基于二维液相色谱技术的元胡活性成分筛选及其药效和毒性机制的蛋白组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“中药研究中最困难的,也是最重要的一点,就是找出它的有效成分,然后进行作用机制研究,并将其推荐于临床应用,或进一步进行构效关系研究,以求新的发展。”(陈宜张于《中药延胡索研究中的新发现》序三)。尽管中药的应用历史可以追溯几千年,但是中药发挥疗效的物质基础是什么?其作用的靶点是什么?作用机制是什么?这些问题一直未被世人所彻底揭示。近年来,随着中药不良反应的增加,许多传统认为没有毒性的中药也出现不良反应,对中药不良反应的认识,不能再局限于传统文献记载的那些有毒中药上,必须利用现代科技开展药物安全性评价工作并对中药的毒理机制进行系统研究。另外,如何在中医药基本理论的指导下,结合现代科研手段,在细胞和分子水平明确中药的作用靶点和分子机制,也是目前中药研究亟需解决的问题。
     系统生物学是研究一个生物系统中所有组成成分(基因、mRNA、蛋白质、代谢物等)的构成,以及在特定条件下这些组分间相互关系的学科。系统生物学的研究方法与中医治疗疾病的整体观念是一致的。蛋白组学是系统生物学的重要组成部分。蛋白组学认为中药有效部位或有效成分进入细胞或组织发挥作用,必然会引起分子、细胞、器官、整体多个层面的结构与功能状态的改变。蛋白质是生物体内功能的执行者,生物体结构和功能状态的改变必然在蛋白组水平上表现出来。因此,蛋白组学以蛋白质的丰度或翻译后修饰为指标,对中药活性成分的作用靶点和效应蛋白进行识别,建立起相应的作用网络,探讨其药理、毒副作用机制。化学蛋白组学主要用于研究在复杂蛋白质体系中,能与活性小分子相互作用的蛋白组。通过对该活性小分子进行标记或固定化,可以实现与其相互作用的蛋白组的选择性富集和鉴定。与传统的差异蛋白组学技术相比,只有与被标记或固定化小分子相互作用的蛋白质才能够被富集并检测,因而可以大大降低特定蛋白组的复杂度,从而提高对中、低丰度蛋白的检测能力。此外,通过质谱鉴定可以获得关于活性小分子靶蛋白的信息,并进一步阐述该分子的可能作用机理。
     本课题以传统中药元胡为研究对象,以二维液相色谱—串联质谱为检测手段,借助血清药理学的研究理念,筛选中药元胡的活性镇痛成分;基于二维液相的筛选结果及相关文献报道,我们发现左旋延胡索乙素(l-THP)是元胡的主要镇痛活性成分之一,并对其进行进一步研究。首先,我们应用液相色谱-串联质谱法结合微透析取样方法研究l-THP在大鼠纹状体的药代动力学;针对l-THP临床应用中出现的肝脏毒副作用,本文应用2D-nano-LC-MS/MS技术,研究其肝脏毒性的分子机制;l-THP能明显抑制福尔马林诱导的疼痛行为,本文联用差异蛋白组学和化学蛋白组学技术,研究l-THP的作用靶点和镇痛机制,具体内容包括:
     1.本文首先建立了福尔马林镇痛模型以评价元胡总生物碱(TAC)的镇痛效果,发现灌胃给药元胡总生物碱150 mg/kg后能够有效抑制福尔马林诱导的疼痛行为。接下来我们利用HSA生物色谱柱和ODS整体柱建立全二维液相色谱-串联质谱系统,通过比对元胡总生物碱、元胡总生物碱入血和入纹状体成分之间的差异,初步筛选元胡生物碱的镇痛活性成分。在系统优化全二维液相色谱串联质谱法条件后,我们将其应用于TAC的原成分、入血成分及入纹状体成分的分析。在原成分分析时,我们共检测到100多个化学成分,并对其中13种成分进行结构鉴定;我们共检测到40余种入血成分并鉴定了其中7种主要成分,分别是原阿片碱、海罂粟碱、四氢巴马亭、紫堇碱、小檗碱、四氢小檗碱和蓝堇辛;在进入纹状体的约20种化合物中,4种原形化合物(原阿片碱、海罂粟碱、四氢巴马亭、紫堇碱)的浓度较高。通过文献查阅,我们发现这4种化学物具有潜在的镇痛作用。尽管对元胡总生物碱的镇痛机制研究还存在很多不确定的因素,需要进一步探讨和验证,但是我们推测TAC的镇痛作用与原阿片碱、海罂粟碱、四氢巴马亭、紫堇碱的协同作用有关。本文的研究结果显示全二维液相色谱串联质谱技术是中药活性成分筛选的有效工具,能为中药的作用机制研究提供有效的信息。
     2. L-THP是元胡的主要活性成分之一,具有显著的镇痛作用,作为镇痛药在临床上已应用多年。L-THP是多巴胺受体的阻滞剂,通过阻滞纹状体的D2多巴胺受体,抑制痛觉信息在脊髓水平的传递,实现镇痛作用。本研究首先建立了大鼠脑部纹状体的微透析取样模型,通过反透析法测定l-THP在纹状体内的回收率,并考察了l-THP浓度、取样时间对体内回收率的影响,发现微透析采样技术能够用于l-THP在脑部纹状体组织的药代动力学研究。另外,我们建立了高通量、高灵敏度的LC-MS/MS分析方法,并进行了完整的方法学验证。本文的研究证实微透析技术结合LC-MS/MS分析方法,能够成功的用于l-THP在纹状体的药代动力学研究。
     3. L-THP是临床上应用多年的镇痛药,但是近年来,l-THP在临床应用中出现了严重的肝脏副作用。在本文中,我们发现l-THP能够诱导BALB/c小鼠肝细胞和human liver L-02细胞凋亡。通过Western Blots实验,我们证实一些凋亡指标性蛋白(caspase-3、Bcl-2、Bax)的表达发生了显著变化。我们以human liver L-02 (L-02)细胞为研究对象,应用基于2D-nano-LC-MS/MS的高通量蛋白组学研究技术,研究L-02细胞在毒性剂量的l-THP处理后,在蛋白表达层次上呈现的差异,从而探索l-THP致肝损伤可能的信号途径。我们发现经过l-THP处理后,L-02细胞共有156个蛋白的表达呈现明显差异。这些蛋白涵盖了复杂的功能领域,包括能量代谢、细胞骨架、核酸代谢和细胞凋亡等。我们选取了跟凋亡相关的蛋白进行功能探讨,并且选取两个重要蛋白(mTOR and MEK2),对其含量表达进行Western Blots验证。最后我们发现,l-THP主要通过改变凋亡途径中发挥重要作用的一些蛋白的表达,诱导细胞凋亡。并且从本实验可以看出,基于纳升级二维液相色谱—串联质谱技术的蛋白组学是研究药源性肝毒性机制的有效手段。
     4. L-THP能明显抑制福尔马林诱导的疼痛行为,本文联用差异蛋白组学和化学蛋白组学技术,研究l-THP的作用靶点和镇痛机制。口服40 mg/kg的l-THP能够显著抑制福尔马林产生的疼痛行为。基于文献报道,纹状体是l-THP的主要镇痛部位。我们以纹状体蛋白组为研究对象,应用基于2D-nano-LC-MS/MS的高通量蛋白组学研究技术,研究福尔马林致痛大鼠在l-THP处理后,其纹状体蛋白组的表达差异。我们设定了严格的标准,对鉴定到的上千种蛋白进行筛选。最终我们选取得到17种具有显著表达差异的蛋白。我们通过对随机抽取的两种蛋白(Neurabin-1和Calcium-dependent secretion activator 1)的含量进行Western Blots验证,验证蛋白组学结果的可靠性,发现Western Blots实验结果能与蛋白组学结果较好吻合。另外,我们合成了基于l-THP的分子探针,通过化学蛋白组学技术,研究能与l-THP相互作用的蛋白组。我们发现差异蛋白组学和化学蛋白组学的结果能够较好互补的。综合化学蛋白组学和差异蛋白组学的研究结果,我们发现与离子通道,神经递质释放以及信号传导途径等相关蛋白在l-THP的镇痛机制中发挥重要作用。并且,联用差异蛋白组学和化学蛋白组学技术能够有效加深我们对l-THP的镇痛机制的了解
“The most difficult and most important challenges for Traditional Chinese medicine (TCM) research in order to gain further development is to screen the active ingredients, and illustrate the target proteins and related recognition mechanisms, and ultimately recommend it for clinical application and/or for further structure-activity relationship study”said Chen, Yizhang, the member of the Chinese Academy of Sciences. Despite TCMs’existence and continued use over many centuries and its popularity and extensive use during the last decade, substantial gaps remain both in our understanding of the“real”specific bioactive compounds, and the target proteins and related recognition mechanisms for these compounds. The knowledge on safety and efficacy is lacking because few TCMs have been evaluated by rigorous scientifically-designed trials. Herbal toxicity is increasingly recognized as the use of these medications has increased, and toxicity from TCMs seems to be a serious problem all over world now. We should no longer confine the adverse reactions of TCM to traditional Chinese medicine literature and expansion of basic research into mechanisms of herbal toxicity is warranted. To illustrate the target proteins and related recognition mechanisms of TCM under the guidance of TCM theory is another urgent task.
     The proteomic approach is widely applied nowadays in the development of novel biomarker candidates for early detection of disease and identification of new targets for therapeutics, mainly by delineation of protein expression changes depending on factors such as the organism's physiological state and the stage of development of disease. However, traditional proteomics methodology provides information for abundant proteins but only provides limited information for proteins with low abundance. Chemical proteomics which used small molecules as baits to fish for interacting proteins, has emerged as a powerful way to investigate the interacting proteome. By chemical proteomic approach, only a manageable fraction of the proteome interacting with the fixed small molecules will be collected and analyzed and this approach greatly reduces the complexity of a certain proteome and thus enhances the ability to detect and to characterize low-abundance proteins. Furthermore, chemical proteomics becomes a direct readout for the characterization of target proteins and related recognition mechanisms of many drugs whose targets are still unclear, especially for compounds of natural origin.
     Corydalis yanhusuo W.T. Wang has been widely used to treat spastic pain, abdominal pain and pain due to injury. In this paper, two-dimensional LC was applied to screen the bioactive compounds of Corydalis yanhusuo. L-THP, one of its main active ingredients was selected for further study. Microdialysis combined with LC-MS/MS was applied in the pharmacokinetic studies of l-THP in the straitum, the traget sites, and shotgun-based proteomics was applied to illustrate the detailed mechanisms involved in the l-THP-induced-antinociception and -hepatotoxicology. The detailed results were presented as follows:
     1. In the present study, an animal mode of nociception based on the formalin injection into the hinder paw of rats was applied to evaluate the anti-nociceptive effect of total alkaloids of Corydalis yanhusuo (TAC), and the results of the formalin test indicated that formalin-evoked spontaneously nociceptive responses (licking behavior) could be inhibited by given (i.g.) TAC at a single dose of 150 mg/kg. Subsequently, an online comprehensive two-dimensional biochromatography method with a silica-bonded human serum albumin (HSA) column in the first dimension and a monolithic ODS column in the second was developed, and the absorbed bioactive components were screened by comparing and contrasting the components detected in the plasma and striatum with those in TAC. More than 100 compounds were separated and detected in the TAC, among which 13 compounds were identified. About 40 compounds (7 compounds identified) were absorbed into the plasma with appropriate concentrations, and about 20 compounds (4 compounds identified) passed through the blood-brain barrier into the striatum. Of interest, four compounds (protopine, glaucine, tetrahydropalmatine and corydaline) which were reported to possess profound anti-nociceptive effects, exhibited high concentrations in the striatum, therefore, it appears that they participated synergistically in regulating the formalin-induced nociception. The results indicated that the developed comprehensive two-dimensional biochromatography method is capable of screening the bioactive components in Corydalis yanhusuo, and providing valuable information for understanding the mechanisms by which Corydalis yanhusuo alleviates nociception.
     2. Levo-tetrahydropalmatine (l-THP), which is officially listed in the Chinese pharmacopoeia was demonstrated to have excellent analgesic effects and has been in use in clinical practice for years in China. L-THP was recently found to elicit profound effects on the dopaminergic system in the straitum to produce anti-nociception. In the present study, the factors affecting the in vivo recovery from microdialysis probe (drug concentrations and within-day stability) were investigated, and the results indicated that microdialysis was an excellent method for in vivo sampling to measure the concentration of l-THP in the striatum. We developed and validated a sensitive, specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the quantitative determination of l-THP using diphenhydramine as the internal standard. The method combined LC-MS/MS with microdialysis was successfully applied in the pharmacokinetic studies of l-THP in the straitum.
