LTE/LTE-Advanced系统异构网中的无线资源管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如今,蜂窝网络的数据业务需求正在以指数型的速度增加,并且其需求类型越来越繁多,因此长期演进(Long Term Evolution, LTE)和长期演进增强(Long Term Evolution-Advanced, LTE-A)系统通过引入一些以正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)和天线多输入多输出(Multiple-Input Multiple-Output, MIMO)为代表的关键物理层技术来满足这些需求。然而,随着这些技术的深入研究,点对点链路的频谱效率已经达到了理论极限,由此获得的性能提升已经几乎停滞。而如果从网络层考虑,增加宏蜂窝小区部署的数量,又会造成大量的小区间干扰。因此,第三代合作伙伴(3rdGeneration Partnership Project,3GPP)提出了基于LTE系统的异构网络(Heterogeneous networks, HetNets)概念,并且引入了三种小型低功率基站:中继站(Relay)、家庭基站(Femto)和微微基站(Pico)。LTE蜂窝网络将主要利用宏基站(Macro eNB, MeNB)提供基础覆盖,同时利用小型基站增强特殊场景的深度覆盖,增加系统容量,提升用户体验。目前,3GPP已经对这三种小型基站做了大量的标准化工作。
     进一步说,为了达到大幅提高单位小区的频谱效率的目标,部署了低功率基站的异构网络的无线资源管理(Radio Resource Management, RRM)研究就显得尤为重要。例如低功率站点的选择、子载波分配、功率分配、小区间干扰分析和小区间干扰协调等等。显然,资源分配和干扰分析及管理是未来无线资源管理非常重要的两部分,其算法也需要不断更新升级以适应新的覆盖场景和网络架构。本文首先介绍了LTE/LTE-A系统的基本原理、关键技术、网络框架。另外还介绍了异构网络的一些基本知识,包括组网模型和组网技术。最后,本文主要是在部署了Relay、Femto和Pico基站的异构网络架构下,围绕无线资源管理中的资源分配和干扰管理两个主线进行了分析和研究,并着重了解决了几个热点问题,例如双跳中继系统的资源分配、基于Femto部署的时分复用(Time Division Duplexing, TDD)系统的时隙交叉干扰分析、基于Pico部署的系统的小区间干扰协调等。
     本文的研究点主要由以下几个部分组成:
     首先,本文研究了可实现协作模式的双跳中继系统的资源分配问题。在已有的研究中,大多工作都是在考虑部分影响因素的前提下进行的。本文中,在总功率严格受限和用户服务质量需求的约束下,构造了包括中继节点选择、子载波分配和功率分配在内的最优化问题。为了求得最优化问题的解,本文借助数学工具进行了分析。由于资源分配问题的凸优化特性,以及采用无穷尽搜索求得最优解的高复杂度,文章接着通过拉格朗日乘子和对偶性问题提出了一种次梯度迭代算法来求得此最优化问题的次优解。仿真表明,我们的算法在可以接受的复杂度的情况下仍然能够提供突出的吞吐量性能和较低的中断概率,具有良好的现实意义。
     其次,基于双跳中继部署系统,本文提出了一种基于动态频率复用的资源分配方案,以提高系统资源分配的自由度。文章将资源分配问题分为两个子问题,并分别提出两个子算法。第一个子问题是通过动态子算法将整块频率资源分成高级组和常规组两个无硬性界线的虚拟组,分别代表分配给宏小区和中继接入小区的频率资源集合。第二个子问题是将各自划分到的频率资源集合如何分配给合适的用户、合适的中继节点、并采用恰当的功率进行发送。通过分析和仿真研究,相对于传统的静态频率复用方案,本文提出的动态方案能提供非常显著的SINR性能和更高的小区吞吐量。
     第三,LTE TDD系统允许非对称的上下行配置,通过半静态地提供7种不同的上下行配置,以满足不同的上下行业务需求。然而,不同小区间使用不同帧结构配置时需要额外考虑上行与下行之间的干扰问题,包括基站与基站之间、用户与用户之间和基站与用户之间的干扰。特别地,部署了Femto的异构网络中的干扰场景更为复杂,因此本文对这种TDD系统下的时隙交叉干扰进行了分析和评估,并给出了各种部署场景和帧结构配置下组网共存建议。
     第四,与Femto部署情况类似,基于Pico部署的异构网络的干扰同样需要进行分析研究。尤其是Pico小区的小区覆盖扩展(Cell Range Extension, CRE)技术的引入,使得其干扰情况将更加复杂而严重。本文对这些额外的干扰都做了详细的仿真分析,并给出共存建议。
     第五,基于上面异构网络的干扰分析,本文提出了一种Pico小区和宏小区共信道场景下的小区间干扰协调方案。本方案主要是根据不同的上下行场景采用不同的干扰协调和资源调度方案,核心思想是仅仅对主要干扰源采用频率规避,其它次要干扰源复用频率资源。文中提出的方案充分考虑了影响系统性能的主要干扰因素,因此能有效提高整个小区吞吐量性能,特别是边缘小区的用户性能。
Nowadays, the various kinds of traffic demands in cellular networks are growing at an exponential rate. Therefore, some physical layer technologies including orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output have been introduced to satisfy these demands in Long Term Evolution (LTE) system and Long Term Evolution-Advanced (LTE-A) system. With deep research of the technologies, the spectral efficiency of a point-to-point link is approaching its fundamental limits, and the further improvement of cell gains is not easy to achieve. With the consideration of network layer, more macrocells can be deployed to attempt to achieve cell splitting gains, but the soulation may cause high inter-cell