多相位中心接收SAR/GMTI技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1971年R.Keith.Raney首次在他发表的论文中指出地面慢速运动目标对单天线合成孔径雷达(SAR)的图像质量有影响,从那时起30余年来各国学者对地面动目标检测问题进行了各个方面的研究,但真正认识到将SAR与地面动目标指示(GMTI)结合起来的重要性,应该是上世纪九十年代初,美军展示的E8A侦察样机JSTARS在海湾战争中的优异表现。从那时起,国内的高校和科研院所在各种背景项目的支持下,开展了不同程度的预研,取得了一定成果,但SAR/GMTI研究的实践性非常强,其理论成果需要大量的实测数据加以证实。在过去,由于国内没有这种体制的雷达,许多研究都是基于仿真数据的结果,或通过其它渠道获得的少量国外数据(如美国的MCARM数据),从而限制了研究的进一步深入。近年来,随着各种新体制SAR预研工作的开展,GMTI大多成为要求它们必有的功能之一,人们意识到对GMTI的研究工作不能再停留在纸上谈兵的阶段。在国内,华东电子工程研究所(电子38所)首次实现了多通道SAR/GMTI多模战场侦察雷达试验样机的飞行试验,录取了多种工作模式大量的实测数据,本文的研究工作正是利用该试验样机在GMTI模式下获得的数据进行的,各章内容概述如下:
     第一章是绪论,通过对国内外SAR/GMTI雷达发展历程的综述,揭示了动目标检测的基本问题;给出了本文的主要研究内容,论文的创新点和结构安排。
     第二章论述了相位中心偏置天线(DPCA)、自适应DPCA(ADPCA)、沿航迹向干涉(ATI)、杂波抑制干涉(CSI)和空时自适应处理(STAP)这几种适用于多通道接收动目标检测处理的方法,比较了它们各自的优缺点并对适用性作出分析。通过对地面动目标最小可检测速度(MDV)的分析,得出了双通道(天线)接收GMTI处理的MDV要比单通道的MDV小4倍的结论。
     第三章研究机载三通道SAR/GMTI在“广域GMTI”和“同时SAR/GMTI”模式下的信号处理方法。对处理过程中的ADPCA最佳权值的计算、通道间的相位补偿和杂波对消、信号的相参积累、动目标多普勒频率的估计、CFAR检测、动目标定位、径向速度估计、性能分析等环节进行了详细论述,对部分环节提出了符合工程应用的近似简化,并对近似引起的误差进行了可行性分析。针对影响地杂波对消和动目标定位精度的问题,处理时运用数据预处理、MTD处理和解动目标方位模糊三项关键技术予以解决。提出在杂波对消后采用基于有序统计的VI-CFAR器进行动目标检测,以消除GMTI对消后空间杂波剩余的分布不均匀和多普勒特性各不相同带来的影响。两种动目标检测模式均分别用计算机仿真验证了处理方法的有效性。
     第四章主要研究SAR/GMTI半实物仿真测试平台的构建方法,推导了仿真用的回波信号模型,用逐点叠加法和二维卷积法分别对点目标和面目标进行仿真;通过对半实物仿真测试平台采集到真实数据的分析,给出了对系统性能评估的内容、步骤、方法和结果。
     第五章详细、深入的研究了宽带系统I、Q通道校正和通道间幅相均衡校正的处理方法。从对点频信号的镜频分析入手,揭示了宽带线性调频(LFM)信号的镜像频谱具有对称性的特点,为了能有效地观察到线性调频信号的镜像频谱,本文提出了“时域切分”的观点,并据此给出了三种针对宽带雷达镜像处理和评估的方法,即幅度不变校正法、镜像切除法和归一化校正法。针对通道间幅相不均衡给GMTI处理带来不利影响这一棘手问题,论文结合实际多通道接收系统,提出了一套从雷达前端有源相控阵天线内的T/R组件到多通道接收机末级的完整解决方案,通过天线自动校正和通道间接收信号的均衡校正,在实测数据的处理中取得了良好的效果,所提供的通道均衡处理方法对InSAR、多波段SAR、多极化SAR、宽观测带SAR的通道均衡均具有较大的实用价值。
     第六章主要是处理从试验用三通道机载SAR/GMTI多模战场侦察雷达采集到的实测数据。提出了一种基于改进能量峰值法的多普勒中心估计,其目的是避免受强反射点目标的影响,而导致多普勒中心估计不准。实时处理的多普勒调频率估计则根据不同场景采用子图相关和最大对比度相结合的混合式方法。在SAR成像方面,为适应实时条带成像处理,对RD算法进行了必要的改进;结合试验雷达具有方位向电扫功能的特点,将聚束成像通过解调函数Dechirp处理后转为条带成像,通过增加扫描波位驻留脉冲的方式提高合成孔径时间内的分辨率。在GMTI处理方面,给出了对“同时SAR/GMTI”模式处理后获得三个通道的子图像,通道间对消后的残差子图像,对动目标检测处理中点迹过滤、凝聚和参数估计的方法和准则进行了论述,对合作目标的试验结果进行了定量分析,同时提供了对乡间公路、高速公路和铁路这些典型场景检测到的非合作动目标与SAR图像叠加后的结果。在“广域GMTI”对合作目标的ADPCA处理中,从处理结果观察到通过空间相位差补偿使差波束在和波束的峰点(或接近峰点处)形成凹口,达到了较好抑制地杂波的目的,经检测后形成多帧连续的动目标轨迹。
     论文的结束语部分,对本文的主要研究工作和结果作了全面总结,给出了一些与本文相关但尚待进一步深入研究的内容。
In 1971, R.Keith.Raney first presented influence of slow ground moving target on quality of image formed by the synthetic aperture radar (SAR) with single antenna in his paper. During the last thirty years, scholars from different countries carried out various studies on ground moving target detection in different field. However, the essentiality to integrate the SAR with ground moving target indication (GMTI) function was not well accepted until the beginning of 1991 when US Airforce demonstrated the excellent performance of prototype of E8A battlefield reconnaissance radar JSTARS in Gulf war. Since then, domestic universities and research institutions had advance study on GMTI for different projects and made some achievements. Since the research on SAR/GMTI depends largely on practice, the theoretical results shall be proven with data obtained in the field test. In the past, there was no such kind of radar system in China. Many researches were based on simulated data, or data from foreign countries, such as Multi-Channel Airborne Radar Measurements (MCARM) from the United States. Therefore, the further study on GMTI was limited by the actual situation. In recent years, with advanced research on various SAR systems, GMTI has been required to be an essential function of them. So researchers realized that GMTI shall be put into field use. East China Research Institute of Electronic Engineering (ECRIEE) developed a new multi-mode SAR/GMTI battlefield reconnaissance radar which was firstly tested in China, large amount of data were acquired with the multi-channel SAR/GMTI multi-mode battlefield reconnaissance radar. The research work of this paper is mainly based on the data, the main contents of study are summarized as follows.
