010,35(4):741-746.
    [69]曲弋,陈长征,赵新光,周勃.风力机叶片裂纹特征的小波尺度谱识别,沈阳工业大学学报,2012,34(1):22-25.
    [70]周勃,陈长征,赵新光,谷泉.风力机叶片蒙皮初始裂纹的盲信号提取,仪器仪表学报,2012,33(7):1483-1489.
    [71]曲弋,陈长征,周昊,周勃.基于声发射和神经网络的风机叶片裂纹识别研究,机械设计与制造,2012(3):152-154.
    [72]杨萍.用于复合材料风力机叶片的端对端解决方案,玻璃钢,2011(3):30-34.
    [73] Lee C.K.. Corrosion and wear-corrosion resistance properties of electroless Ni–P coatings onGFRP composite in wind turbine blades, Surface and Coatings Technology,2008,202(19):4868-4874.
    [74] Ciang C.C., Lee J.R., Bang H.J.. Structural health monitoring for a wind turbine system: a reviewof damage detection methods, Measurement Science and Technology,2008,19(12):122001.
    [75] Dalili N., Edrisy A., Carriveau R.. A review of surface engineering issues critical to wind turbineperformance, Renewable and Sustainable Energy Reviews,2009,13(2):428-438.
    [76] Knut O.R., Jakob W.H., Carl J.C.. Reliability-based fatigue design of wind-turbine rotor blades,Engineering Structures,1999,21(12):1101-1114.
    [77] Greco, Sheng S., Keller J., et al. Material wear and fatigue in wind turbine Systems, Wear,2013,http://dx.doi.org/10.1016/j.wear.2013.01.060.
    [78] Marín J.C., Barroso A., París F., et al. Study of fatigue damage in wind turbine blades, EngineeringFailure Analysis,2009,16(2):656-668.
    [79] Marín J.C., Barroso A., París F., et al. Study of damage and repair of blades of a300kW windturbine, Energy,2008,33(7):1068-1083.
    [80] Shokrieh M.M., Rafiee R.. Simulation of fatigue failure in a full composite wind turbine blade,Composite Structures,2006,74(3):332-342.
    [81] Ghoshal A., Sundaresan M.J., Schulz M.J., et al. Structural health monitoring techniques for windturbine blades, Journal of Wind Engineering and Industrial Aerodynamics,2000,85(3):309-324.
    [82] Chou J.S., Chiu C.K., Huang I.K., et al. Failure analysis of wind turbine blade under critical windloads, Engineering Failure Analysis,2013,27:99-118.
    [83] Huang Y.C., Huang C.M.. Optimization Based Support Vector Classifier for Vibration FaultDiagnosis of Steam Turbine-Generator Sets, Procedia Engineering,2012,38:1816-1821.
    [84] Sakellariou J.S., Fassois S.D.. Vibration based fault detection and identification in an aircraftskeleton structure via a stochastic functional model based method, Mechanical Systems and SignalProcessing,2008,22(3):557-573.
    [85] Tse P.W., Gontarz S., Wang X.J.. Enhanced eigenvector algorithm for recovering multiple sourcesof vibration signals in machine fault diagnosis, Mechanical Systems and Signal Processing,2007,21(7):2794-2813.
    [86] Ge Z.Q., Kruger U., Lamont L., et al. Fault detection in non-Gaussian vibration systems usingdynamic statistical-based approaches, Mechanical Systems and Signal Processing,2010,24(8):2972-2984.
    [87] Singh, G.K Ahmed S.A.K.S.. Vibration signal analysis using wavelet transform for isolation andidentification of electrical faults in induction machine, Electric Power Systems Research,2003,68(2):119-136.
    [88] Wang F.L., Mechefske C.K.. Adaptive modelling of transient vibration signals, MechanicalSystems and Signal Processing,2006,20(4):825-842.
    [89] Wu J.D., Hsu C.C.. Fault gear identification using vibration signal with discrete wavelet transformtechnique and fuzzy–logic, Expert Systems with Applications,2009,36(2):3785-3794.
    [90] Xun J., Yan S.Z.. A revised Hilbert–Huang transformation based on the neural networks and itsapplication in vibration signal analysis of a deployable structure, Mechanical Systems and SignalProcessing,2008,22(7):1705-1723.
    [91] Zhao M.S., Zhang J.H., Yi C.P.. Time–frequency characteristics of blasting vibration signalsmeasured in milliseconds, Mining Science and Technology (China),2011,21(3):349-352.
    [92] Liu X.H., Randall R.B.. Blind source separation of internal combustion engine piston slap fromother measured vibration signals, Mechanical Systems and Signal Processing,2005,19(6):1196-1208.
    [93]陈进.机械故障诊断中关于特征提取的若干研究前沿,面向21世纪的中国振动工程研究-中国科协第30次“青年科学家”报告文集.北京:航空工业出版社,1999.110-122.
    [94]钟秉林,黄仁.机械故障诊断学.北京:高等教育出版社,2002.
    [95]黄文虎,夏松波,刘瑞岩等.设备故障诊断原理、技术及应用.北京:科学出版社,1996.
    [96] Lee S.C., Lee E.T.. Fuzzy Sets and Neural Networks, Journal of Cybernetics,1974,4(2):83-103.
    [97] Lee S.C., Lee E.T.. Fuzzy Neural Networks. Mathematical Biosciences.1975,23(1-2):151-177.
    [98] Keller, James M., Hunt, et al. Incorporating Fuzzy Membership Functions into the PerceptronAlgorithm, Pattern Analysis and Machine Intelligence,1985, PAMI-7(6):693-699.
    [99] Yamakawa T.. Stabilization of an inverted pendulum by a high-speed fuzzy logic controllerhardware system, Fuzzy Sets and Systems,1989,32(11):161-180.
    [100] Yamakawa T.. A fuzzy logic controller, Journal of Biotechnology,1992,24(1):1-32.
    [101] Cano J.E., Delgado M., Requena I.. Using artificial neural networks to aid decision makingprocesses, Lecture Notes in Computer Science,1991,540:461-468.
    [102] Gupta M.M., Qi J.. Theory of T-norms and fuzzy inference methods, Fuzzy Sets and Systems,1991,40(3):421-450.
    [103] Gupta M.M., Qi J.. Design of fuzzy logic controllers based on generalized T-operators, FuzzySets and Systems,1991,40(3):473-489.
    [104] Buckley J.J.. Universal fuzzy controllers, Automatica,1992,28(6):1245-1248.
    [105] Buckley J.J.. Theory of the fuzzy controller: An introduction, Fuzzy Sets and Systems,1992,51(3):249-258.
    [106] Zhang H.Y., Chan C.W., Cheung K.C., et al. Fuzzy artmap neural network and its application tofault diagnosis of navigation systems, Automatica,2001,37(7):1065-1070.
    [107] Dong L.X., Xiao D.M., Liang Y.S., et al. Rough set and fuzzy wavelet neural network integratedwith least square weighted fusion algorithm based fault diagnosis research for power transformers,Electric Power Systems Research,2008,78(1):129-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700