interference. Consequently, the3rd Generation Partnership Project proposed the heterogeneous networks (HetNets) based on LTE system and introduced three low-power base stations:Relay, Femto and Pico. In LTE cellular networks, macro station is used to provide basic coverage, and the small stations are used to enhance deep coverage of some particular scenarios, increase the system capacity and raise the user experience. Up to now,3GPP has done a great deal of work on small stations standardization.
     Moreover, it is particularly important to research radio resource management (RRM) of heterogeneous networks based on low-power base station deployment in order to get a substantial increase in the spectral efficiency per unit cell. For example, the selection of low-power node, subcarrier assignment, power allocation, inter-cell interference analysis and coordination should be considered in the heterogeneous networks. Obviously, resource allocation, interference analysis and management will be the two important parts of RRM, and algorithms of RRM need to constantly update the upgrade in order to adapt to new deployment scenarios and network architecture. The paper firstly introduces basic theory, key technologies and network architecture of LTE/LTE-A system. Further, the paper depicts some elementary knowledge of heterogeneous networks including network model and network technologies. At last, the radio resource management, including resource allocation and interference management, is studied and investigated in heterogeneous networks with Relay, Femto and Pico nodes. Some hot issues are well solved in this paper, such as, resource allocation of two-hop Relay system、cross-slot interference analysis of Time Division Duplexing (TDD) system、inter-cell interference coordination of Pico system.
     Our research points of the paper can be composed of following parts:
     Firstly, the paper studies the resource allocation problem in two-hop cooperative relaying cellular systems. Most existing works on resource allocation only considered some parts of all influential factors. Under power constraints and users'quality of serves (QoS) requirements, an optimization problem, including relay selection, power allocation, and subcarrier assignment, is formulated in the paper. In order to obtain the optimal solution of the problem, we utilize the mathematical tools to analyze the problem. Due to convex optimization features of the resource allocation problem, the optimal solution can be acquired only by adopting the exhausted search algorithm. In the paper, a suboptimal solution with sub-gradient method according to the Lagrangian formulation and dual problem is proposed. Simulation results prove that the new algorithm can achieve low outage probability and superior capacity performance with acceptable complexity. The method has very obvious practical significance.