     Chapter 1 gives the brief introduction. It discusses and summarizes the general situation of SAR/GMTI techniques developed in the world, putting forward the basic problem of ground moving target detection. The main contents, structure and creativity of this paper are also presented.
     Chapter 2 describes different GMTI processing methods for multi-channel receiving system, such as DPCA, ADPCA, ATI, CSI and STAP. By comparing their advantages and disadvantages, the applicability is analyzed for each method. After deducing the minimum detectable velocity (MDV) of double-channel receivers system in detail, it comes to the conclusion that MDV of double-channel receivers system is one-fourth of single channel receiver system.
     Chapter 3 presents the studies on the signal processing technologies for three-channel airborne radar in wide-area GMTI and simultaneous SAR/GMTI modes. The processing methods such as calculation of optimum weight of ADPCA, phase compensate and clutter suppression between channels, signal coherent accumulation, Doppler estimation of moving target, CFAR detection, moving target location, radial velocity estimation and performance analysis are discussed in detail. Some processing methods are substituted for simplifying approximate expressions. Data pre-processing, MTD and unwrapping azimuth ambiguity of moving target are used to obtain better clutter suppression and locate moving target accuracy. An ordered statistics-based VI-CFAR detector is also used to remove the influence of non-uniform distribution and different Doppler frequency on space residual clutter. Computer simulation result shows that the moving target detection method presented in this chapter is valid.
     Chapter 4 contains approaches to establish a hardware-in-loop simulation test system for multi-channel SAR/GMTI. After deducing simulation echo model, the author uses point-to-point overlay and two dimensional convolution to simulate point target and regional target in the hardware-in-loop platform. By analyzing the real data collecting from the hardware-in-loop simulation test system, the contents, procedures, methods and results are given to evaluate the performance for new SAR/GMTI system in laboratory.
     Chapter 5 gives an in-depth study on channels I/Q calibration, equalizing amplitude and phase imbalance between channels. By analyzing different image frequency on narrowband frequency signal and linear frequency modulated (LFM) signal, the paper presents a new approach called“Time-domain division”to solve the image frequency of LFM. Based on the view of point, the author gives three new methods for processing and evaluating wideband image frequency, namely Amplitude Immovability Calibration, Image Removal and Normalized Calibration. To deal with the disadvantage of amplitude and phase imbalance between channels operating in GMTI processing, the paper puts forward a complete solving scheme for a multi-channel SAR/GMTI system. By self-calibrating T/R modules in active phased-array antenna and channels equalizing, the author got a good result in the processing of live data. Channels equalization technology presented in this chapter is very useful for wideband signal system, which is in the area such as InSAR, multi-band SAR, multi-polarization SAR and wide-swath SAR.