     3. L-THP, received much attention as an analgesic agent, has been associated with acute or chronic hepatitis in clinical practice. We found that l-THP can induce apoptosis in the hepatocytes of BALB/c mice and human normal liver L-02 (L-02) cells. Several key molecules, including caspase-3, Bcl-2 and Bax, were modulated by l-THP treatment. A novel high-throughput proteomic approach based on shotgun approach was applied to simultaneously evaluate the alterations of global protein expression involved in the response of l-THP treatment in L-02 cells. A total of 156 proteins were differentially expressed, among which 12 proteins play regulatory or constitutive roles in apoptosis pathways. Further analysis of two proteins by Western Blots, mTOR and MEK2, confirmed that these proteins were expressed at lower levels in l-THP treated L-02 cells compared with those of control. The current study provided detailed evidence to support that l-THP is capable of inducing apoptosis in mammalian liver cells and improve the understanding of mechanisms mediating the hepatotoxity of l-THP.
     4. This study investigated the mechanisms involved in the antinociceptive action induced by l-THP in the formalin test by combined comparative and chemical proteomics. Rats were pre-treated with l-THP by the oral route (40 mg/kg) 1 h before formalin injection. The antinociceptive effect of l-THP was shown in the first and second phases of the formalin test. To address the mechanisms by which l-THP inhibits formalin-induced nociception in rats, the combined comparative and chemical proteomics were applied. A novel high-throughput comparative proteomic approach based on 2D-nano-LC-MS/MS was applied to simultaneously evaluate the deregulated proteins involved in the response of l-THP treatment in formalin-induced pain rats. Thousands of proteins were identified, among which 17 proteins survive the stringent filter criteria were further included for functional discussion. Two proteins (Neurabin-1 and Calcium-dependent secretion activator 1) were randomly selected and their expression levels were further confirmed by Western Blots. The results matched well with those of proteomics. In the present study, we also described the development and application of l-THP immobilized beads to bind the targets. Following incubation with cellular lysates, the proteome interacting with the fixed l-THP was identified. The results of comparative and chemical proteomics are quite complementary. Although the precise roles of these identified moleculars in l-THP-induced antinociception need further study, the combined results indicated that proteins associated with signal transduction, vesicular trafficking and neurotransmitter release, energy metabolism, and ion transport play important roles in l-THP-induced antinociception in formalin test,
引文
1. Fiehn, O., Metabolomics - the link between genotypes and phenotypes. Plant Molecular Biology 2002, 48, (1-2), 155-171.
    2. Schauer, N.; Fernie, A. R., Plant metabolomics: towards biological function and mechanism. Trends in Plant Science 2006, 11, (10), 508-516.
    3. Newman, D. J.; Cragg, G. M., Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 2007, 70, (3), 461-477.
    4. Newman, D. J.; Cragg, G. M.; Snader, K. M., Natural products as sources of new drugs over the period 1981-2002. Journal of Natural Products 2003, 66, (7), 1022-1037.
    5.刘浩;屈凌波;相秉仁.,系统生物学与中医药现代化.长春中医药大学学报2009, 25, (3), 450-451.
    6.张治洲,从系统生物学到配伍西药:中药现代化的一个核心战略.中国生物工程杂志2007, 27, (4), 153-157.
    7. Homma, M.; Oka, K.; Yamada, T.; Niitsuma, T.; Ihto, H.; Takahashi, N., A Strategy for Discovering Biologically-Active Compounds with High Probability in Traditional Chinese Herb Remedies - an Application of Saiboku-to in Bronchial-Asthma. Analytical Biochemistry 1992, 202, (1), 179-187.
    8. Wang, Y. L.; Liang, Y. Z.; Chen, B. M.; He, Y. K.; Li, B. Y.; Hu, Q. N., LC-DAD-APCI-MS-based screening and analysis of the absorption and metabolite components in plasma from a rabbit administered an oral solution of danggui. Analytical and Bioanalytical Chemistry 2005, 383, (2), 247-254.
    9. Pan, J. Y.; Cheng, Y. Y., Identification and analysis of absorbed and metabolic components in rat plasma after oral administration of 'Shuangdan' granule by HPLC-DAD-ESI-MS/MS. Journal of Pharmaceutical and Biomedical Analysis 2006, 42, (5), 565-572.
    10. Wang, P.; Liang, Y. Z.; Zhou, N.; Chen, B. M.; Yi, L. Z.; Yu, Y.; Yi, Z. B., Screening and analysis of the multiple absorbed bioactive components and metabolites of Dangguibuxue decoction by the metabolic fingerprinting technique and liquidchromatography/diode-array detection mass spectrometry. Rapid Communications in Mass Spectrometry 2007, 21, (2), 99-106.
    11. Yan, B.; Wang, G. J.; A, J. Y.; Xie, L.; Hao, H. P.; Liang, Y.; Sun, J. G.; Li, X. Y.; Zheng, Y. T., Construction of the fingerprints of ginseng stem and leaf saponin reference substances and spiked plasma sample by LC-ESI/MS and its application to analyzing the compounds absorbed into blood after oral administration of ginseng stem and leaf saponin in rat. Biological & Pharmaceutical Bulletin 2007, 30, (9), 1657-1662.
    12. Su, X. Y.; Kong, L.; Lei, X. Y.; Hu, L. H.; Ye, M. L.; Zou, H. F., Biological fingerprinting analysis of traditional Chinese medicines with targeting ADME/Tox property for screening of bioactive compounds by chromatographic and MS methods. Mini-Reviews in Medicinal Chemistry 2007, 7, (1), 87-98.
    13. Lei, X. Y.; Kong, L.; Zou, H. F.; Ma, H.; Yang, L., Evaluation of the interaction of bioactive compounds in Cortex Pseudolarix and Radix Stephaniae by the microdialysis probe coupled with high performance liquid chromatography-Mass spectrometry. Journal of Chromatography A 2009, 1216, (35), 2179.
    14. Su, X. Y.; Kong, L.; Li, X.; Chen, X. G.; Guo, M.; Zou, H. F., Screening and analysis of bioactive compounds with biofingerprinting chromatogram analysis of traditional Chinese medicines targeting DNA by microdialysis/HPLC. Journal of Chromatography A 2005, 1076, (1-2), 118-126.
    15.齐炼文;李萍;盛亮洪,透析-高效液相色谱法在当归补血汤药效物质基础研究中的应用.分析化学2006, 34, (2), 196-199.
    16.孔亮;邹汉法;汪海林;倪坚毅;张玉奎,以人血清白蛋白为固定相的分子生物色谱分析几种中药活性成分的研究.高等学校化学学报2000, 21, (1), 36-40.
    17.袁秉祥;林蓉;贺浪冲,细胞膜色谱-中药复杂体系的新药发现.中国药理通讯2008, 25, (2), 32-33.
    18. Hou, X. F.; Zhou, M. Z.; Jiang, Q.; Wang, S. C.; He, L. C., A vascular smooth muscle/cell membrane chromatography-offline-gas chromatography/mass spectrometry method for recognition, separation and identification of active components from traditional Chinese medicines. Journal of Chromatography A 2009, 1216, (42), 7081-7087.
    19. Wang, C. H.; He, L. C.; Wang, N.; Liu, F., Screening anti-inflammatory components fromChinese traditional medicines using a peritoneal macrophage/cell membrane chromatography-offline-GC/MS method. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2009, 877, (27), 3019-3024.
    20. Zeng, A. G.; Yuan, B. X.; Zhu, F.; Zhao, L. M.; He, L. C.; Yang, G. D., Cell Membrane Chromatography Correlated with Functional Assay for Ligand-beta-Adrenergic Receptor Affinities. Chromatographia 2009, 69, (11-12), 1373-1377.
    21. Tang, D.; Li, H. J.; Chen, J.; Guo, C. W.; Li, P., Rapid and simple method for screening of natural antioxidants from Chinese herb Flos Lonicerae Japonicae by DPPH-HPLC-DAD-TOF/MS. Journal of Separation Science 2008, 31, (20), 3519-3526.
    22. Bandoniene, D.; Murkovic, M., The detection of radical scavenging compounds in crude extract of borage (Borago officinalis L.) by using an on-line HPLC-DPPH method. Journal of Biochemical and Biophysical Methods 53, (1-3), 45-49.
    23. Anderson, N. L.; Anderson, N. G., Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 1998, 19, (11), 1853-1861.
    24. Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422, (6928), 198-207.
    25. Pandey, A.; Mann, M., Proteomics to study genes and genomes. Nature 2000, 405, (6788), 837-846.
    26.王志平;乔建军;元英进,蛋白质组学在中药现代化研究中的应用.中草药2004, 35, (1), 1-4.
    27. Ikeda, T.; Tsumagari, H.; Honbu, T.; Nohara, T., Cytotoxic activity of steroidal glycosides from solanum plants. Biological & Pharmaceutical Bulletin 2003, 26, (8), 1198-1201.
    28.马朋;曹同涛;宋晓冬;张页,合成紫花茄皂苷对体外培养肝癌细胞的增殖抑制作用.解剖学杂志2008, 31, (1), 37-41.
    29.曹同涛;马朋;耿越,紫花茄皂苷I-5对不同肿瘤细胞系的体外抗肿瘤作用.滨州医学院学报2008, 31, (3), 25-28.
    30. Wong, C. C.; Wang, Y.; Cheng, K. W.; Chiu, J. F.; He, Q. Y.; Chen, F. A.-m.; j proteome, r.; Ctyp, D. O. I. p. k. C.-L. S., Comparative proteomic analysis of indioside D-triggered cell death in HeLa cells. Journal of proteome research 2008, 7, (5), 2050-8
    31. Wang, Y.; Cheung, Y. H.; Yang, Z.; Chiu, J. F.; Che, C. M.; He, Q. Y. A.-m.; proteomics;Ctyp, D. O. I. p. C.-L. S., Proteomic approach to study the cytotoxicity of dioscin (saponin). Proteomics 2006, 6, (8), 2422-32.
    32. Wang, C.; Fan, G. R.; Lin, M.; Chen, Y.; Zhao, W. Q.; Wu, Y. T., Development of a liquid chromatography/tandem mass spectrometry assay for the determination of bestatin in rat plasma and its application to a pharmacokinetic study. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2007, 850, (1-2), 101-108.
    33. Lu, Q. Y.; Yang, Y.; Jin, Y. S.; Zhang, Z. F.; Heber, D.; Li, F. P.; Dubinett, S. M.; Sondej, M. A.; Loo, J. A.; Rao, J. Y. A.-m.; proteomics; Ctyp, D. O. I. p. C.-L. S., Effects of green tea extract on lung cancer A549 cells: proteomic identification of proteins associated with cell migration. UID - 19137550. Proteomics 2009, 9, (3), 757-67.
    34. Cecconi, D.; Zamo, A.; Parisi, A.; Bianchi, E.; Parolini, C.; Timperio, A. M.; Zolla, L.; Chilosi, M., Induction of apoptosis in Jeko-1 mantle cell lymphoma cell line by resveratrol: a proteomic analysis. Journal of proteome research 2008, 7, (7), 2670-80 PHST- 2008/05/29 [aheadofprint].
    35. Jeon, J. P.; Buono, R. J.; Han, B. G.; Jang, E. Y.; Kim, S. C.; Yang, C. H.; Hwang, M. A.-m.; Ctyp, D. O. I. p. s. C.-L. S., Proteomic and Behavioral Analysis of Response to Isoliquiritigenin in Brains of Acute Cocaine Treated Rats. UID - 18998721. Journal of proteome research 2008.
    36. Nguyen-Khuong, T.; White, M. Y.; Hung, T. T.; Seeto, S.; Thomas, M. L.; Fitzgerald, A. M.; Martucci, C. E.; Luk, S.; Pang, S. F.; Russell, P. J.; Walsh, B. J., Alterations to the protein profile of bladder carcinoma cell lines induced by plant extract MINA-05 in vitro. Proteomics 2009, 9, (7), 1883-1892.
    37. Wu, T. F.; Hsu, C. Y.; Huang, H. S.; Chou, S. P.; Wu, H., Proteomic analysis of Pycnogenol effects in RAW 264.7 macrophage reveals induction of cathepsin D expression and enhancement of phagocytosis. Journal of Agricultural and Food Chemistry 2007, 55, (24), 9784-9791.
    38. Ong, E. S.; Len, S. M.; Lee, A. C. H., Differential protein expression of the inhibitory effects of a standardized extract from Scutellariae radix in liver cancer cell lines using liquid chromatography and tandem mass spectrometry. Journal of Agricultural and FoodChemistry 2005, 53, (1), 8-16.
    39. Tian, R. J.; Xu, S. Y.; Lei, X. Y.; Jin, W. H.; Ye, M. L.; Zou, H. F., Characterization of small-molecule-biomicromolecule interactions: From simple to complex. Trac-Trends in Analytical Chemistry 2005, 24, (9), 810-825.
    40. Duncan, J. S.; Gyenis, L.; Lenehan, J.; Bretner, M.; Graves, L. M.; Haystead, T. A.; Litchfield, D. W., An unbiased evaluation of CK2 inhibitors by chemoproteomics. Molecular & Cellular Proteomics 2008, 7, (6), 1077-1088.