     Secondly, the paper proposes a resource allocation scheme in a two-hop relay system. The scheme can provide more degrees of freedom due to dynamic frequency reuse. The resource allocation problem is divided into two sub-problems, and two corresponding sub-algorithms are proposed. The first sub-problem partitions all frequency blocks into two virtual groups which are called super group and regular group, respectively. The two groups without rigid boundaries are frequency resource sets which are allocated macrocell and relay cell. The second sub-algorithm focuses on the problem how to select relay node for every UE with suitable power and subcarrier. Numerical results show that our proposed scheme can achieve superior SINR performance and higher throughput.
     Thirdly, LTE TDD system allows for asymmetric uplink/dowlink (UL/DL) configuration and satisfies different UL/DL traffic demands by seven different semi-statically configured UL/DL configurations. Howerer, the interferences between UL and DL including base station-to-base station, UE-to-UE, and base station-to-UE interference need to be considered, when different cells configure different frame types. Particularly, the interference scenarios are more complex in heterogeneous networks based on Femto deployment. Therefor, the paper analyzes and evaluates cross-slot interference. Meanwhile, we give the advice about system coexistence in various deployment scenarios and frame configurations.
     Fourth, the cross-slot interference also should be analyzed and evaluated in heterogeneous networks based on Pico deployment. Especially, more complicated and serious interference occours due to the introduction of cell range extension (CRE) technology in Pico cell. Also, we give the advice about system coexistence in various deployment scenarios and frame configurations.
     Finally, the paper proposes an efficient inter-cell interference coordination scheme in co-channel scenario based on the above analysis of heterogeneous network. The basic idea is that only primary interfering sources of each scenario avoiding using the same resource used by interfered victim, and other interfering sources can reuse frequency resource. The proposed algorithm considers the primary interference factors relative to system performence. Therefor, the proposed ICIC scheme can achieve superior throughput performance, especially for cell edge user.
引文
[1]张玉艳,于翠波,《移动通信》,人民邮电出版社,2010年3月.
    [2]吴伟陵,牛凯等,《移动通信原理》,电子工业出版社,2005年1月.
    [3]庞沁华等,《蜂窝移动通信:模拟和数字系统》,1997年1月.
    [4]Honkasalo. H, Pehkonen. K, Niemi, M.T and Leino, A.T., "WCDMA and WLAN for 3G and beyond," Wireless Communications, vol.9, no.2, pp.4-18, April 2002.
    [5]Matalgah, M.M., Qaddour, J., Sharma, A. and Sheikh, K., "Throughput and spectral efficiency analysis in 3G FDD WCDMA cellular systems," 2003 GLOBECOM, vol.6, pp.3423-3426, Dec 2003.
    [6]Zhenjun Li, Yunting Lu, "An Efficient Wireless Communicated Architecture Based on TD-SCDMA & WiMAX," APCIP 2009, vol.2, pp.545-549, July 2009.
    [7]Yang Xiao, Ling-yun Lu, and Habermann, J., "Communication capacity of TD-SCDMA systems," ICCT 2003, vol.2, pp.1185-1189, April 2003.
    [8]Abichar, Z., Iowa State Univ., Ames, IA, Yanlin Peng and Chang, J.M., "WiMax:The Emergence of Wireless Broadband," IT Professional, vol.8, no.4, pp.44-48, July 2006.
    [9]Khan, M.N. and Ghauri, S., "The WiMAX 802.16e physical layer model," IET 2008, pp.11-12, Jan 2008.
    [10]Lorincz, J., FESB-Split, Split Univ. and Begusic, D., "Physical layer analysis of emerging IEEE 802.11n WLAN standard," ICACT 2006, vol.1, pp.189-194, 22 Feb 2006.
    [11]O'Hara, B. and Petrick, A., "IEEE 802.11n higher data rates beyond 54 Mbit/s," IEEE 802.11 Handbook, Wiley-IEEE Standards Association, pp.327-331,2005.