     Chapter 6 focuses on processing live data collected by three-channel SAR/GMTI system. To avoid strong reflect point target impact on estimate of Doppler centre frequency, an improved method based on energy peak value is given. According to different scenarios sub-image correlation and contrast maximization is combined for Doppler frequency modulation rate estimate in real-time processing. An improved Range-Doppler algorithm for real-time strip mode imaging. By increasing dwell pulses for each scan beam position high resolution in spotlight mode imaging is achieved. Spotlight imaging to strip imaging are realized with de-chirp demodulation function. A lot of processing results are given in simultaneous SAR/GMTI mode, such as sub-images of three channel, residual sub-images after channels cancellation. Method and rule of moving target plot filter, plot coherence and precise parameter estimation are discussed. The performances of cooperative moving targets are analyzed. Uncooperative moving targets added to SAR image are illustrated by processing some typical scenarios, such as countryside road, expressway and railroad. After space phase difference compensated in wide-area GMTI mode, it can be observed that△-beam forming a notch filter corresponding to peak energy point ofΣ-beam (or close to ) from the ADPCA processing result of cooperative target. So energy superpose forΣ-beam and energy is counteracted for△-beam. ADPCA processing principle is used to reach the purpose of desirable clutter suppression and forming continuous target tracks after detection.
     In the conclusion of this paper, the main contents and results are comprehensively summarized. Some questions associated with this paper are given as well, which deserves to be studied deeply in the future.
引文
[1] Giorgio Franceschetti and Riccardo Lanari, Synthetic Aperture Radar Processing, CRC Press Boca Raton London New York Washington, D.C.
    [2] Merrill I Skolnik, Radar handbook. New York: McGraw-Hill book company, second edition, 1990.
    [3] Mehrdad Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, John Wiley & Sons, Inc., 1999
    [4] J. C. Curlander, and R. N. McDonough, Synthetic aperture radar: system and signal processing, Jone Wiley & Sons, INC, 1991.
    [5] Mehrdad Soumekh, Fourier Array Imaging, Prentice Hall, Inc., 1994
    [6] W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight synthetic aperture radar: SIGNAL PROCESSING ALGORITHMS, Artech House,Boston, 1995.
    [7] C. V. Jakowatz Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, Kluwer Academic Publishers, Boston, 1996.
    [8] Roger J. Sullivan, Microwave Radar Imaging and Advanced Concepts, Artech House, Boston, 2000.
    [9]张澄波,综合孔径雷达:原理、系统分析与应用,科学出版社,1989年。
    [10]刘永坦等著,雷达成像技术,哈尔滨工业大学出版社,1999年。
    [11]保铮,刑孟道,王彤编著,雷达成像技术,电子工业出版社,2005年。
    [12] SAR/MTI技术文集,华东电子工程研究所,1999,3。
    [13] C. V. Jakowatz et al, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, Kluwer Academic Publishers, Norwell Mass., 1996.
    [14] Wolfgang Keydel, SAR Technique and Technology, its Present State of the Art with Respect to User Requirements. EUSAR'96, March 1996: pp19-24.
    [15] Eli Yadin, Elaluation of Noise and Clutter Induced Relocation Errors in SAR/MTI, IEEE International Radar Conference 1995, pp650-655.
    [16] R. Keith Raney, Synthetic Aperture Imaging Radar and Moving Targets, IEEE Trans. On Aerosp. Electron. System, Vol. AES-7, No.3, May 1971, pp499-505.
    [17] Freeman A., Curie A., Synthetic Aperture Radar Imaging for Moving Targets, GEC Journal of research, 1987, pp106-115.
    [18] William B. Gogers, Method and Apparatus for Imaging the Slowly Moving Target Detection Capabilities of an AMTI Synthetic Aperture Radar, AD-D000787, March 1975.
    [19] R. Klemm, Adaptive Airborne MTI: An Auxiliary Channel Approach, IEE Proceedings, Pt. F, June 1987, Vol.134, No.3, pp269-276.
    [20] S.Barbarossa, Detection and Imaging of Moving Objects with Synthetic Aperture Radar, part 1:Optimal Detection and Parameter Estimation Theory, IEE Proceedings-F, Radar and Signal Processing, Vol.139, No.1, Feb.1992, pp79-88
    [21] S.Barbarossa, Detection and Imaging of Moving Objects with Synthetic Aperture Radar, part 2: Joint time-frequency analysis by Wigner-Ville distribution, IEE Proceedings-F, Radar and Signal Processing, Vol.139, No.1, Feb.1992, pp89-97.