    41. Godl, K.; Gruss, O. J.; Eickhoff, J.; Wissing, J.; Blencke, S.; Weber, M.; Degen, H.; Brehmer, D.; Orfi, L.; Horvath, Z.; Keri, G.; Muller, S.; Cotten, M.; Ullrich, A.; Daub, H., Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Research 2005, 65, (15), 6919-6926.
    42. Wissing, J.; Godl, K.; Brehmer, D.; Blencke, S.; Weber, M.; Habenberger, P.; Stein-Gerlach, M.; Missio, A.; Cotten, M.; Muller, S.; Daub, H., Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors. Molecular & Cellular Proteomics 2004, 3, (12), 1181-1193.
    43. Prathipati, P.; Ma, N. L.; Manjunatha, U. H.; Bender, A., Fishing the Target of Antitubercular Compounds: In Silico Target Deconvolution Model Development and Validation. Journal of Proteome Research 2009, 8, (6), 2788-2798.
    44. von Rechenberg, M.; Blake, B. K.; Ho, Y. S. J.; Zhen, Y. J.; Chepanoske, C. L.; Richardson, B. E.; Xu, N. F.; Kery, V., Ampicillin/penicillin-binding protein interactions as a model drug-target system to optimize affinity pull-down and mass spectrometric strategies for target and pathway identification. Proteomics 2005, 5, (7), 1764-1773.
    45. Bender, A.; Mikhailov, D.; Glick, M.; Scheiber, J.; Davies, J. W.; Cleaver, S.; Marshall, S.; Tallarico, J. A.; Harrington, E.; Cornella-Taracido, I.; Jenkins, J. L., Use of Ligand Based Models for Protein Domains To Predict Novel Molecular Targets and Applications To Triage Affinity Chromatography Data. Journal of Proteome Research 2009, 8, (5), 2575-2585.
    1. Huang, X. D.; Kong, L. A.; Li, X.; Chen, X. G.; Guo, M.; Zou, H. F., Strategy for analysis and screening of bioactive compounds in traditional Chinese medicines. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2004, 812, (1-2), 71-84.
    2. Bell, I. R.; Koithan, M., Models for the study of whole systems. Integrative Cancer Therapies 2006, 5, (4), 293-307.
    3. Li, P.; Qi, L. W.; Liu, E. H.; Zhou, J. L.; Wen, X. D., Analysis of Chinese herbal medicines with holistic approaches and integrated evaluation models. Trac-Trends in Analytical Chemistry 2008, 27, (1), 66-77.
    4. Homma, M.; Oka, K.; Yamada, T.; Niitsuma, T.; Ihto, H.; Takahashi, N., A Strategy for Discovering Biologically-Active Compounds with High Probability in Traditional Chinese Herb Remedies - an Application of Saiboku-to in Bronchial-Asthma. Analytical Biochemistry 1992, 202, (1), 179-187.
    5. Wang, P.; Liang, Y. Z.; Zhou, N.; Chen, B. M.; Yi, L. Z.; Yu, Y.; Yi, Z. B., Screening and analysis of the multiple absorbed bioactive components and metabolites of Dangguibuxue decoction by the metabolic fingerprinting technique and liquid chromatography/diode-array detection mass spectrometry. Rapid Communications in Mass Spectrometry 2007, 21, (2), 99-106.
    6. Pan, J. Y.; Cheng, Y. Y., Identification and analysis of absorbed and metabolic components in rat plasma after oral administration of 'Shuangdan' granule by HPLC-DAD-ESI-MS/MS. Journal of Pharmaceutical and Biomedical Analysis 2006, 42, (5), 565-572.
    7. Wang, Y.; Lehmann, R.; Lu, X.; Zhao, X. J.; Xu, G. W., Novel, fully automatic hydrophilic interaction/reversed-phase column-switching high-performance liquid chromatographic system for the complementary analysis of polar and apolar compounds in complex samples. Journal of Chromatography A 2008, 1204, (1), 28-34.
    8. Wang, Y.; Lu, X.; Xu, G. W., Development of a comprehensive two-dimensionalhydrophilic interaction chromatography/quadrupole time-of-flight mass spectrometry system and its application in separation and identification of saponins from Quillaja saponaria. Journal of Chromatography A 2008, 1181, (1-2), 51-59.
    9. Wang, Y.; Kong, L.; Lei, X. Y.; Hu, L. H.; Zou, H. F.; Welbeck, E.; Bligh, S. W. A.; Wang, Z. T., Comprehensive two-dimensional high-performance liquid chromatography system with immobilized liposome chromatography column and reversed-phase column for separation of complex traditional Chinese medicine Longdan Xiegan Decoction. Journal of Chromatography A 2009, 1216, (11), 2185-2191.
    10. Wang, Y.; Kong, L.; Hu, L. H.; Lei, X. Y.; Yang, L.; Chou, G. X.; Zou, H. F.; Wang, C. H.; Bligh, S. W. A.; Wang, Z. T., Biological fingerprinting analysis of the traditional Chinese prescription Longdan Xiegan Decoction by on/off-line comprehensive two-dimensional biochromatography. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2007, 860, (2), 185-194.
    11. Su, X. Y.; Hu, L. H.; Kong, L.; Lei, X. Y.; Zou, H. F., Affinity chromatography with immobilized DNA stationary phase for biological fingerprinting analysis of traditional Chinese medicines. Journal of Chromatography A 2007, 1154, (1-2), 132-137.
    12. RPC, P. C. o., Pharmacopoeia Commission of RPC. Chinese pharmacopoeia, Part 1. Beijing: Chemical Industry Press;2005.p94.
    13. Ding, B.; Zhou, T. T.; Fan, G. R.; Hong, Z. Y.; Wu, Y. T., Qualitative and quantitative determination of ten alkaloids in traditional Chinese medicine Corydalis yanhusuo WT Wang by LC-MS/MS and LC-DAD. Journal of Pharmaceutical and Biomedical Analysis 2007, 45, (2), 219-226.
    14. Chu, H. Y.; Jin, G. Z.; Friedman, E.; Zhen, X. C., Recent development in studies of tetrahydroprotoberberines: Mechanism in antinociception and drug addiction. Cellular and Molecular Neurobiology 2008, 28, (4), 491-499.
    15. Jin, G., Discoveries in the Voyage of Corydalis Research. Shanghai Scientific & Technical Publishers 2001, (chapter 5), pp 50.
    16. Ma, Z. Z.; Xu, W.; Jensen, N. H.; Roth, B. L.; Liu-Chen, L. Y.; Lee, D. Y. W., Isoquinoline alkaloids isolated from Corydalis yanhusuo and their binding affinities at the dopamine D-1 receptor. Molecules 2008, 13, (9), 2303-2312.
    17. Bittencourt, A. L.; Takahashi, R. N., Mazindol and lidocaine are antinociceptives in the mouse formalin model: involvement of dopamine receptor. Eur J Pharmacol 1997, 330, (2-3), 109-13.
    18. Shimizu, T.; Iwata, S.; Morioka, H.; Masuyama, T.; Fukuda, T.; Nomoto, M., Antinociceptive mechanism of L-DOPA. Pain 2004, 110, (1-2), 246-9.
    19. Camps, M.; Cortes, R.; Gueye, B.; Probst, A.; Palacios, J. M., Dopamine-Receptors in Human-Brain - Autoradiographic Distribution of D2 Sites. Neuroscience 1989, 28, (2), 275-290.
    20. Robertson, G. S.; Vincent, S. R.; Fibiger, H. C., D1 and D2 Dopamine-Receptors Differentially Regulate C-Fos Expression in Striatonigral and Striatopallidal Neurons. Neuroscience 1992, 49, (2), 285-296.
    21. Hong, Z. Y.; Fan, G. R.; Le, J.; Chai, Y. F.; Yin, X. P.; Wu, Y. T., Brain pharmacokinetics and tissue distribution of tetrahydropalmatine enantiomers in rats after oral administration of the racemate. Biopharmaceutics & Drug Disposition 2006, 27, (3), 111-117.
    22. Chen, X. G.; Kong, L.; Su, X. Y.; Fu, H. J.; Ni, J. Y.; Zhao, R. H.; Zou, H. F., Separation and identification of compounds in Rhizoma chuanxiong by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry. Journal of Chromatography A 2004, 1040, (2), 169-178.
    23. Santos, A. R. S.; Calixto, J. B., Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. Neuropeptides 1997, 31, (4), 381-389.
    24. Stoll, D. R.; Cohen, J. D.; Carr, P. W., Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography. Journal of Chromatography A 2006, 1122, (1-2), 123-137.
    25. Mochizucki, D., Serotonin and noradrenaline reuptake inhibitors in animal models of pain. Human Psychopharmacology-Clinical and Experimental 2004, 19, S15-S19.
    26. Lacroix-Fralish, M. L.; Mo, G.; Smith, S. B.; Sotocinal, S. G.; Ritchie, J.; Austin, J. S.; Melmed, K.; Schorscher-Petcu, A.; Laferriere, A. C.; Lee, T. H.; Romanovsky, D.; Liao, G.; Behlke, M. A.; Clark, D. J.; Peltz, G.; Seguela, P.; Dobretsov, M.; Mogil, J. S., Thebeta(3) subunit of the Na(+),K(+)-ATPase mediates variable nociceptive sensitivity in the formalin test. Pain 2009.
    27. Rocha-Gonzalez, H. I.; Castaneda-Corral, G.; Araiza-Saldana, C. I.; Ambriz-Tututi, M.; Caram-Salas, N. L.; Torres-Lopez, J. E.; Murbartian, J.; Granados-Soto, V., Identification of the na+/h+ exchanger 1 in dorsal root ganglion and spinal cord: its possible role in inflammatory nociception. Neuroscience 2009, 160, (1), 156-164.
    28. Adebiyi, R. A.; Elsa, A. T.; Agaie, B. M.; Etuk, E. U., Antinociceptive and antidepressant like effects of Securidaca longepedunculata root extract in mice. Journal of Ethnopharmacology 2006, 107, (2), 234-239.
    29. Barros, I. M. C.; Lopes, L. D. G.; Borges, M. O. R.; Borges, A. C. R.; Ribeiro, M. N. S.; Freire, S. M. F., Anti-inflammatory and anti-nociceptive activities of Pluchea quitoc (DC.) ethanolic extract. Journal of Ethnopharmacology 2006, 106, (3), 317-320.
    30. Vasudevan, M.; Gunnam, K. K.; Parle, M., Antinociceptive and anti-inflammatory effects of Thespesia populnea bark extract. Journal of Ethnopharmacology 2007, 109, (2), 264-270.
    31. Dugo, P.; Cacciola, F.; Kumm, T.; Dugo, G.; Mondello, L., Comprehensive multidimensional liquid chromatography: Theory and applications. Journal of Chromatography A 2008, 1184, (1-2), 353-368.
    32. Pol, J.; Hyotylainen, T., Comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. Analytical and Bioanalytical Chemistry 2008, 391, (1), 21-31.
    33. Jandera, P., Column selectivity for two-dimensional liquid chromatography. Journal of Separation Science 2006, 29, (12), 1763-1783.
    34. Hu, L. H.; Li, X.; Feng, S.; Kong, L.; Su, X. G.; Chen, X. G.; Oln, F.; Ye, M. L.; Zou, H. F., Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column. Journal of Separation Science 2006, 29, (6), 881-888.
    35. Cheng, X. Y.; Shi, Y.; Sun, H.; Jin, W.; Zheng, S. L.; Li, K. T.; Yang, S., [Identification and analysis of absorbed components in rat plasma after oral administration of active fraction of Corydalis yanhusuo by LC-MS/MS]. Yao Xue Xue Bao 2009, 44, (2), 167-74.
    36. Asencio, M.; Delaquerriere, B.; Cassels, B. K.; Speisky, H.; Comoy, E.; Protais, P.,Biochemical and behavioral effects of boldine and glaucine on dopamine systems. Pharmacology Biochemistry and Behavior 1999, 62, (1), 7-13.
    37. Asencio, M.; Hurtado-Guzman, C.; Lopez, J. J.; Cassels, B. K.; Protais, P.; Chagraoui, A., Structure-affinity relationships of halogenated predicentrine and glaucine derivatives at D-1 and D-2 dopaminergic receptors: halogenation and D-1 receptor selectivity. Bioorganic & Medicinal Chemistry 2005, 13, (11), 3699-3704.
    38. Loghin, F.; Chagraoui, A.; Asencio, M.; Comoy, E.; Speisky, H.; Cassels, B. K.; Protais, P., Effects of some antioxidative aporphine derivatives on striatal dopaminergic transmission and on MPTP-induced striatal dopamine depletion in B6CBA mice. European Journal of Pharmaceutical Sciences 2003, 18, (2), 133-140.
    39. Xu, L. F.; Chu, W. J.; Qing, X. Y.; Li, S.; Wang, X. S.; Qing, G. W.; Fei, J.; Guo, L. H., Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. Neuropharmacology 2006, 50, (8), 934-940.