    [12]Muzi Wu, Yuexing Peng, Xiao Yang, Xiaofeng Zhang and Wenbo Wang, "Performance analysis of physical downlink and uplink channels in TD-LTE system," ICCT 2010, pp.308-311, Nov 2010.
    [13]Astely, D., Dahlman, E., Furuskar, A., and Parkvall, S, "TD-LTE-The radio-access solution for IMT-Advanced/TDD," CHINACOM 2010, pp.1-5, Aug 2010.
    [14]Wuweiming, Lijuny and Guyonghao, "Research of key technologies in TD-LTE system," Global Mobile Congress 2009, pp.1-5, Oct 2009.
    [15]沈佳,索士强,全海洋,《3GPP长期演进(LTE)技术原理与系统设计》,人民邮电出版社,2008年11月.
    [16]王映民,孙韶辉等,《TD-LTE技术原理与系统设计》,人民邮电出版社,2010年6月.
    [17]包东智,“LTE产业现状及发展趋势”,移动通信,第16期,pp.43-47,2008年8月.
    [18]A1-Shibly, Habaebi, M.H., and Chebil, J.M.A.M., "Carrier aggregation in Long Term Evolution-Advanced," ICSGRC 2012, pp.154-159, July 2012.
    [19]Qixing Wang, Dajie Jiang, Jing Jin, Guangyi Liu, Zhigang Yan and Dacheng Yang, "Application of BBU+RRU Based Comp System to LTE-Advanced," ICC Workshops 2009, pp.1-5, June 2009.
    [20]Wang Anyi and Liu Zhaoyang, "The study and analysis of MIMO technology based on LTE physical layer," ESIAT 2010, vol.2, pp.306-308, July 2010.
    [21]Xin Li, Chan Zhou and Min-rui Fei, "Wired/Wirless Heterogeneous Network Performance Comprehensive Evaluation," GCIS 2009, vol.1, pp.399-4-3, May 2009.
    [22]Deif, D.S., El-Badawy, H. and El-Hennawy, H., "Toplogy based modeling and simulation of UMTS-WLAN Wireless Heterogeneous Network," WOCN 2010, pp.1-5, Sept 2010.
    [23]Khandekar A., Bhushan N., Ji Tingfang, and Vanghi V., "LTE-Advanced: Heterogeneous networks," Wireless communication 2010 European, pp. 978-982, Jun 2010.
    [24]Damnjanovic, Montojo, J., Yongbin Wei, Tingfang Ji, Tao Luo, Vajapeyam, M., Taesang Yoo, Osok Song and Malladi, D., "A survey on 3GPP heterogeneous networks," vol.18, pp.10-21, June 2011.
    [25]张天魁,冯春燕和曾志民等,《B3G/4G移动通信系统中的无线资源管理》,电子工业出版社,2011年1月.
    [26]Lopez-Benitez, M and Gozalvez, J., "Common Radio Resource Management Algorithms for Multimedia Heterogeneous Wireless Networks," Mobile Computing, vol.10, pp.1201-1213, Sept 2011.
    [27]AlQahtani Salman, A., and Ashraf, S.M., "Radio resource management issues for 3G and beyond cellular wireless networks," GCC 2006, pp.1-5, March 2006.
    [28]Feng Zhiyong, Yu Kai, Ji Yang, Zhang Ping, Li, V.O.K. and Zhang Yongjing, "Multi-access radio resource management using multi-agent system," WCNC 2006, vol.1, pp.63-68, April 2006.
    [29]Peng Xue, Peng Gong, Jae Hyun Park, Daeyoung Park and Duk Kyung Kim, "Radio Resource Management with Proportional Rate Constraint in the Heterogeneous Networks," Wireless Communications, vol.11, pp.1066-1075, March 2012.