    [22] E. F. Stockburger, and D. N. Held, Interferometric Moving Ground Target Imaging, IEEE International Radar Conference, 1995, pp438-443.
    [23] Shen Chiu, An Analysis of RADARSAT2 SAR-GMTI Performance for Standard Beam Mode, Defence R&D Canada Defence Reseach Establishment OTTAWA, Technical report, DREO TR 2000-088, December 2000.
    [24] Shen Chiu, Performance of RADARSAT2 SAR-GMTI Processors at High SAR Resolutions, Defence R&D Canada Defence Reseach Establishment OTTAWA, Technical report, DREO TR 2000-093, November 2000.
    [25] Jean Appel, Adaptive Space-Time Process in Radar Applications, Aerospace Science and Technology, 1997, No.2, pp151-161
    [26] M.T.Fennell, R.P.Wishner, Battlefield Awareness via Synergistic SAR and MTI Exploitation, IEEE AES Systems Magazine, February 1998, pp39-45
    [27] J.R.Fienup, Detecting Moving Targets in SAR Imagery by Focusing, IEEE Transactions on Aerospace and Electronic Systems, Vol.37, No.3 July 2001, pp794-809.
    [28] K.M.M.Prabhu, J.Giridhar, Detection performance of an adaptive MTD with WVD as a Doppler filter bank, Signal Processing 81 (2001), pp693-698.
    [29] Robert C. Dipietro, Ronald L. Fante and Richard P. Perry, Space-Based Bistatic GMTI Using Low Resolution SAR, IEEE International Radar Conference 1997, pp181-193.
    [30] Tim J. Nohara, Peter Weber, Al Premji, Chuck Livingstone, SAR-GMTI Processing with Canada’s Radarsat 2 Satellite, IEEE International Radar Conference 2000, pp379-384.
    [31] A. Farina, Linear and non-linear filters for clutter cancellation in radar systems, Signal Processing 59 (1997), pp101-112.
    [32] Robert Popp, Harold Maney, Jon Jones, Multi-Platform GMTI Tracking for Surveillance and Reconnaissance Coalition Environments, IEEE International Radar Conference 2001, pp4-1925~4-1933.
    [33] Jose M.B.Dias, Paulo A.C. Marques, Multiple Moving Target Detection and Trajectory Estimation Using a Single SAR Sensor, IEEE Transactions on Aerospace and Electronic Systems, Vol.39, No.2 April 2003, pp604-624.
    [34] J.H.G. Ender and A.R. Brenner, PAMIR: a wideband phased array SAR/MTI system, IEE Proc.-Radar Sonar Navig., Vol.150, No.3, June2003, pp165-172.Optimal Detection and Parameter Estimation Theory, IEE Proceedings-F, Radar and Signal Processing, Vol.139, No.1, Feb.1992, pp79-88
    [21] S.Barbarossa, Detection and Imaging of Moving Objects with Synthetic Aperture Radar, part 2: Joint time-frequency analysis by Wigner-Ville distribution, IEE Proceedings-F, Radar and Signal Processing, Vol.139, No.1, Feb.1992, pp89-97.
    [22] E. F. Stockburger, and D. N. Held, Interferometric Moving Ground Target Imaging, IEEE International Radar Conference, 1995, pp438-443.
    [23] Shen Chiu, An Analysis of RADARSAT2 SAR-GMTI Performance for Standard Beam Mode, Defence R&D Canada Defence Reseach Establishment OTTAWA, Technical report, DREO TR 2000-088, December 2000.
    [24] Shen Chiu, Performance of RADARSAT2 SAR-GMTI Processors at High SAR Resolutions, Defence R&D Canada Defence Reseach Establishment OTTAWA, Technical report, DREO TR 2000-093, November 2000.
    [25] Jean Appel, Adaptive Space-Time Process in Radar Applications, Aerospace Science and Technology, 1997, No.2, pp151-161
    [26] M.T.Fennell, R.P.Wishner, Battlefield Awareness via Synergistic SAR and MTI Exploitation, IEEE AES Systems Magazine, February 1998, pp39-45
    [27] J.R.Fienup, Detecting Moving Targets in SAR Imagery by Focusing, IEEE Transactions on Aerospace and Electronic Systems, Vol.37, No.3 July 2001, pp794-809.
    [28] K.M.M.Prabhu, J.Giridhar, Detection performance of an adaptive MTD with WVD as a Doppler filter bank, Signal Processing 81 (2001), pp693-698.
    [29] Robert C. Dipietro, Ronald L. Fante and Richard P. Perry, Space-Based Bistatic GMTI Using Low Resolution SAR, IEEE International Radar Conference 1997, pp181-193.