    40. Choi, M. N.; Huh, J. W.; Lee, K. H.; Choi, J.; Kim, M. J.; Hong, H. N.; Cho, S. W. In Regulation of glutamate dehydrogenase by protopine and alkalized extracts from the tuber of Corydalis ternata, Experimental Biology 2005 Meeting/35th International Congress of Physiological Sciences, San Diego, CA, Mar 31-Apr 06, 2005; San Diego, CA, 2005; pp A1399-A1399.
    41. Lee, K. H.; Huh, J. W.; Choi, M. M.; Yoon, S. Y.; Yang, S. J.; Hong, H. N.; Cho, S. W., Regulation of glutamate level in rat brain through activation of glutamate dehydrogenase by Corydalis ternata. Experimental and Molecular Medicine 2005, 37, (4), 371-377.
    42. Millan, M. J., The induction of pain: An integrative review. Progress in Neurobiology 1999, 57, (1), 1-164.
    43. Fundytus, M. E., Glutamate receptors and nociception - Implications for the drug treatment of pain. Cns Drugs 2001, 15, (1), 29-58.
    1. Pharmacopoeia Commission of RPC. Chinese pharmacopoeia, Part 1. Beijing: Chemical Industry Press;2005.p94.
    2. Ding, B.; Zhou, T. T.; Fan, G. R.; Hong, Z. Y.; Wu, Y. T., Qualitative and quantitative determination of ten alkaloids in traditional Chinese medicine Corydalis yanhusuo WT Wang by LC-MS/MS and LC-DAD. Journal of Pharmaceutical and Biomedical Analysis 2007, 45, (2), 219-226.
    3. Chu, H. Y.; Jin, G. Z.; Friedman, E.; Zhen, X. C., Recent development in studies of tetrahydroprotoberberines: Mechanism in antinociception and drug addiction. Cellular and Molecular Neurobiology 2008, 28, (4), 491-499.
    4. Jin, G., Discoveries in the Voyage of Corydalis Research. Shanghai Scientific & Technical Publishers 2001, (chapter 5), pp 50.
    5. Ma, Z. Z.; Xu, W.; Jensen, N. H.; Roth, B. L.; Liu-Chen, L. Y.; Lee, D. Y. W., Isoquinoline alkaloids isolated from Corydalis yanhusuo and their binding affinities at the dopamine D-1 receptor. Molecules 2008, 13, (9), 2303-2312.
    6. Bittencourt, A. L.; Takahashi, R. N., Mazindol and lidocaine are antinociceptives in the mouse formalin model: involvement of dopamine receptor. Eur J Pharmacol 1997, 330, (2-3), 109-13.
    7. Shimizu, T.; Iwata, S.; Morioka, H.; Masuyama, T.; Fukuda, T.; Nomoto, M., Antinociceptive mechanism of L-DOPA. Pain 2004, 110, (1-2), 246-9.
    8. Sun, B. C.; Huang, K. X.; Jin, G. Z., Comparison of Effects of Tetrahydropalmatine Enantiomers on Firing Activity of Dopamine Neurons in Substantia-Nigra Pars Compacta. Acta Pharmacologica Sinica 1992, 13, (4), 292-297.
    9. Hu, J. Y.; Jin, G. Z., Effect of tetrahydropalmatine analogs on Fos expression induced by formalin-pain. Acta Pharmacologica Sinica 1999, 20, (3), 193-200.
    10. Camps, M.; Cortes, R.; Gueye, B.; Probst, A.; Palacios, J. M., Dopamine-Receptors in Human-Brain - Autoradiographic Distribution of D2 Sites. Neuroscience 1989, 28, (2), 275-290.
    11. Robertson, G. S.; Vincent, S. R.; Fibiger, H. C., D1 and D2 Dopamine-Receptors Differentially Regulate C-Fos Expression in Striatonigral and Striatopallidal Neurons. Neuroscience 1992, 49, (2), 285-296.
    12. Hong, Z. Y.; Fan, G. R.; Le, J.; Chai, Y. F.; Yin, X. P.; Wu, Y. T., Brain pharmacokinetics and tissue distribution of tetrahydropalmatine enantiomers in rats after oral administration of the racemate. Biopharmaceutics & Drug Disposition 2006, 27, (3), 111-117.
    13. Wang, C.; Wang, S. W.; Fan, G. R.; Zou, H. F., Screening of antinociceptive components in Corydalis yanhusuo WT Wang by comprehensive two-dimensional liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2010, 396, (5), 1731-1740.
    14. Cao, G.; Cai, H.; Cong, X. D.; Zhang, Y.; Shao, Y. L.; Cai, B. C., Application of Microdialysis for Pharmacokinetics of Traditional Chinese Medicine Studies. Analytical Letters 2010, 43, (1), 55-72.
    15. Weiss, D. J.; Lunte, C. E.; Lunte, S. M., In vivo microdialysis as a tool for monitoring pharmacokinetics. TrAC Trends in Analytical Chemistry 2000, 19, (10), 606-616.
    16. Tsai, T.-H.; Wu, J.-W., Pharmacokinetics of ciprofloxacin in the rat and its interaction with cyclosporin A: a microdialysis study. Analytica Chimica Acta 2001, 448, (1-2), 195-199.
    17. Zhang, Q. L.; Hu, J. H.; Zhu, Q. G.; Li, F. Q.; Liu, J. Y.; Wang, D., Development of a novel HPLC-MS/MS method for the determination of aconitine and its application to in vitro and rat microdialysis samples. Biomedical Chromatography 2009, 23, (7), 692-699.
    18. Qiao, J. P.; Abliz, Z.; Chu, F. M.; Hou, P. L.; Zhao, L. Y.; Xia, M.; Chang, Y.; Guo, Z. R., Microdialysis combined with liquid chromatography-tandem mass spectrometry for the determination of 6-aminobutylphthalide and its main metabolite in the brains of awake freely-moving rats. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2004, 805, (1), 93-99.
    19. Fan, Z. C.; Xie, C. J.; Zhang, Z. Q., Simultaneous quantitation of tetrahydropalmatine and protopine in rabbit plasma by HPLC-PAD, and application to pharmacokinetic studies. Chromatographia 2006, 64, (9-10), 577-581.
    20. Ma, H. D.; Wang, Y. J.; Guo, T.; He, Z. G.; Chang, X. Y.; Pu, X. H., Simultaneousdetermination of tetrahydropalmatine, protopine, and palmatine in rat plasma by LC-ESI-MS and its application to a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 2009, 49, (2), 440-446.
    21. Levy, G., Kinetics of drug action: An overview. Journal of Allergy and Clinical Immunology 1986, 78, (4, Part 2), 754-761.
    22. Dingemanse, J.; Danhof, M.; Breimer, D. D., Pharmacokinetic-pharmacodynamic modeling of CNS drug effects: An overview. Pharmacology & Therapeutics 1988, 38, (1), 1-52.
    23. Paxinos, G.; Waston, C., The Rat Brain in Stereotaxic Coordinates,4th edn. Academic Press, San Diego, CA. 1998.
    24. Hsiao, J. K.; Ball, B. A.; Morrison, P. F.; Mefford, I. N.; Bungay, P. M., Effects of Different Semipermeable Membranes on Invitro and Invivo Performance of Microdialysis Probes. Journal of Neurochemistry 1990, 54, (4), 1449-1452.
    25. Van Eeckhaut, A.; Lanckmans, K.; Sarre, S.; Smolders, I.; Michotte, Y., Validation of bioanalytical LC-MS/MS assays: Evaluation of matrix effects. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2009, 877, (23), 2198-2207.
    26. Bonfiglio, R.; King, R. C.; Olah, T. V.; Merkle, K., The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Communications in Mass Spectrometry 1999, 13, (12), 1175-1185.
    27. Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M., Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical Chemistry 2003, 75, (13), 3019-3030.
    1. Huang, J. F.; Jiang, Z. Z.; Wang, T.; Yao, J. C.; Zhang, L. Y., Overview of research on drug-induced liver injury. progress in Pharmaceutical Sciences 2008, 32, (8), 357-362.
    2. Qiu, Y. C.; Benet, L. Z.; Burlingame, A. L., Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. Journal of Biological Chemistry 1998, 273, (28), 17940-17953.
    3. Bissell, D. M.; Gores, G. J.; Laskin, D. L.; Hoofnagle, J. H., Drug-induced liver injury: Mechanisms and test systems. Hepatology 2001, 33, (4), 1009-1013.
    4. Bjornsson, E.; Olsson, R., Suspected drug-induced liver fatalities reported to the WHO database. Digestive and Liver Disease 2006, 38, (1), 33-38.
    5. Holt, M. P.; Ju, C., Mechanisms of drug-induced liver injury. Aaps Journal 2006, 8, (1), E48-E54.
    6. Russmann, S.; Kullak-Ublick, G. A.; Grattagliano, I., Current Concepts of Mechanisms in Drug-Induced Hepatotoxicity. Current Medicinal Chemistry 2009, 16, (23), 3041-3053.
    7. Takikawa, H., Recent status of drug-induced liver injury. Hepatology Research 2009, 39, (1), 1-6.
    8. Park, B. K.; Kitteringham, N. R.; Maggs, J. L.; Pirmohamed, M.; Williams, D. P., The role of metabolic activation in drug-induced hepatotoxicity. Annual Review of Pharmacology and Toxicology 2005, 45, 177-202.
    9. Seefl, L. B., Are herbals as safe as their advocates believe? Journal of Hepatology 2009, 50, (1), 13-16.
    10. Stickel, F., Slimming at all costs: Herbalife (R)-induced liver injury. Journal of Hepatology 2007, 47, (4), 444-446.
    11. Pittler, M. H.; Ernst, E., Systematic review: hepatotoxic events associated with herbal medicinal products. Alimentary Pharmacology & Therapeutics 2003, 18, (5), 451-471.
    12. Chu, H. Y.; Jin, G. Z.; Friedman, E.; Zhen, X. C., Recent development in studies of tetrahydroprotoberberines: Mechanism in antinociception and drug addiction. Cellularand Molecular Neurobiology 2008, 28, (4), 491-499.
    13. Lai, C. K.; Chan, A. Y. W., Tetrahydropalmatine poisoning: Diagnoses of nine adult overdoses based on toxicology screens by HPLC with diode-array detection and gas chromatography mass spectrometry. Clinical Chemistry 1999, 45, (2), 229-236.
    14. Barceloux, D. G., Jin Bu Huan and Tetrahydropamatine. Medical Toxicology of Natural Substances 2008, Chapter 74, 518-521.
    15. Woolf, G. M.; Petrovic, L. M.; Rojter, S. E.; Wainwright, S.; Villamil, F. G.; Katkov, W. N.; Michieletti, P.; Wanless, I. R.; Stermitz, F. R.; Beck, J. J.; Vierling, J. M., Acute Hepatitis Associated with the Chinese Herbal Product Jin Bu Huan. Annals of Internal Medicine 1994, 121, (10), 729-735.
    16. Picciotto, A.; Campo, N.; Brizzolara, R.; Giusto, R.; Guido, G.; Sinelli, N.; Lapertosa, G.; Celle, G., Chronic hepatitis induced by Jin Bu Huan. Journal of Hepatology 1998, 28, (1), 165-167.
    17. Horowitz, R. S.; Feldhaus, K.; Dart, R. C.; Stermitz, F. R.; Beck, J. J., The clinical spectrum of jin bu huan toxicity. Archives of Internal Medicine 1996, 156, (8), 899-903.
    18. Kaptchuk, T. J., Acute Hepatitis Associated with Jin Bu Huan. Annals of Internal Medicine 1995, 122, (8), 636-636.
    19. Wang, F. J.; Dong, J.; Jiang, X. G.; Ye, M. L.; Zou, H. F., Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis. Analytical Chemistry 2007, 79, (17), 6599-6606.
    20. Roth, A. F.; Wan, J. M.; Bailey, A. O.; Sun, B. M.; Kuchar, J. A.; Green, W. N.; Phinney, B. S.; Yates, J. R.; Davis, N. G., Global analysis of protein palmitoylation in yeast. Cell 2006, 125, (5), 1003-1013.
    21. Tian, R. J.; Li, L. D.; Tang, W.; Liu, H. W.; Ye, M. L.; Zhao, Z. B. K.; Zou, H. F., Chemical proteomic study of isoprenoid chain interactome with a synthetic photoaffinity probe. Proteomics 2008, 8, (15), 3094-3104.
    22. Wan, J.; Roth, A. F.; Bailey, A. O.; Davis, N. G., Palmitoylated proteins: purification and identification. Nature Protocols 2007, 2, (7), 1573-1584.
    23. Malhi, H.; Gores, G. J.; Lemasters, J. J., Apoptosis and necrosis in the liver: A tale of two deaths? Hepatology 2006, 43, (2), S31-S44.
    24. Jin, G., Discoveries in the Voyage of Corydalis Research. Shanghai Scientific & Technical Publishers 2001, (chapter 5), pp 50.
    25. Liu, H.; Sadygov, R. G.; Yates, J. R., 3rd, A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 2004, 76, (14), 4193-201.