    [30]3GPP TS36.201 (v9.1.0):Evolved Universal Terrestrail Radio Access (E-UTRA), Long Term Evolution Physical Layer, General Description,2010.
    [31]3GPP TS36.211 (v9.1.0):Evolved Universal Terrestrail Radio Access (E-UTRA), Physical Channels and Modulation,2010.
    [32]3GPP TS36.212 (v9.4.0):Evolved Universal Terrestrail Radio Access (E-UTRA), Multiplexing and Channel Coding,2011.
    [33]3GPP TS36.213 (v9.3.0):Evolved Universal Terrestrail Radio Access (E-UTRA), Physical Layer Procedures,2010.
    [34]3GPP TS36.214 (v9.0.0):Evolved Universal Terrestrail Radio Access (E-UTRA), Physical layer, Measurements,2009.
    [35]3GPP TS36.300 (v9.1.0):Evolved Universal Terrestrail Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN), Overall Description,2009.
    [36]3GPP TS36.304 (v9.4.0):Evolved Universal Terrestrail Radio Access (E-UTRA), User Equipment (UE) Procedures in Idle Mode,2010.
    [37]Yi Sun, "Bandwidth efficient wireless OFDM," Selected Areas in Communications, vol.19, pp.2267-2278, Nov 2001.
    [38]Jianhua Zhang, Chen Huang, Guangyi Liu and Ping Zhang, "Comparison of the Link Level Performance between OFDMA and SC-FDMA," ChinaCom 2006, pp.1-6,Oct 2006.
    [39]Berardinelli Gilberto, Ruiz de Temino, L.A., Frattasi, S., Rahman, M.I. and Mogensen, P., "OFDMA vs. SC-FDMA:performance comparison in local area imt-a scenarios," vol.15, pp.64-72, October 2008.
    [40]Suzuki, S., Takyu, O. and Umeda, Y, "Performance evaluation of effect of nonlinear distortion in SC-FDMA system," ISITA 2008, pp.1-5, Dec 2008.
    [41]Goldsmith, A., Jafar, S.A., Jindal, N. and Vishwanath, S., "Capacity limits of MIMO channels," Selected Areas in Communications, vol.21, no.5, pp.684-702, June 2003.
    [42]金颖妮,“基于3 GPP LTE的MIMO信道建模与信道测量”,华东师范大学硕士毕业论文,2010年.
    [43]曾媛,徐景,杨馨,"LTE-Advanced系统中继技术进展”,《中兴通讯技术》,2011年05期.
    [44]徐晓杰,“中继技术在下一代蜂窝移动通信网络中的应用”,北京邮电大学硕士毕业论文,2011年.
    [45]El Gamal, Hassanpour, N. and Mammen, J.A., "Relay Networks with Delays," Information Theory, vol.53, no.10, pp.3413-3431, Oct 2007.
    [46]Strzyz, S., Res., Nokia Siemens Networks, Wroclaw, Poland Pedersen, K.I., Lachowski, J. and Frederiksen, F., "Performance optimization of Pico node deployment in LTE macro cells," Future Network & Mobile Summit, pp.1-9, June 2011.
    [47]Peng Tian, Hui Tian, Liqi Gao, Jing Wang, Xiaoming She and Lan Chen, "Deployment analysis and optimization of Macro-Pico heterogeneous networks in LTE-A system," WPMC 2012, vol.53, no.10, pp.3413-3431, Sept 2012.
    [48]3GPP TS25.467 (V9.0.0):UTRAN Architecture for 3G Home Node B (HNB), 2009.
    [49]3GPP TS25.469 (v9.1.0):UTRAN Iuh interference Home NodeB (HNB) Application Part (HNBAP) Signaling,2010.
    [50]Chandrasekhar V. and Andrews G, Femtocell Networks:A Survey, IEEE Communication Magzine, vol.46, no.9, July 2008, pp.59-69.