    [30] Tim J. Nohara, Peter Weber, Al Premji, Chuck Livingstone, SAR-GMTI Processing with Canada’s Radarsat 2 Satellite, IEEE International Radar Conference 2000, pp379-384.
    [31] A. Farina, Linear and non-linear filters for clutter cancellation in radar systems, Signal Processing 59 (1997), pp101-112.
    [32] Robert Popp, Harold Maney, Jon Jones, Multi-Platform GMTI Tracking for Surveillance and Reconnaissance Coalition Environments, IEEE International Radar Conference 2001, pp4-1925~4-1933.
    [33] Jose M.B.Dias, Paulo A.C. Marques, Multiple Moving Target Detection and Trajectory Estimation Using a Single SAR Sensor, IEEE Transactions on Aerospace and Electronic Systems, Vol.39, No.2 April 2003, pp604-624.
    [34] J.H.G. Ender and A.R. Brenner, PAMIR: a wideband phased array SAR/MTI system, IEE Proc.-Radar Sonar Navig., Vol.150, No.3, June2003, pp165-172.
    [52]王彤,保铮,廖桂生,地面慢速目标检测STAP方法。电子学报,2000,28(9), pp123-125.
    [53] Entzminger J.N., Fowler C.A., Kenneally W.J., JointSTARTS and GMTI: past, present and future, IEEE Trans. On AES, 1999, 35(2).
    [54]陆中行.正交解调误差的校正.现代雷达,1994,14(2): pp24-29.
    [55]罗永健,张守宏,俞根苗.正交双通道幅相误差的两种校正方法.西安电子科技大学学报,2001,28(4): pp478-481.
    [56] Churchill F E. The correction of I and Q errors in a coherent processor. IEEE Trans on AES,1981,17(1): pp131-136.
    [57]贺志毅,张峋,郝祖全.一种宽带雷达幅相误差分析与校正方法,系统工程与电子技术,2003,25(11): pp1351-1354。
    [58] ZHANG Xu-jin, ZHANG Chang-yao, Deng Hai-tao , Channels Equalizing and Calibration Technology of Moving Target Detection for Multi-phase Centers Receive System,2007 Asian and Pacific Conference on Synthetic Aperture Radar,Huangshan,P.R.China. pp154-158.
    [59] Lee J P Y. Wideband I/Q demodulators: Measurement technique and matching characteristics. IEE Proceedings of Radar Sonar and Navigation, 1996, 143(5): pp300-306.
    [60] A Currie, M A Brown. Wide-swath SAR. IEE Proceedings-F, 1992, 139(2): pp122-136.
    [61]鲁加国,吴曼青,陈嗣乔,方正新.基于FFT的相控阵雷达校准方法.电波科学学报,2000,15(2): pp221-224.
    [62] F K Li, D N Held, etal. Doppler parameter estimation for spaceborne synthetic aperture radar. IEEE Trans. On GRS, 1985, 23(1): pp47-56.
    [63] S D Madsen. Estimating the Doppler centroid of SAR data. IEEE Trans. On AES, 1989, 25(2): pp134-140.
    [64] R Bamler. Doppler frequency estimation and the Cramer-Rao Bound. IEEE Trans. On GRS, 1991, 29(3): pp385-389.
    [65] J Moreira. A New method of aircraft motion error extraction from radar raw data for real time motion compensation. IEEE Trans. On GRS 1990, 28(7): pp620-626.
    [66] J Dall. A new frequency domain autofocus algorithm for SAR. IGARSS’91: pp1134-1136.
    [67]刑孟道,保铮,基于运动参数估计的SAR成像,电子学报,2001,Vol.29,No.12A,pp1824-1828.
    [68] Bamler, R., A comparison of range-Doppler and wavenumber domain SAR focusing algorithms, IEEE Trans. on Geoscience and Remote Sensing, Vol. 30, No. 4, July 1992, pp.706-713.
    [69] Cafforio, C., Prati, C., and Rocca, F., SAR data focusing using seismic migration techniques, IEEE Trans. on Aerospace and Electronic Systems, Vol. 27, No. 2, March, 1991, pp.194-206.
    [70] Raney, R. K. Runge, H., Bamler, R., Cumming, I. G., and Wong, F. H., Precision SAR processing using chirp scaling, IEEE Trans. on Geoscience and Remote Sensing, Vol. 32, No. 4, July 1994, pp.786-799.
    [71] Mehrdad Soumekh, Braham Himed. SAR-MTI Processing of Multi-Channel Airborne Radar Measurement (MCARM) Data.
    [72] M.Soumekh. Moving Target Detection in Foliage Using along Track Monopulse Synthetic Aperture Radar Imaging. IEEE Transactions on Imaging Processing.August 1997.
    [73] B.Cantrell. A Short-Pulse Area MTI. NRL Report 8162. September 1997.