    26. Sandhu, C.; Connor, M.; Kislinger, T.; Slingerland, J.; Emili, A., Global protein shotgun expression profiling of proliferating MCF-7 breast cancer cells. Journal of Proteome Research 2005, 4, (3), 674-689.
    27. Castedo, M.; Ferri, K. F.; Kroemer, G., Mammalian target of rapamycin (mTOR): Pro- and anti-apoptotic. Cell Death and Differentiation 2002, 9, (2), 99-100.
    28. Majumder, P. K.; Febbo, P. G.; Bikoff, R.; Berger, R.; Xue, Q.; McMahon, L. M.; Manola, J.; Brugarolas, J.; McDonnell, T. J.; Golub, T. R.; Loda, M.; Lane, H. A.; Sellers, W. R., mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medicine 2004, 10, (6), 594-601.
    29. Pene, F.; Claessens, Y. E.; Muller, O.; Viguie, F.; Mayeux, P.; Dreyfus, F.; Lacombe, C.; Bouscary, D., Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene 2002, 21, (43), 6587-6597.
    30. Aoki, M.; Blazek, E.; Vogt, P. K., A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, (1), 136-141.
    31. Raught, B.; Gingras, A. C.; Sonenberg, N., The target of rapamycin (TOR) proteins. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, (13), 7037-7044.
    32. Belanger, L. F.; Roy, S.; Tremblay, M.; Brott, B.; Steff, A. M.; Mourad, W.; Hugo, P.; Erikson, R.; Charron, J., Mek2 is dispensable for mouse growth and development. Mol Cell Biol 2003, 23, (14), 4778-87.
    33. MacCorkle, R. A.; Tan, T. H. Mitogen-activated protein kinases in cell-cycle control. Cell biochemistry and biophysics 2005, 43, (3), 451-61.
    34. McCubrey, J. A.; Steelman, L. S.; Chappell, W. H.; Abrams, S. L.; Wong, E. W.; Chang, F.;Lehmann, B.; Terrian, D. M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A. M.; Franklin, R. A., Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. UID - 17126425. Biochimica et biophysica acta 2007, 1773, (8), 1263-84
    35. Squires, M. S.; Nixon, P. M.; Cook, S. J., Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1. UID - 12069688. The Biochemical journal 2002, 366, (Pt 2), 673-80
    36. Chen, J.; Fuji, K.; Zhang, L. X.; Roberts, T.; Fu, H., Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proceedings of the National Academy of Sciences of the United States of America 2001, 98, (14), 7783-7788.
    37. Lau, Q. C.; Brusselbach, S.; Muller, R., Abrogation of c-Raf expression induces apoptosis in tumor cells. Oncogene 1998, 16, (14), 1899-1902.
    38. von Gise, A.; Lorenz, P.; Wellbrock, C.; Hemmings, B.; Berberich-Siebelt, F.; Rapp, U. R.; Troppmair, J., Apoptosis suppression by Raf-1 and MEK1 requires MEK-and phosphatidylinositol 3-kinase-dependent signals. Molecular and Cellular Biology 2001, 21, (7), 2324-2336.
    39. Kong, J. Y.; Rabkin, S. W., The association between RhoB and caspase-2: changes with lovastatin-induced apoptosis. Biochemistry and cell biology 2005, 83, (5), 608-19.
    40. Papadopoulou, N.; Charalampopoulos, I.; Alevizopoulos, K.; Gravanis, A.; Stournaras, C., Rho/ROCK/actin signaling regulates membrane androgen receptor induced apoptosis in prostate cancer cells. Experimental cell research 2008, 314, (17), 3162-74.
    41. Li, L. Y.; Shih, H. M.; Liu, M. Y.; Chen, J. Y., The cellular protein PRA1 modulates the anti-apoptotic activity of Epstein-Barr virus BHRF1, a homologue of Bcl-2, through direct interaction. Journal of Biological Chemistry 2001, 276, (29), 27354-27362.
    42. Fifre, A.; Sponne, I.; Koziel, V.; Kriem, B.; Potin, F. T. Y.; Bihain, B. E.; Olivier, J. L.; Oster, T.; Pillot, T., Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid beta-peptide-induced neuronal apoptosis - Synergistic involvement of calpain and caspase-3. Journal of Biological Chemistry 2006, 281, (1), 229-240.
    43. Lee, S. Y.; Kim, J. W.; Jeong, M. H.; An, J. H.; Jang, S. M.; Song, K. H.; Choi, K. H., Microtubule-associated Protein 1B Light Chain (MAP1B-LC1) negatively regulates the activity of tumor suppressor p53 in neuroblastoma cells. Febs Letters 2008, 582, (19), 2826-2832.
    44. Garcia, A.; Cayla, X.; Guergnon, J.; Dessauge, F.; Hospital, V.; Rebollo, M. P.; Fleischer, A.; Rebollo, A., Serine/threonine protein phosphatases PP1 and PP2A are key players in apoptosis. Biochimie 2003, 85, (8), 721-726.
    1. Pharmacopoeia Commission of RPC. Chinese pharmacopoeia, Part 1. Beijing: Chemical Industry Press;2005.p94.
    2. Ding, B.; Zhou, T. T.; Fan, G. R.; Hong, Z. Y.; Wu, Y. T., Qualitative and quantitative determination of ten alkaloids in traditional Chinese medicine Corydalis yanhusuo WT Wang by LC-MS/MS and LC-DAD. Journal of Pharmaceutical and Biomedical Analysis 2007, 45, (2), 219-226.
    3. Chu, H. Y.; Jin, G. Z.; Friedman, E.; Zhen, X. C., Recent development in studies of tetrahydroprotoberberines: Mechanism in antinociception and drug addiction. Cellular and Molecular Neurobiology 2008, 28, (4), 491-499.
    4. Sun, B. C.; Huang, K. X.; Jin, G. Z., Comparison of Effects of Tetrahydropalmatine Enantiomers on Firing Activity of Dopamine Neurons in Substantia-Nigra Pars Compacta. Acta Pharmacologica Sinica 1992, 13, (4), 292-297.
    5. Hu, J. Y.; Jin, G. Z., Effect of tetrahydropalmatine analogs on Fos expression induced by formalin-pain. Acta Pharmacologica Sinica 1999, 20, (3), 193-200.
    6. Camps, M.; Cortes, R.; Gueye, B.; Probst, A.; Palacios, J. M., Dopamine-Receptors in Human-Brain - Autoradiographic Distribution of D2 Sites. Neuroscience 1989, 28, (2), 275-290.
    7. Robertson, G. S.; Vincent, S. R.; Fibiger, H. C., D1 and D2 Dopamine-Receptors Differentially Regulate C-Fos Expression in Striatonigral and Striatopallidal Neurons. Neuroscience 1992, 49, (2), 285-296.
    8. Wang, C.; Wang, S. W.; Fan, G. R.; Zou, H. F., Screening of anti-nociceptive components in Corydalis yanhusuo W.T. Wang by comprehensive two-dimensional liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2010, In Press.
    9. Hong, Z. Y.; Fan, G. R.; Le, J.; Chai, Y. F.; Yin, X. P.; Wu, Y. T., Brain pharmacokinetics and tissue distribution of tetrahydropalmatine enantiomers in rats after oral administration of the racemate. Biopharmaceutics & Drug Disposition 2006, 27, (3),111-117.
    10. Kocher, T.; Superti-Furga, G., Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nature Methods 2007, 4, 807-815.
    11. Patterson, S. D.; Aebersold, R., Proteomics: the first decade and beyond. Nature Genetics 2003, 33, 311-323.
    12. Malmstrom, J.; Lee, H.; Aebersold, R., Advances in proteomic workflows for systems biology. Current Opinion in Biotechnology 2007, 18, (378-384).
    13. Smith, J. C.; Figey, D., Proteomics technology in systems biology. Molecular Biosystems 2006, 2, 364-370.
    14. Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422, (6928), 198-207.
    15. Hanash, S., Disease proteomics. Nature 2003, 422, (6928), 226-232.
    16. Rifai, N.; Gillette, M. A.; Carr, S. A., Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nature Biotechnology 2006, 24, (8), 971-983.
    17. Lescuyer, P.; Hochstrasser, D.; Rabilloud, T., How shall we use the proteomics toolbox for biomarker discovery? Journal of Proteome Research 2007, 6, (9), 3371-3376.
    18. Fonovic, M.; Bogyo, M., Activity-based probes as a tool for functional proteomic analysis of proteases. Expert Review of Proteomics 2008, 5, (5), 721-730.
    19. Greenbaum, D.; Baruch, A.; Hayrapetian, L.; Darula, Z.; Burlingame, A.; Medzihradszky, K. F.; Bogyo, M., Chemical approaches for functionally probing the proteome. Molecular & Cellular Proteomics 2002, 1, (1), 60-68.
    20. Salisbury, C. M.; Cravatt, B. F., Click chemistry-led advances in high content functional proteomics. Qsar & Combinatorial Science 2007, 26, (11-12), 1229-1238.
    21. Figeys, D., Novel approaches to map protein interactions. Current Opinion in Biotechnology 2003, 14, (1), 119-125.
    22. Tian, R. J.; Xu, S. Y.; Lei, X. Y.; Jin, W. H.; Ye, M. L.; Zou, H. F., Characterization of small-molecule-biomicromolecule interactions: From simple to complex. Trac-Trends in Analytical Chemistry 2005, 24, (9), 810-825.
    23. Santos, A. R. S.; Calixto, J. B., Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. Neuropeptides 1997,31, (4), 381-389.
    24. Bhakuni, D. S.; Kumar, P., Synthesis of (±)-12-Nitro & (±)-12-Amino Derivatives of Scoulerine, Coreximine, Tetrahydropalmatrubine, tetrahydropalmatine & Xylopinine. Indian Journal of Chemistry 1985, 24B, 596-601.
    25. Tian, R. J.; Jiang, X. N.; Li, X.; Jiang, X. G.; Feng, S.; Xu, S. Y.; Han, G. H.; Ye, M. L.; Zou, H. F., Biological fingerprinting analysis of the interactome of a kinase inhibitor in human plasma by a chemiproteomic approach. Journal of Chromatography A 2006, 1134, (1-2), 134-142.
    26. Roth, A. F.; Wan, J. M.; Bailey, A. O.; Sun, B. M.; Kuchar, J. A.; Green, W. N.; Phinney, B. S.; Yates, J. R.; Davis, N. G., Global analysis of protein palmitoylation in yeast. Cell 2006, 125, (5), 1003-1013.
    27. Tian, R. J.; Li, L. D.; Tang, W.; Liu, H. W.; Ye, M. L.; Zhao, Z. B. K.; Zou, H. F., Chemical proteomic study of isoprenoid chain interactome with a synthetic photoaffinity probe. Proteomics 2008, 8, (15), 3094-3104.
    28. Wan, J.; Roth, A. F.; Bailey, A. O.; Davis, N. G., Palmitoylated proteins: purification and identification. Nature Protocols 2007, 2, (7), 1573-1584.
    29. Old, W. M.; Meyer-Arendt, K.; Aveline-Wolf, L.; Pierce, K. G.; Mendoza, A.; Sevinsky, J. R.; Resing, K. A.; Ahn, N. G., Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Molecular & Cellular Proteomics 2005, 4, (10), 1487-1502.
    30. Dubuisson, D.; Dennis, S. G., Formalin Test - Quantitative Study of Analgesic Effects of Morphine, Meperidine, and Brain-Stem Stimulation in Rats and Cats. Pain 1977, 4, (2), 161-174.
    31. Tjolsen, A.; Berge, O. G.; Hunskaar, S.; Rosland, J. H.; Hole, K., The Formalin Test - an Evaluation of the Method. Pain 1992, 51, (1), 5-17.
    32. Mochizucki, D., Serotonin and noradrenaline reuptake inhibitors in animal models of pain. Human Psychopharmacology-Clinical and Experimental 2004, 19, S15-S19.
    33. Lacroix-Fralish, M. L.; Mo, G.; Smith, S. B.; Sotocinal, S. G.; Ritchie, J.; Austin, J. S.; Melmed, K.; Schorscher-Petcu, A.; Laferriere, A. C.; Lee, T. H.; Romanovsky, D.; Liao, G.; Behlke, M. A.; Clark, D. J.; Peltz, G.; Seguela, P.; Dobretsov, M.; Mogil, J. S., Thebeta(3) subunit of the Na(+),K(+)-ATPase mediates variable nociceptive sensitivity in the formalin test. Pain 2009.
    34. Rocha-Gonzalez, H. I.; Castaneda-Corral, G.; Araiza-Saldana, C. I.; Ambriz-Tututi, M.; Caram-Salas, N. L.; Torres-Lopez, J. E.; Murbartian, J.; Granados-Soto, V., Identification of the na+/h+ exchanger 1 in dorsal root ganglion and spinal cord: its possible role in inflammatory nociception. Neuroscience 2009, 160, (1), 156-164.