    [51]John Wiley, "Advanced Transport Protocols for Next Generation Heterogeneous Wireless Network Architectures," ISTE Ltd and Sons Inc, Dec 2012.
    [52]3GPPTR 25.892, "Feasibility Study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN enhancement",2008.
    [53]R. Pabst et al., "Relay-based deployment concepts for wireless andmobile broadband radio," IEEE Wireless Commun. Mag, pp.80-89, Sept.2004.
    [54]R. Kwak and J. M. Cioffi, "Resource-allocation for OFDMA multi-hop Relaying downlink systems," IEEE GLOBECOM 2007, pp.3225-3229,2007 Nov.
    [55]Guthery, S, "Wireless Relay networks," Network, IEEE, vol.11, pp.46-51, Aug,2002.
    [56]Wang Yan Long, Chang Yongyu and Dacheng Yang, "Resource Allocation in OFDM Two-hop Cooperative Relaying Cellular Networks," ICT 2012, pp.1-5, April 2012.
    [57]Yanlong Wang, Yongyu Chang and Dacheng Yang, "Dynamic Resource Allocation in OFDMA-based Two-hop Networks with Fractional Frequency Reuse," The journal of China Universities of Posts and Telecommunications, vol.18, supplement, Dec 2011.
    [58]Masao Fukushima,《非线性最优化基础》,科学出版社,2011年5月.
    [59]J.P. Aubin and H.Frankowska, "Set-Valued Analysis," Birkhauser, Boston, 1990.
    [60]M.S.Bazaraa and C.M. Shetty, "Foundation of Optimization," Springer-Verlag, Berlin,1976.
    [61]田中谦辅,《凸分析与最优化理论》,牧野书店,1994.
    [62]今野浩,山下浩,《非线性规划》,日科技连出版社,1978.
    [63]M. Pischella and J. C. Belfiore, "Optimal power allocation for downlink cooperative cellular networks," in Proc. IEEE VTC, April 2007.
    [64]Liping Wang, Yusheng Ji, and Fuqiang Liu, "Resource Allocation for OFDMA Relay-Enhanced System with Cooperative Selection Diversity," IEEE WCNC, pp.1-6, May,2009.
    [65]Danhua Zhang, Youzheng Wang, and Jianhua Lu, "QoS Aware Relay Selection and Subcarrier Allocation in Cooperative OFDMA Systems," IEEE Communications Letters, pp.294-296, Mar,2010.
    [66]Kai Chen, Biling Zhang, Danpu Liu, Jianfeng Li, and Guangxin Yue, "Fair Resource Allocation in OFDMA Two-Hop Cooperative Relaying Cellular Networks" IEEE VTC 2009-fall, pp.-5, Sep,2009.
    [67]L. You, et al, "Adaptive resource allocation in OFDMA Relay-aided cooperative cellular networks," in Proc. IEEE VTC, May.2008.
    [68]J. Laneman, D. Tse, and G Wornell, "Cooperative diversity in wireless networks:efficient protocols and outage behavior," IEEE Trans. Inf. Theory, vol.50, no.12, pp.3062-3080,2004.
    [69]M. S. Alouini and A. Goldsmith,, "Adaptive Modulation over Nakagami Fading Channels," Wireless Personal Communications, vol.13, pp.119-143, 2000.
    [70]M. J. Osborne, A. Rubinstein, "A Course in Game Theory," Cambridge, Massachusetts:MIT Press,1994.
    [71]S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press,2004.
    [72]Zhengguang Zhao, Xuming Fang, Xiaopeng Hu, and Yan Long, "Two Frequency Reuse Schemes in OFDMA-TDD Based Two-hop Relay Networks," IEEE WCNC 2010, pp.1-6, Apr,2010.
    [73]Yue Zhao, Xuming Fang, Xiaopeng Hu, Zhengguang Zhao, and Yan Long, "Fractional frequency reuse schemes and performance evaluation for OFDMA multi-hop cellular networks," TRIDENTCOM 2009, pp.1-5, Apr,2009.