    [74] M.Kirscht. Detection Velocity Estimation and Imaging of Moving Target with Single-Channel SAR. IEEE International Radar Conference RADAR’98, pp587-590.
    [75]刘颖,廖桂生,周争光,对图像配准误差稳健的分布式星载SAR地面运动目标检测及高精度的测速定位方法。电子学报,2007,35(6),pp1009-1014.
    [76] Walker J.L., Range-Doppler imaging of rotating objects, IEEE Trans. On AES, Vol.16, 1980, pp23-52.
    [77] D.C.Collier, et al., RF propagation from a flatplate array with polarizing lenses, IEEE International Radar Conference, May 1995.
    [78] M.L.Stone and W.J.Ince, Air-to-Ground MTI radar using displaced phase centre phased arrary, IEEE Inter. Radar Conf., 1980, pp225-230.
    [79] Nohara T.J., A hybrid DPCA/STAP processor for air and spaceborne MTI radar, PIERS 1995, 24-28 July, Seattle.
    [80] Herbert M. Aumann, Alan J. Fenn, Phased arrary antenna calibration and pattern prediction using mutual coupling measurements, IEEE Trans. On Antennas and Propagation, Vol.37, No.7, July 1989.
    [81] G.Debionne, J.J.Boyer, Calibration of SAR Antennas, EUSAR’96, pp231-234.
    [82]叶少华,朱兆达,朱岱寅,一种改进的多通道干涉SAR/GMTI方案。电子与信息学报,Dec.2002.
    [83]葛家龙,吴曼青等,KU波段高分辨率机载SAR/GMTI系统研制。第八届全国雷达学术年会,合肥,2002,pp474-478.
    [84]张卫华,赵宁,机载SAR/GMTI雷达系统实现及飞行实验。第八届全国雷达学术年会,合肥,2002,pp484-487.
    [85]郑明洁,合成孔径雷达动目标检测和成像研究,中国科学院电子学研究所博士论文,2003年。
    [86]康雪艳,机载SAR地面动目标检测成像技术研究,中国科学院电子学研究所博士论文,2004年6月。
    [87]林幼权,倪晋麟,王德纯,张光义,一种新的适用于机载前向阵雷达的动目标检测方法,电子学报,2000,28(12), pp31-33.
    [88]张绪锦,朱兆达,邓海涛,张长耀,陈仁元,一种适用于双通道星载SAR的动目标检测技术,电子学报,2007,Vol.35,No.9: pp1794-1798。
    [89] Delphine Cerutti-Maori, Ursula Skupin, First Experimental SCAN/MTI Results Achieved With the Multi-Channel SAR-System PAMIR. EUSAR, May 2004, Ulm, Germany.
    [90] H. Wilden, B. Poppelreuter, O.Saalmann, A. Brenner, J. Ender: Design and realisation of the PAMIRantenna frontend. EUSAR, May 2004, Ulm, Germany.
    [91] R. Klemm: Principles of space-time adaptive processing. IEE, London, UK, 2002.
    [92] J.H.G. Ender: Space-time processing for multichannel synthetic aperture radar. Electronics & Communication engineering journal, February 1999, pp 29-38.
    [93] J.H.G. Ender: Subspace transformation techniques applied to multi-channel SAR/MTI. IGARSS, June 1999, Hamburg, Germany.
    [94] Paulo A.C. Marques, Jose′M. B.Dias, Moving Targets Trajectory Parameters Estimation Using the Signature Curvature Information, EUSAR, May 2004, Ulm, Germany.
    [95] B. Bickert, J. Ender, On the Use of Adaptive Multi Channel Signal Processing Techniques for Ground Moving Target Detection with an Electronically Scanning Antenna in a Forward Looking Air-to-ground GMTI Radar Mode. EUSAR, May 2004, Ulm, Germany.
    [96] H. M. J. Cantalloube, Moving Target Indication (MTI) Using Multi-Channel Along-Track Interferometer in X-band and Antenna with Wide Illumination Pattern in Ku-band, EUSAR, June 2002, Cologne, Germany.
    [97] M. I. Pettersson, Detection of Moving Targets in Wideband SAR Using Fast Time Backprojection Processing, EUSAR, June 2002, Cologne, Germany.
    [98] R. Z. Schneider, D. Fernandes, Entropy Concept for Change Detection in Multitemporal SAR Images, EUSAR, June 2002, Cologne, Germany.
    [99] V. C. Chen, Detection of Ground Moving Targets in Clutter with Rotational Wigner-Radon Transforms, EUSAR, June 2002, Cologne, Germany.
    [100] K. Schulz, U. Soergel, U. Th?nnessen, Multi-Channel Segmentation of Moving Objects in Along-Track Interferometry Data, EUSAR, June 2002, Cologne, Germany.