    35. Zhang, Y.; Wang, Y. H.; Zhang, X. H.; Ge, H. Y.; Arendt-Nielsen, L.; Shao, J. M.; Yue, S. W., Proteomic analysis of differential proteins related to the neuropathic pain and neuroprotection in the dorsal root ganglion following its chronic compression in rats. Experimental Brain Research 2008, 189, (2), 199-209.
    36. Niederberger, E.; Geisslinger, G., Proteomics in Neuropathic pain research. Anesthesiology 2008, 108, (2), 314-323.
    37. Saxena, C.; Zhen, E.; Higgs, R. E.; Hale, J. E., An immuno-chemo-proteomics method for drug target deconvolution. Journal of Proteome Research 2008, 7, (8), 3490-3497.
    38. Rix, U.; Superti-Furga, G., Target profiling of small molecules by chemical proteomics. Nature Chemical Biology 2009, 5, (9), 616-624.
    39. Bender, A.; Mikhailov, D.; Glick, M.; Scheiber, J.; Davies, J. W.; Cleaver, S.; Marshall, S.; Tallarico, J. A.; Harrington, E.; Cornella-Taracido, I.; Jenkins, J. L., Use of Ligand Based Models for Protein Domains To Predict Novel Molecular Targets and Applications To Triage Affinity Chromatography Data. Journal of Proteome Research 2009, 8, (5), 2575-2585.
    40. Ma, Z. Z.; Xu, W.; Jensen, N. H.; Roth, B. L.; Liu-Chen, L. Y.; Lee, D. Y. W., Isoquinoline alkaloids isolated from Corydalis yanhusuo and their binding affinities at the dopamine D-1 receptor. Molecules 2008, 13, (9), 2303-2312.
    41. Lopez-Avila, A.; Coffeen, U.; Ortega-Legaspi, J. M.; del Angel, R.; Pellicer, F., Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain 2004, 111, (1-2), 136-143.
    42. Hagelberg, N.; Martikainen, I. K.; Mansikka, H.; Hinkka, S.; Nagren, K.; Hietala, J.; Scheinin, H.; Pertovaara, A., Dopamine D2 receptor binding in the human brain is associated with the response to painful stimulation and pain modulatory capacity. Pain2002, 99, (1-2), 273-279.
    43. Pertovaara, A.; Martikainen, I. K.; Hagelberg, N.; Mansikka, H.; Nagren, K.; Hietala, J.; Scheinin, H., Striatal dopamine D2/D3 receptor availability correlates with individual response characteristics to pain. European Journal of Neuroscience 2004, 20, (6), 1587-1592.
    44. Wood, P. B., Role of central dopamine in pain and analgesia. Expert Rev Neurother 2008, 8, (5), 781-97.
    45. Potvin, S.; Grignon, S.; Marchand, S., Human Evidence of a Supra-Spinal Modulating Role of Dopamine on Pain Perception. Synapse 2009, 63, (5), 390-402.
    46. Ann, K.; Kowalchyk, J. A.; Loyet, K. M.; Martin, T. F. J., Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. Journal of Biological Chemistry 1997, 272, (32), 19637-19640.
    47. Binda, A. V.; Kabbani, N.; Levenson, R., Regulation of dense core vesicle release from PC12 cells by interaction between the D2 dopamine receptor and calcium-dependent activator protein for secretion (CAPS). Biochemical Pharmacology 2005, 69, (10), 1451-1461.
    48. Elhamdani, A.; Martin, T. F. J.; Kowalchyk, J. A.; Artalejo, C. R., Ca2+-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin. Journal of Neuroscience 1999, 19, (17), 7375-7383.
    49. Liu, Y. Y.; Schirra, C.; Stevens, D. R.; Matti, U.; Speidel, D.; Hof, D.; Bruns, D.; Brose, N.; Rettig, J., CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles. Journal of Neuroscience 2008, 28, (21), 5594-5601.
    50. Berwin, B.; Floor, E.; Martin, T. F. J., CAPS (mammalian UNC-31) protein localizes to membranes involved in dense-core vesicle exocytosis. Neuron 1998, 21, (1), 137-145.
    51. Chang, C. K.; Lin, M. T., DL-Tetrahydropalmatine may act through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats. Neuroscience Letters 2001, 307, (3), 163-166.
    52. Abercrombie, E. D.; Keefe, K. A.; Difrischia, D. S.; Zigmond, M. J., Differential Effect of Stress on In Vivo Dopamine Release in Striatum, Nucleus Accumbens, and MedialFrontal Cortex. Journal of Neurochemistry 1989, 52, 1655-1658.
    53. Ejiri, S., Moonlighting functions of polypeptide elongation factor 1: From actin bundling to zinc finger protein R1-associated nuclear localization. Bioscience Biotechnology and Biochemistry 2002, 66, (1), 1-21.
    54. Kuriyama, R.; Savereide, P.; Lefebvre, P.; Dasgupta, S., The Predicted Amino-Acid-Sequence of a Centrosphere Protein in Dividing Sea-Urchin Eggs Is Similar to Elongation-Factor (Ef-1-Alpha). Journal of Cell Science 1990, 95, 231-236.
    55. Bassell, G. J.; Powers, C. M.; Taneja, K. L.; Singer, R. H., Single Messenger-Rnas Visualized by Ultrastructural in-Situ Hybridization Are Principally Localized at Actin Filament Intersections in Fibroblasts. Journal of Cell Biology 1994, 126, (4), 863-876.
    56. Shiina, N.; Gotoh, Y.; Kubomura, N.; Iwamatsu, A.; Nishida, E., Microtubule Severing by Elongation-Factor 1-Alpha. Science 1994, 266, (5183), 282-285.
    57. Yang, F.; Demma, M.; Warren, V.; Dharmawardhane, S.; Condeelis, J., Identification of an Actin-Binding Protein from Dictyostelium as Elongation Factor-1a. Nature 1990, 347, (6292), 494-496.
    58. Yang, W.; Boss, W. F., Regulation of Phosphatidylinositol 4-Kinase by the Protein Activator Pik-A49 - Activation Requires Phosphorylation of Pik-A49. Journal of Biological Chemistry 1994, 269, (5), 3852-3857.
    59. Nair, V. D.; Sealfon, S. C., Agonist-specific transactivation of phosphoinositide 3-kinase signaling pathway mediated by the dopamine D-2 receptor. Journal of Biological Chemistry 2003, 278, (47), 47053-47061.
    60. Nair, V. D.; Olanow, C. W.; Sealfon, S. C., Activation of phosphoinositide 3-kinase by D-2 receptor prevents apoptosis in dopaminergic cell lines. Biochemical Journal 2003, 373, 25-32.
    61. Agadjanov, M. I.; Vartanian, G. S.; Tadevosyan, Y. V.; Batikyan, T. B.; Agadjanova, E. M., Possible role of the phosphoinositide pathway for signal transduction in changes in the sensitivity of delta-opiate receptors during diabetes mellitus. Bulletin of Experimental Biology and Medicine 2004, 137, (2), 147-149.
    62. Ceulemans, H.; Bollen, M., Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiological Reviews 2004, 84, (1), 1-39.
    63. Sim, A. T. R.; Baldwin, M. L.; Rostas, J. A. P.; Holst, J.; Ludowyke, R. I., The role of serine/threonine protein phosphatases in exocytosis. Biochemical Journal 2003, 373, 641-659.
    64. Blitzer, R. D.; Conner, J. H.; Brown, G. P.; Wong, T.; Shenolikar, S.; Iyengar, R.; Landau, E. M., Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 1998, 280, (5371), 1940-1943.
    65. Mulkey, R. M.; Endo, S.; Shenolikar, S.; Malenka, R. C., Involvement of a Calcineurin/Inhibitor-1 Phosphatase Cascade in Hippocampal Long-Term Depression. Nature 1994, 369, (6480), 486-488.
    66. Forgac, M., Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nature Reviews Molecular Cell Biology 2007, 8, (11), 917-929.
    67. Nishi, T.; Forgac, M., The vacuolar (H+)-atpases - Nature's most versatile proton pumps. Nature Reviews Molecular Cell Biology 2002, 3, (2), 94-103.
    68. Marshansky, V.; Futai, M., The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Current Opinion in Cell Biology 2008, 20, (4), 415-426.
    69. Zerial, M.; McBride, H., Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology 2001, 2, (2), 107-117.
    70. Furman, C. A.; Lo, C. B.; Stokes, S.; Esteban, J. A.; Gnegy, M. E., Rab 11 regulates constitutive dopamine transporter trafficking and function in N2A neuroblastoma cells. Neuroscience Letters 2009, 463, (1), 78-81.
    71. Frank, C. A.; Pielage, J.; Davis, G. W., A Presynaptic Homeostatic Signaling System Composed of the Eph Receptor, Ephexin, Cdc42, and Ca(V)2.1 Calcium Channels. Neuron 2009, 61, (4), 556-569.
    72. Knoll, B.; Drescher, U., Src family kinases are involved in EphA receptor-mediated retinal axon guidance. Journal of Neuroscience 2004, 24, (28), 6248-6257.
    73. Shamah, S. M.; Lin, M. Z.; Goldberg, J. L.; Estrach, S.; Sahin, M.; Hu, L.; Bazalakova, M.; Neve, R. L.; Corfas, G.; Debant, A.; Greenberg, M. E., EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 2001, 105, (2), 233-244.
    74. Yaffe, M. B.; Farr, G. W.; Miklos, D.; Horwich, A. L.; Sternlicht, M. L.; Sternlicht, H.,Tcp1 Complex Is a Molecular Chaperone in Tubulin Biogenesis. Nature 1992, 358, (6383), 245-248.
    75. Ursic, D.; Sedbrook, J. C.; Himmel, K. L.; Culbertson, M. R., The Essential Yeast Tcp1 Protein Affects Actin and Microtubules. Molecular Biology of the Cell 1994, 5, (10), 1065-1080.
    76. Grimm-Gunter, E. M. S.; Milbrandt, M.; Merkl, B.; Paulsson, M.; Plomann, M., PACSIN proteins bind tubulin and promote microtubule assembly. Experimental Cell Research 2008, 314, (10), 1991-2003.
    77. Ritter, B.; Modregger, J.; Paulsson, M.; Plomann, M., PACSIN 2, a novel member of the PACSIN family of cytoplasmic adapter proteins. Febs Letters 1999, 454, (3), 356-362.
    78. Modregger, J.; Ritter, B.; Witter, B.; Paulsson, M.; Plomann, M., All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. Journal of Cell Science 2000, 113, (24), 4511-4521.
    79. Cremona, O.; Di Paolo, G.; Wenk, M. R.; Luthi, A.; Kim, W. T.; Takei, K.; Daniell, L.; Nemoto, Y.; Shears, S. B.; Flavell, R. A.; McCormick, D. A.; De Camilli, P., Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 1999, 99, (2), 179-188.
    80. Miki, H.; Sasaki, T.; Takai, Y.; Takenawa, T., Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 1998, 391, (6662), 93-96.
    81. Miki, H.; Miura, K.; Takenawa, T., N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. Embo Journal 1996, 15, (19), 5326-5335.
    82. Lu, W. B.; Ma, H.; Sheng, Z. H.; Mochida, S., Dynamin and Activity Regulate Synaptic Vesicle Recycling in Sympathetic Neurons. Journal of Biological Chemistry 2009, 284, (3), 1930-1937.
    83. Newton, A. J.; Kirchhausen, T.; Murthy, V. N., Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, (47), 17955-17960.
    84. Mattson, M. P.; Liu, D., Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Medicine 2002, 2, (2), 215-231.
    85. McCleskey, E. W.; Gold, M. S., Ion channels of nociception. Annual Review of Physiology 1999, 61, 835-856.
    86. Fuller-Bicer, G. A.; Varadi, G.; Koch, S. E.; Ishii, M.; Bodi, I.; Kadeer, N.; Muth, J. N.; Mikala, G.; Petrashevskaya, N. N.; Jordan, M. A.; Zhang, S. P.; Qin, N.; Flores, C. M.; Isaacsohn, I.; Varadi, M.; Mori, Y.; Jones, W. K.; Schwartz, A., Targeted disruption of the voltage-dependent calcium channel alpha(2)/delta-1-subunit. American Journal of Physiology-Heart and Circulatory Physiology 2009, 297, (1), H117-H124.
    87. Narita, M.; Nakajima, M.; Miyoshi, K.; Narita, M.; Nagumo, Y.; Miyatake, M.; Yajima, Y.; Yanagida, K.; Yamazaki, M.; Suzuki, T., Role of spinal voltage-dependent calcium channel alpha(2)delta-1 subunit in the expression of a neuropathic pain-like state in mice. Life Sciences 2007, 80, (22), 2015-2024.
    88. Carafoli, E.; Brini, M., Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Current Opinion in Chemical Biology 2000, 4, (2), 152-161.
    89. Carafoli, E.; Stauffer, T., The Plasma-Membrane Calcium-Pump - Functional Domains, Regulation of the Activity, and Tissue-Specificity of Isoform Expression. Journal of Neurobiology 1994, 25, (3), 312-324.