    [74]Jin-Yup Hwang, Yoona Oh, and Youngnam Han, "Adaptive Frequency Reuse Scheme for Interference Reduction in Two-Hop Relay Networks," VTC 2010-spring, pp.1-5, May,2010.
    [75]Liangliang Zhang, Yunbao Zeng, Philipp Zhang, and Zhaoyang Zhao, "Dynamic Frequency Reuse Scheme for WirelessMulti-hop Relay Networks," WiCom 2009, pp.1-4, Sept,2009.
    [76]Li-Chun Wang, and Chu-Jung Yeh, "3-Cell Network MIMO Architectures with Sectorization and Fractional Frequency Reuse," JSAC 2011, vol.29, pp. 1185-1199, Jun,2011.
    [77]朱红梅,李宝荣,"LTE_FDD和LTE_TDD的融合发展研究”,移动通信,第38-43页,2008年8月.
    [78]莫宏波,朱新宁,果敢,"LTE TDD与LTE FDD的关键过程差异分析”,2010 TD与LTE技术创新论坛,第74-79页,2010年1月.
    [79]Acx, A.-G. and ribil, P., "Capacity evaluation of the UTRA FDD and TDD modes," 49th VTC, vol.3, Jul 1999.
    [80]龙紫薇,徐晓东,邵春菊,杨光,"LTE TDD与LTE FDD技木简介和比较”,2008年中国通信学会无线及移动通信学术年会,第297-304页,2008年.
    [81]3GPP TR 36.814, "Further advancements for E-UTRA physical layer aspects," 2011.
    [82]3GPP TR 36.922, "TDD Home eNodeB(HeNB) Radio Frequency(RF) requirement analysis," 2011.
    [83]R4-121077, "Email discussion summary on the feasibility study for LTE TDD eIMTA",3GPP TSG-RAN WG4 Meeting #62 Dresden, Germany,6-10 Feb 2012.
    [84]R4-110450,"New study item proposal for Further Enhancements to LTE TDD for DL-UL Interference Management and Traffic Adaptation",3GPP TSG-RAN Meeting #51,Kansas City, USA, March 15-18,2010.
    [85]R4-114051, "Different deployment scenarios for co-existence study for TDD-LTE",3GPP TSG-RAN WG4 Meeting # 60, Athens Greece,22-26 Aug, 2011.
    [86]R4-120143, "System Simulation Results on TDD eTIMA phase1",3GPP TSG-RAN WG4 Meeting #62, Athens Greece,22-26 Aug,2011.
    [87]谢显中等,《《TDD的第四代移动通信技术—移动通信前沿技术丛书编著》,电子工业出版社,2005年7月.
    [88]Yufeng Wang, Valkealahti, K., Shu, K., Sankar, Ravi and Morgera, S., "Performance evaluation of flexible TDD switching in 3GPP LTE system," 35th SARNOFF, pp.1-4, May 2012.
    [89]Hui Jia, Qingyu Miao; Changchuan Yin; Huarui Wu; Yan Ma, "Performance analysis of coexistence between LTE-TDD and TD-SCDMA Communications Technology and Applications," 2009. ICCTA'09, pp.181-185, Oct.2009.
    [90]Shuping Chen, Wenbo Wang, Xing Zhang and Wei Hong, " ,performance and optimization of interference coordination in downlink TDD-LTE systems," 2010 ICIME, pp.303-307, April 2010
    [91]Pei Chang, Yongyu Chang, Yunan Han, Chi Zhang and Dacheng Yang," Interference analysis and performance evaluation for LTE TDD system," 2010 ICACC, vol 5, pp.410-414, March 2010.
    [92]Yingnan Tian, Xin Zhang, Jing Wang, Gen Cao and Dacheng Yang, "Coexistence study on LTE-Advanced system interfering 3G/B3G TDD systems," WCNC 2012, pp.2729-2734, April 2012.