    [101]陈仁元,邓海涛,江凯,雍延梅,张长耀,机载高分辨SAR系统成像技术。遥感技术与应用,2005,Vol.20,No.1:pp173-177。
    [102]杨基全,AEW—PAR半实物仿真平台,现代雷达,1998年6月第3期,pp67-72。
    [103]张绪锦,朱兆达,邓海涛,张长耀,三天线机载SAR动目标轨迹检测,系统工程与电子技术,2008,Vol.30,No.3:pp466-469。
    [104]张绪锦,朱兆达,张卫华,龚晓凌,SAR回波模拟半实物仿真平台的构建,现代雷达,2007,Vol.29,No.9:pp9-12。
    [105]柳桃荣,张长耀,机载X波段雷达的双通道空时自适应处理的试验研究,信号处理,2003年2月,第19卷第1期,pp19-23。
    [106] Ender J.H.G., Berens P., Andreas R.B., Ludwig R., Ursula S., Multi Channel SAR/MTI System Development at FGAN: from AER to PAMIR, 2002 IEEE, pp1696-1701.
    [107] Trunk G.V., Range resolution of targets using automatic detectors. IEEE Trans. On AES, 1978, 14(4): pp750-755.
    [108] Barkat M., Varshney P.K.. A weight cell-averaging CFAR detector for multiple target situation. Proceedings of 21th annul conference on Information Sciences and Systems, Baltimore, Maryland, 1987, pp118-123.
    [109] Rohling H., Radar CFAR thresholding in clutter and multiple target situation. IEEE Trans. on AES, 1983, 19(4): pp608-621.
    [110] Michael E. Smith, Pramod K. Varshney. Inelligent CFAR processor based on data variability. IEEE Transactions on AES, 2000, 36(3): pp837-847
    [111] R.Klemm. Adaptive airborne MTI with two dimensionals motion compensation. IEE Proc.-F, 1991.138(6). pp551-558.
    [112] R.Klemm. Adaptive airborne MTI: comparison of sideways and forward-looking radar. Proc. of 1995 IEEE Int. Radar Conf.Alexandria, VA, USA. pp614-618.
    [113] R.Klemm. Forward looking radar/SAR: clutter and jammer rejection with STAP. Proc. of EUSAR’96. K?nigswinter, Germany. pp 485-488.
    [114] M. E. Smith, P K Varshney. VI-CFAR. A novel CFAR algorithm based on data variability[A ] . IEEE International Radar conference[C] . Edinburgh, UK: IEEE, 1997. pp263 - 268.
    [115] M. E. Smith, P. K. Varshney. Intelligent CFAR processor based on data variability[J ] . IEEE Trans on AES, 2000, 36 (3): pp837 -847.
    [116] M.Y. Jin and C. Wu. A SAR correlation algorithm which accommodates large range migration. IEEE Trans. Geosci. Remote Sensing, Vol. GE-22, pp592-595, 1984.
    [117] J.Dall, MSc, J.H. Jorgenson, E.L. Christensen, S.N. Madsen. Real-time processor for the Danish airbore SAR. IEE Proceedings-F, Vol. 139, No, Aprol 1992.
    [118] B.L. Burus and J.T. Cordaro. A SAR image-formation algorithm that compensates for the spatially-variant effects of antenna motion. SPIE Conference Proceedings, April 1994.
    [119] Tobin M., Real Time Simultaneous SAR/GMTI in a Tactical Airborne Enviroment. Proc. of EUSAR'96, March 1996:63-66.
    [120] E.L.Cole, M.J.Hodges, Novel Accuracy and Resolution Algorithms for the Third Generation MTD, IEEE National Conf. 1986, pp41-47.
    [121]张绪锦,张长耀,朱兆达,邓海涛,基于CSI处理的三通道机载SAR地面动目标检测,电子学报,2008,Vol.36,No.4:pp789-793。
    [122]张绪锦,朱兆达,邓海涛,张长耀,三天线机载SAR动目标轨迹检测,系统工程与电子技术,2008,Vol.30,No.3:pp466-469。
    [123] Delphine Cerutti-Maori, Christoph H. Gierull, Joachim H. G. Ender,First experimental demonstration of GMTI improvement through antenna switching , EUSAR, June 2008, Friedrichshafen, Germany, Volume 4: Proceedings pp47-50.
    [124]胡文琳,王永良,王首勇,一种基于有序统计的鲁棒CFAR检测器,电子学报,2007,Vol.35,No.3:pp530-533。
    [125] L.E.Brennan and I.S.Reed, Theory of adaptive radar, IEEE Trans., 1973, AES-9(2): pp237~252.