    90. Chan, P.; Chiu, W. T.; Chen, Y. J.; Wu, P. J.; Cheng, J. T., Calcium influx inhibition: Possible mechanism of the negative effect of tetrahydropalmatine on left ventricular pressure in isolated rat heart. Planta Medica 1999, 65, (4), 340-342.
    91. Huang, K.; Dai, G. Z.; Li, X. H.; Fan, Q.; Cheng, L.; Feng, Y. B.; Xia, G. J.; Yao, W. X., Blocking L-calcium current by l-tetrahydropalmatine in single ventricular myocyte of guinea pigs. Acta Pharmacologica Sinica 1999, 20, (10), 907-911.
    1. Fiehn, O., Metabolomics - the link between genotypes and phenotypes. Plant Molecular Biology 2002, 48, (1-2), 155-171.
    2. Schauer, N.; Fernie, A. R., Plant metabolomics: towards biological function and mechanism. Trends in Plant Science 2006, 11, (10), 508-516.
    3. Newman, D. J.; Cragg, G. M., Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 2007, 70, (3), 461-477.
    4. Newman, D. J.; Cragg, G. M.; Snader, K. M., Natural products as sources of new drugs over the period 1981-2002. Journal of Natural Products 2003, 66, (7), 1022-1037.
    5.刘浩;屈凌波;相秉仁.,系统生物学与中医药现代化.长春中医药大学学报2009, 25, (3), 450-451.
    6.张治洲,从系统生物学到配伍西药:中药现代化的一个核心战略.中国生物工程杂志2007, 27, (4), 153-157.
    7. Kitano, H., Systems biology: A brief overview. Science 2002, 295, (5560), 1662-1664.
    8. Aderem, A., Systems biology: Its practice and challenges. Cell 2005, 121, (4), 511-513.
    9.王志平;乔建军;元英进,蛋白质组学在中药现代化研究中的应用.中草药2004, 35, (1), 1-4.
    10. An emerging role for chemical biology. Nature Chemical Biology 2005, 1, (3), 121-121.
    11. Shyur, L. F.; Yang, N. S., Metabolomics for phytomedicine research and drug development. Current Opinion in Chemical Biology 2008, 12, (1), 66-71.
    12.周建良;齐炼文;李萍,色谱指纹图谱在中药质量控制中的应用.色谱2008, 26, (2), 153-159.
    13. Zhong, X. K.; Li, D. C.; Jiang, J. G., Identification and Quality Control of Chinese Medicine Based on the Fingerprint Techniques. Current Medicinal Chemistry 2009, 16, (23), 3064-3075.
    14. Xie, P. S.; Leung, A. Y., Understanding the traditional aspect of Chinese medicine in order to achieve meaningful quality control of Chinese materia medica. Journal of Chromatography A 2009, 1216, (11), 1933-1940.
    15. Drasar, P.; Moravcova, J., Recent advances in analysis of Chinese medical plants and traditional medicines. Journal of Chromatography B-Analytical Technologies in theBiomedical and Life Sciences 2004, 812, (1-2), 3-21.
    16. Ding, B.; Zhou, T. T.; Fan, G. R.; Hong, Z. Y.; Wu, Y. T., Qualitative and quantitative determination of ten alkaloids in traditional Chinese medicine Corydalis yanhusuo WT Wang by LC-MS/MS and LC-DAD. Journal of Pharmaceutical and Biomedical Analysis 2007, 45, (2), 219-226.
    17. Li, P.; Qi, L. W.; Liu, E. H.; Zhou, J. L.; Wen, X. D., Analysis of Chinese herbal medicines with holistic approaches and integrated evaluation models. Trac-Trends in Analytical Chemistry 2008, 27, (1), 66-77.
    18. Liu, Y. M.; Xue, X. Y.; Guo, Z. M.; Xu, Q.; Zhang, F. F.; Liang, X. M., Novel two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography, an excellent orthogonal system for practical analysis. Journal of Chromatography A 2008, 1208, (1-2), 133-140.
    19. Wang, Y.; Lu, X.; Xu, G. W., Simultaneous separation of hydrophilic and hydrophobic compounds by using an online HILIC-RPLC system with two detectors. Journal of Separation Science 2008, 31, (9), 1564-1572.
    20. Wang, M.; Lamers, R.; Korthout, H.; van Nesselrooij, J. H. J.; Witkamp, R. F.; van der Heijden, R.; Voshol, P. J.; Havekes, L. M.; Verpoorte, R.; van der Greef, J., Metabolomics in the context of systems biology: Bridging traditional Chinese medicine and molecular pharmacology. Phytotherapy Research 2005, 19, (3), 173-182.
    21. Murch, S. J.; Rupasinghe, H. P.; Goodenowe, D.; Saxena, P. K., A metabolomic analysis of medicinal diversity in Huang-qin (Scutellaria baicalensis Georgi) genotypes: discovery of novel compounds. Plant Cell Reports 2004, 23, (6), 419-425.
    22. Harris, C. S.; Burt, A. J.; Saleem, A.; Le, P. M.; Martineau, L. C.; Haddad, P. S.; Bennett, S. A. L.; Arnason, J. T., A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochemical Analysis 2007, 18, (2), 161-169.
    23. Kang, J.; Lee, S.; Kang, S.; Kwon, H. N.; Park, J. H.; Kwon, S. W.; Park, S., NMR-Based metabolomics approach for the differentiation of ginseng (Panax ginseng) roots from different origins. Archives of Pharmacal Research 2008, 31, (3), 330-336.
    24. Brown, S. A. E.; Simpson, A. J.; Simpson, M. J., Evaluation of sample preparationmethods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida. Environmental Toxicology and Chemistry 2008, 27, (4), 828-836.
    25. Wang, Y. L.; Tang, H. R.; Nicholson, J. K.; Hylands, P. J.; Sampson, J.; Whitcombe, I.; Stewart, C. G.; Caiger, S.; Oru, I.; Holmes, E., Metabolomic strategy for the classification and quality control of phytomedicine: A case study of chamomile flower (Matricaria recutita L.). Planta Medica 2004, 70, (3), 250-255.
    26. Van der Kooy, F.; Verpoorte, R.; Meyer, J. J. M., Metabolomic quality control of claimed anti-malarial Artemisia afra herbal remedy and A. afra and A. annua plant extracts. South African Journal of Botany 2008, 74, (2), 186-189.
    27. Zhou, T. T.; Chen, B.; Fan, G. R.; Chai, Y. F.; Wu, Y. T., Application of high-speed counter-current chromatography coupled with high-performance liquid chromatography-diode array detection for the preparative isolation and purification of hyperoside from Hypericum perforatum with online purity monitoring. Journal of Chromatography A 2006, 1116, (1-2), 97-101.
    28. Peng, J. Y.; Fan, G. R.; Wu, Y. T., Preparative isolation of four new and two known flavonoids from the leaf of Patrinia villosa Juss. by counter-current chromatography and evaluation of their anticancer activities in vitro. Journal of Chromatography A 2006, 1115, (1-2), 103-111.
    29. Zhou, T. T.; Fan, G. R.; Hong, Z. Y.; Chai, Y. F.; Wu, Y. T., Large-scale isolation and purification of geniposide from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography. Journal of Chromatography A 2005, 1100, (1), 76-80.
    30. Wang, C.; Pan, Y. J.; Fan, G. R.; Chai, Y. F.; Wu, Y. T., Application of an efficient strategy based on MAE, HPLC-DAD-MS/MS and HSCCC for the rapid extraction, identification, separation and purification of flavonoids from Fructus Aurantii Immaturus. Biomedical Chromatography 2009, in press.
    31. Zulak, K. G.; Weljie, A. M.; Vogel, H. J.; Facchini, P. J., Quantitative H-1 NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. Bmc Plant Biology 2008, 8.
    32. Broeckling, C. D.; Huhman, D. V.; Farag, M. A.; Smith, J. T.; May, G. D.; Mendes, P.; Dixon, R. A.; Sumner, L. W., Metabolic profiling of Medicago truncatula cell culturesreveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany 2005, 56, (410), 323-336.
    33. Fraser, P. D.; Enfissi, E. M. A.; Goodfellow, M.; Eguchi, T.; Bramley, P. M., Metabolite profiling of plant carotenoids using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Plant Journal 2007, 49, (3), 552-564.
    34. Choi, Y. H.; Tapias, E. C.; Kim, H. K.; Lefeber, A. W. M.; Erkelens, C.; Verhoeven, J. T. J.; Brzin, J.; Zel, J.; Verpoorte, R., Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using H-1-NMR spectroscopy and multivariate data analysis. Plant Physiology 2004, 135, (4), 2398-2410.
    35. Hendrawati, O.; Yao, Q. Q.; Kim, H. K.; Linthorst, H. J. M.; Erkelens, C.; Lefeber, A. W. M.; Choi, Y. H.; Verpoorte, R., Metabolic differentiation of Arabidopsis treated with methyl jasmonate using nuclear magnetic resonance spectroscopy. Plant Science 2006, 170, (6), 1118-1124.
    36. Oksman-Caldentey, K. M.; Saito, K., Integrating genomics and metabolomics for engineering plant metabolic pathways. Current Opinion in Biotechnology 2005, 16, (2), 174-179.
    37. Morreel, K.; Goeminne, G.; Storme, V.; Sterck, L.; Ralph, J.; Coppieters, W.; Breyne, P.; Steenackers, M.; Georges, M.; Messens, E.; Boerjan, W., Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. Plant Journal 2006, 47, (2), 224-237.
    38. Ma, C. F.; Wang, H. H.; Lu, X.; Xu, G. W.; Liu, B. Y., Metabolic fingerprinting investigation of Artemisia annua L. in different stages of development by gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A 2008, 1186, (1-2), 412-419.
    39. Bindschedler, L. V.; Palmblad, M.; Cramer, R., Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochemistry 2008, 69, (10), 1962-1972.
    40. Sweetlove, L. J.; Heazlewood, J. L.; Herald, V.; Holtzapffel, R.; Day, D. A.; Leaver, C. J.; Millar, A. H., The impact of oxidative stress on Arabidopsis mitochondria. Plant Journal 2002, 32, (6), 891-904.
    41. Higashi, Y.; Hirai, M. Y.; Fujiwara, T.; Naito, S.; Noji, M.; Saito, K., Proteomic andtranscriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition. Plant Journal 2006, 48, (4), 557-571.
    42. Schmelzer, E.; Jahnen, W.; Hahlbrock, K., Insitu Localization of Light-Induced Chalcone Synthase Messenger-Rna, Chalcone Synthase, and Flavonoid End Products in Epidermal-Cells of Parsley Leaves. Proceedings of the National Academy of Sciences of the United States of America 1988, 85, (9), 2989-2993.
    43. Robberecht, R.; Caldwell, M. M., Protective Mechanisms and Acclimation to Solar Ultraviolet-B Radiation in Oenothera-Stricta. Plant Cell and Environment 1983, 6, (6), 477-485.
    44. Xu, C. P.; Sullivan, J. H.; Garrett, W. M.; Caperna, T. J.; Natarajan, S., Impact of solar Ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry 2008, 69, (1), 38-48.
    45. Valot, B.; Gianinazzi, S.; Eliane, D. G., Sub-cellular proteomic analysis of a Medicago truncatula root microsomal fraction. Phytochemistry 2004, 65, (12), 1721-1732.
    46. Alvarez, S.; Berla, B. M.; Sheffield, J.; Cahoon, R. E.; Jez, J. M.; Hicks, L. M., Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 2009, 9, (9), 2419-2431.
    47. Chen, H. B.; Huang, L.; Huang, Q. Y.; Ling, X. P.; Zhu, F.; Huang, H. Q., Selection and Identification of Differential Proteins of Liver with Proteomics Techniques in Achatina Fulica Under Induction of Cadmium. Chinese Journal of Analytical Chemistry 2009, 37, (6), 801-805.
    48. Huang, L.; Chen, D. S.; Yan, L.; Fang, C. W.; Huang, H. Q., Differential Proteins of Sub-buccal Ganglions Selected and Identified with Proteomic Techniques in Aplysia Under the Stress Condition of Cadmium Chloride. Chemical Journal of Chinese Universities-Chinese 2009, 30, (2), 314-319.
    49. Kieffer, P.; Planchon, S.; Oufir, M.; Ziebel, J.; Dommes, J.; Hoffmann, L.; Hausman, J. F.; Renaut, J., Combining Proteomics and Metabolite Analyses To Unravel Cadmium Stress-Response in Poplar Leaves. Journal of Proteome Research 2009, 8, (1), 400-417.
    50. Schneider, T.; Schellenberg, M.; Meyer, S.; Keller, F.; Gehrig, P.; Riedel, K.; Lee, Y.;Eberl, L.; Martinoia, E., Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics 2009, 9, (10), 2668-2677.
    51. Smith, A. P.; DeRidder, B. P.; Guo, W. J.; Seeley, E. H.; Regnier, F. E.; Goldsbrough, P. B., Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. Journal of Biological Chemistry 2004, 279, (25), 26098-26104.