    [93]3GPP TR 25.942 V10.0.0, "Technical Specification Group Radio Access Networks; Radio Frequency (RF) system scenarios (Release 10)," 3rd Generation Partnership Project.
    [94]3GPP TR 36.942 V10.2.0, "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (Release 10)," 3rd Generation Partnership Project.
    [95]3GPP TS 36.104 V10.2.0 (2011-04), "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 10)," 3rd Generation Partnership Project.
    [96]R4-113569, "Interference study with deterministic analysis for LTE TDD eIMTA," CATT.
    [97]R4-113570, "Interference study with system simulation for LTE TDD eIMTA," CATT.
    [98]房英龙,“LIE系统在同构及异构网络下的干扰共存研究”,北京邮电大学硕士论文,2010年.
    [99]R4-121077, "Annex_A_macro-femto," 2012.
    [100]R4-121407, "Coexistence with flexible UL/DL configurations for additional TDD scenarios," 2012.
    [101]R4-121405, "Coexistence with flexible UL/DL configurations for TDD Femto and Pico cell scenarios," 2012.
    [102]R4-121899, "Co-channel DL-UL interference analysis for single operator Macro-Femto deployment scenario," 2012.
    [103]R4-121902, "DL-UL interference analysis for multiple operator Macro-Macro deployment in adjacent channel," 2012.
    [104]Yanlong Wang, Yongyu Chang and Dacheng Yang, "An Efficient Inter-cell Interference Coordination Scheme in Heterogeneous Cellular Networks, " VTC2012fall, pp.1-5, Sept 2012.
    [105]Res., Pedersen, K.I., Lachowski, J., and Frederiksen, F., "Performance optimization of pico node deployment in LTE macro cells," FutureNetw 2011, pp.1-9, June 2011.
    [106]Mondal, B. and Thomas, T.A. "Optimization of two layer macro-pico networks using LTE," WCNC 2012, pp.837-841, April 2012.
    [107]Jun Wang; Jianguo Liu; Dongyao Wang; Jiyong Pang and Gang Shen, "Optimized Fairness Cell Selection for 3GPP LTE-A Macro-Pico HetNets," VTC Fall 2011, pp.1-5, Sept.2011.
    [108]Kitagawa, K; Komine, T.; Yamamoto, T. and Konishi, S., "Performance evaluation of handover in LTE-Advanced systems with pico cell Range Expansion," PIMRC 2012, pp.1071-1076.
    [109]Guvenc I., "Capacity and Fairness Analysis of Heterogeneous Networks with Range Expansion and Interference Coordination," Communications Letters, vol.15, pp.1084-1087, Oct 2011.
    [110]Okino K., Nakayama T., Yamazaki C., Sato H., and Kusano Y, "Pico Cell Range Expansion with Interference Mitigation toward LTE-Advanced Heterogeneous Networks," GLOCOM 2008, pp.1-6, Dec 2008.
    [111]Bo Li, "An Effective Inter-Cell Interference Coordination Scheme for Heterogeneous Network," VTC 2011-Spring, Jul 2011.
    [112]Lopez Perez D., and Xiaoli Chu, "Inter-Cell Interference Coordination for Expanded Region Picocells in Heterogeneous Networks," ICCCN 2011, Aug 2011.
    [113]R4-121217, "Analysis for Macro-Outdoor Pico co-channel Interference," 3GPP TSG-RAN WG4 Meeting #62Bis, Mar 2012.
    [114]R4-121344, "Feasibility study of LTE TDD eIMTA:Macro-Macro adjacent channel scenario," 3GPP TSG-RAN WG4 Meeting #62Bis, Mar 2012.
    [115]R4-121345, "Feasibility study of LTE TDD eIMTA:Outdoor Pico-Macro co-channel scenario," 3GPP TSG-RAN WG4 Meeting #62Bis, Mar 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700