    [126]王永良,彭应宁著,空时自适应信号处理,清华大学出版社,2000年9月。
    [127]保铮,廖桂生,吴仁彪,张洪玉,王永良,相控阵机载雷达杂波抑制的时空二维自适应滤波,电子学报,1993,Vol.21,No.9:pp1-7。
    [128] Brown R.D., Wicks M.C., Zhang Y., Zhang Q., Wang H., A space-time adaptive processing approach for improved performance and affordability. Proc. IEEE 1996 National Radar Conf., 1996, pp321-326.
    [129] S.Haykin, Adaptive Filter Theory, Third Edition, Prentice-hall: 1996.
    [130] Goldstein R M, Zebker H A. Interferometric radar measuremen to ocean surface currents. Nature, 1987, 328(20): pp707~709.
    [131] S.A.Hovanessian, L.B.Jocic, J.M.Lopez, Spaceborne Radar Design Equations and Concepts. 1997 IEEE, pp125-136.
    [132]任迎舟,张玉洪,机载相控阵雷达时空二维杂波的仿真,现代雷达,1994年4月第2期,pp28-36。
    [133] [美]R.L.米切尔,雷达系统模拟,科学出版社,1983年。
    [134] Berizzi F, Corsini G. Autofocusing of Inverse Synthetic-aperture radar Images Using Contrast Optimization [J]. IEEE Transactions on AES, 1996, 32(3): pp1185-1191.
    [135]机载SAR/MTI多模战场侦察雷达系统技术总结报告,华东电子工程研究所归档文献,2006年8月,安徽合肥。
    [136]薛巍,江朝抒,姒牟孙,向敬成,基于DPCA的机载雷达杂波抑制系统,系统工程与电子技术,2002,Vol.23,No.4:pp6-8。
    [137] Eli Yadin, A performance evaluation mode for a two port interferometer SAR-MTI, Proc. 1996 IEEE national radar conf., Ann Arbor, Michigan, May 1996: pp261-266.
    [138] J.H.G.Ender, The Airborne SAR Experimental Multi-Channel SAR-System AER-Ⅱ, EUSAR, March 1996, K?nigswinter, Germany, pp49-52.
    [139] J.H.G.Ender, Detection and Estimation of Moving Target Signals by Multi-Channel SAR, EUSAR, March 1996, K?nigswinter, Germany, pp411-417.
    [140] D.J.Coe, R.G.White, Experimental moving target detection results from a three-beam airborne SAR, EUSAR, March 1996, K?nigswinter, Germany, pp419-422.
    [141] R.Peyregne, SAR and MTI: A new synthesis for airborne SAR without using navigation system, EUSAR, March 1996, K?nigswinter, Germany, pp489-492.
    [142] T.J.Nohara, P.Scarlett and B.C.Eatock, A radar signal processor for space-based radar, 1993 IEEE National radar conference, April 1993, pp12-16.
    [143] Macleod M D, Fast calibration of IQ digitizer systems. Electronics Eng., 1990, 62(1): pp41-45.
    [144] Yang X X, Hou Z F, Adaptive calibration of I and Q mismatch in quadrature receiver. Journal of Electronics, 2002, 19(2): pp187-191.
    [145] Green R A, Pierre J W, Quadrature receiver mismatch calibration. IEEE Trans. On SP, 1999,47(11): pp3130-3133.
    [146]王琤,秦飞,龙腾,合成宽带单脉冲雷达系统幅相误差校正方法,系统工程与电子技术,2006,Vol.28,No.7:pp949-952。
    [147]王良军,张长耀,一种合成孔径雷达正交解调误差校正方法,合肥工业大学学报(自然科学版),Vol.27,No.8,Aug 2004,pp919-922。
    [148] Mu Heqiang, Peng Yingning. Approach to the correction of I and Q imbalance in time domain. Radar, 2001 CIE International Conferenceon, Proc.15-18 Oct, 2001: pp1006-1010.
    [149] Pun Kong-Pang, Franca J E, Azeredo-Leme C. Wideband digital correction of I and Q mismatch in quadrature radio receivers. Circuits and Systems, 2000. Proc. ISCAS 2000 Geneva. The 2000 IEEE International Symposium. 28-31 May 2000: pp661-664.
    [150]邢燕,中频采样和数字正交器的原理及工程实现,现代雷达,2003年9月,pp42-44。
    [151] Leopold E. Pellon. A double nyquist digital product detector for quadrature sampling. IEEE Transactions on signal processing, 1992, 40(7): pp1670-1681.
    [152]朱国富,周智敏,MTI雷达的最小可检测速度,雷达科学与技术,2007年第4期,pp283-286。
    [153] Zhao zhiqin, Huang shunji, A research of moving targets detection and imaing of SAR. EUSAR'96, March 1996: pp427-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700