    52. Ahsan, N.; Lee, D. G.; Lee, S. H.; Kang, K. Y.; Lee, J. J.; Kim, P. J.; Yoon, H. S.; Kim, J. S.; Lee, B. H., Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 2007, 67, (6), 1182-1193.
    53. Duquesnoy, I.; Goupil, P.; Nadaud, I.; Branlard, G.; Piquet-Pissaloux, A.; Ledoigt, G., Identification of Agrostis tenuis leaf proteins in response to As(V) and As(III) induced stress using a proteomics approach. Plant Science 2009, 176, (2), 206-213.
    54. Fukuda, T.; Saito, A.; Wasaki, J.; Shinano, T.; Osaki, M., Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Science 2007, 172, (6), 1157-1165.
    55. Garcia, J. S.; Gratao, P. L.; Azevedo, R. A.; Arruda, M. A. Z., Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. Journal of Agricultural and Food Chemistry 2006, 54, (22), 8623-8630.
    56. Ahsan, N.; Renaut, J.; Komatsu, S., Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 2009, 9, (10), 2602-2621.
    57. Clemens, S.; Naumann, B.; Hippler, M., Proteomics of metal mediated protein dynamics in plants - iron and cadmium in the focus. Frontiers in Bioscience 2009, 14, 1955-1969.
    58. Rinalducci, S.; Murgiano, L.; Zolla, L., Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. Journal of Experimental Botany 2008, 59, (14), 3781-3801.
    59.郑水庆;陈万生;曾明;乔传卓,二倍体的不同品系与四倍体板蓝根中多糖的含量测定.第二军医大学学报1999, 20, (10), 755-757.
    60. Homma, M.; Oka, K.; Yamada, T.; Niitsuma, T.; Ihto, H.; Takahashi, N., A Strategy for Discovering Biologically-Active Compounds with High Probability in Traditional Chinese Herb Remedies - an Application of Saiboku-to in Bronchial-Asthma. AnalyticalBiochemistry 1992, 202, (1), 179-187.
    61. Wang, Y. L.; Liang, Y. Z.; Chen, B. M.; He, Y. K.; Li, B. Y.; Hu, Q. N., LC-DAD-APCI-MS-based screening and analysis of the absorption and metabolite components in plasma from a rabbit administered an oral solution of danggui. Analytical and Bioanalytical Chemistry 2005, 383, (2), 247-254.
    62. Pan, J. Y.; Cheng, Y. Y., Identification and analysis of absorbed and metabolic components in rat plasma after oral administration of 'Shuangdan' granule by HPLC-DAD-ESI-MS/MS. Journal of Pharmaceutical and Biomedical Analysis 2006, 42, (5), 565-572.
    63. Wang, P.; Liang, Y. Z.; Zhou, N.; Chen, B. M.; Yi, L. Z.; Yu, Y.; Yi, Z. B., Screening and analysis of the multiple absorbed bioactive components and metabolites of Dangguibuxue decoction by the metabolic fingerprinting technique and liquid chromatography/diode-array detection mass spectrometry. Rapid Communications in Mass Spectrometry 2007, 21, (2), 99-106.
    64. Yan, B.; Wang, G. J.; A, J. Y.; Xie, L.; Hao, H. P.; Liang, Y.; Sun, J. G.; Li, X. Y.; Zheng, Y. T., Construction of the fingerprints of ginseng stem and leaf saponin reference substances and spiked plasma sample by LC-ESI/MS and its application to analyzing the compounds absorbed into blood after oral administration of ginseng stem and leaf saponin in rat. Biological & Pharmaceutical Bulletin 2007, 30, (9), 1657-1662.
    65. Wang, C.; Wang, S. W.; Fan, G. R.; Zou, H. F., Screening of antinociceptive components in Corydalis yanhusuo WT Wang by comprehensive two-dimensional liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2010, 396, (5), 1731-1740.
    66. Su, X. Y.; Kong, L.; Lei, X. Y.; Hu, L. H.; Ye, M. L.; Zou, H. F., Biological fingerprinting analysis of traditional Chinese medicines with targeting ADME/Tox property for screening of bioactive compounds by chromatographic and MS methods. Mini-Reviews in Medicinal Chemistry 2007, 7, (1), 87-98.
    67. Lei, X. Y.; Kong, L.; Zou, H. F.; Ma, H.; Yang, L., Evaluation of the interaction of bioactive compounds in Cortex Pseudolarix and Radix Stephaniae by the microdialysis probe coupled with high performance liquid chromatography-Mass spectrometry. Journalof Chromatography A 2009, 1216, (35), 2179.
    68. Su, X. Y.; Kong, L.; Li, X.; Chen, X. G.; Guo, M.; Zou, H. F., Screening and analysis of bioactive compounds with biofingerprinting chromatogram analysis of traditional Chinese medicines targeting DNA by microdialysis/HPLC. Journal of Chromatography A 2005, 1076, (1-2), 118-126.
    69.齐炼文;李萍;盛亮洪,透析-高效液相色谱法在当归补血汤药效物质基础研究中的应用.分析化学2006, 34, (2), 196-199.
    70.孔亮;邹汉法;汪海林;倪坚毅;张玉奎,以人血清白蛋白为固定相的分子生物色谱分析几种中药活性成分的研究.高等学校化学学报2000, 21, (1), 36-40.
    71.袁秉祥;林蓉;贺浪冲,细胞膜色谱-中药复杂体系的新药发现.中国药理通讯2008, 25, (2), 32-33.
    72. Hou, X. F.; Zhou, M. Z.; Jiang, Q.; Wang, S. C.; He, L. C., A vascular smooth muscle/cell membrane chromatography-offline-gas chromatography/mass spectrometry method for recognition, separation and identification of active components from traditional Chinese medicines. Journal of Chromatography A 2009, 1216, (42), 7081-7087.
    73. Wang, C. H.; He, L. C.; Wang, N.; Liu, F., Screening anti-inflammatory components from Chinese traditional medicines using a peritoneal macrophage/cell membrane chromatography-offline-GC/MS method. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2009, 877, (27), 3019-3024.
    74. Zeng, A. G.; Yuan, B. X.; Zhu, F.; Zhao, L. M.; He, L. C.; Yang, G. D., Cell Membrane Chromatography Correlated with Functional Assay for Ligand-beta-Adrenergic Receptor Affinities. Chromatographia 2009, 69, (11-12), 1373-1377.
    75. Tang, D.; Li, H. J.; Chen, J.; Guo, C. W.; Li, P., Rapid and simple method for screening of natural antioxidants from Chinese herb Flos Lonicerae Japonicae by DPPH-HPLC-DAD-TOF/MS. Journal of Separation Science 2008, 31, (20), 3519-3526.
    76. Bandoniene, D.; Murkovic, M., The detection of radical scavenging compounds in crude extract of borage (Borago officinalis L.) by using an on-line HPLC-DPPH method. Journal of Biochemical and Biophysical Methods 53, (1-3), 45-49.
    77. Nicholson, J. K.; Lindon, J. C.; Holmes, E., 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statisticalanalysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, (11), 1181-1189.
    78. Xu, E. Y.; Schaefer, W. H.; Xu, Q. W., Metabolomics in pharmaceutical research and development: Metabolites, mechanisms and pathways. Current Opinion in Drug Discovery & Development 2009, 12, (1), 40-52.
    79. Chen, M. J.; Zhao, L. P.; Jia, W., Metabonomic study on the biochemical profiles of a hydrocortisone-induced animal model. Journal of Proteome Research 2005, 4, (6), 2391-2396.
    80. Li, F. M.; Lu, X. M.; Liu, H. P.; Liu, M.; Xiong, Z. L., A pharmaco-metabonomic study on the therapeutic basis and metabolic effects of Epimedium brevicornum Maxim. on hydrocortisone-induced rat using UPLC-MS. Biomedical Chromatography 2007, 21, (4), 397-405.
    81. Qiu, Y.; Su, M.; Xie, G.; Li, X.; Zhou, M.; Zhao, A.; Jiang,J.; Jia, W., Metabolic profiling reveals therapeutic effects of Herba Cistanches in an animal model of hydrocortisone-induced 'kidney-deficiency syndrome'. BMC Chinese Medicine 2008.
    82. Wang, X. Y.; Su, M. M.; Qiu, Y. P.; Ni, Y.; Zhao, T.; Zhou, M. M.; Zhao, A. H.; Yang, S. L.; Zhao, L. P.; Jia, W., Metabolic regulatory network alterations in response to acute cold stress and ginsenoside intervention. Journal of Proteome Research 2007, 6, (9), 3449-3455.
    83. Zhi, B. Y.; Yu, Y.; Yi, Z. L., Investigation of antimicrobial model of Hemsleya pengxianensis W.J. Chang and its main active component by metabolomics technique. Journal of Ethnopharmacology 2008, 116, (1), 89-95.
    84. Chen, M. J.; Su, M. M.; Zhao, L. P.; Jiang, J.; Liu, P.; Cheng, J. Y.; Lai, Y. J.; Liu, Y. M.; Jia, W., Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. Journal of Proteome Research 2006, 5, (4), 995-1002.
    85. Ni, Y.; Su, M. M.; Qiu, Y. P.; Chen, M. J.; Liu, Y. M.; Zhao, A. H.; Jia, W., Metabolic profiling using combined GC-MS and LC-MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat. Febs Letters 2007, 581, (4), 707-711.
    86. Chan, W.; Cai, Z. W., Aristolochic acid induced changes in the metabolic profile of rat urine. Journal of Pharmaceutical and Biomedical Analysis 2008, 46, (4), 757-762.
    87. Wei, L.; Liao, P. Q.; Wu, H. F.; Li, X. J.; Pei, F. K.; Li, W. S.; Wu, Y. J., Toxicologicaleffects of cinnabar in rats by NMR-based metabolic profiling of urine and serum. Toxicology and Applied Pharmacology 2008, 227, (3), 417-429.
    88.李建新,华.,何翠翠,中药毒性的代谢组学研究(Ⅰ):雷公藤甲素的肾脏毒性.亚太传统医药2007, 7, 41-45.
    89. Chen, M. J.; Ni, Y.; Duan, H. Q.; Qiu, Y. P.; Guo, C. Y.; Jiao, Y.; Shi, H. J.; Su, M. M.; Jia, W., Mass spectrometry-based metabolic profiling of rat urine associated with general toxicity induced by the multiglycoside of Tripterygium wilfordii Hook. f. Chemical Research in Toxicology 2008, 21, (2), 288-294.
    90.赵剑宇,颜.,彭双清,关木通肾毒性的代谢组学研究.中草药2006, 37, (5), 725-730.
    91. Anderson, N. L.; Anderson, N. G., Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis 1998, 19, (11), 1853-1861.
    92. Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422, (6928), 198-207.
    93. Pandey, A.; Mann, M., Proteomics to study genes and genomes. Nature 2000, 405, (6788), 837-846.
    94. Ikeda, T.; Tsumagari, H.; Honbu, T.; Nohara, T., Cytotoxic activity of steroidal glycosides from solanum plants. Biological & Pharmaceutical Bulletin 2003, 26, (8), 1198-1201.
    95.马朋;曹同涛;宋晓冬;张页,合成紫花茄皂苷对体外培养肝癌细胞的增殖抑制作用.解剖学杂志2008, 31, (1), 37-41.
    96.曹同涛;马朋;耿越,紫花茄皂苷I-5对不同肿瘤细胞系的体外抗肿瘤作用.滨州医学院学报2008, 31, (3), 25-28.
    97. Wong, C. C.; Wang, Y.; Cheng, K. W.; Chiu, J. F.; He, Q. Y.; Chen, F. A.-m.; j proteome, r.; Ctyp, D. O. I. p. k. C.-L. S., Comparative proteomic analysis of indioside D-triggered cell death in HeLa cells. Journal of proteome research 2008, 7, (5), 2050-8 PHST- 2008/04/01 [aheadofprint].
    98. Wang, Y.; Cheung, Y. H.; Yang, Z.; Chiu, J. F.; Che, C. M.; He, Q. Y. A.-m.; proteomics; Ctyp, D. O. I. p. C.-L. S., Proteomic approach to study the cytotoxicity of dioscin (saponin). Proteomics 2006, 6, (8), 2422-32.
    99. Wang, C.; Fan, G. R.; Lin, M.; Chen, Y.; Zhao, W. Q.; Wu, Y. T., Development of a liquid chromatography/tandem mass spectrometry assay for the determination of bestatin in ratplasma and its application to a pharmacokinetic study. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2007, 850, (1-2), 101-108.
    100. Lu, Q. Y.; Yang, Y.; Jin, Y. S.; Zhang, Z. F.; Heber, D.; Li, F. P.; Dubinett, S. M.; Sondej, M. A.; Loo, J. A.; Rao, J. Y. A.-m.; proteomics; Ctyp, D. O. I. p. C.-L. S., Effects of green tea extract on lung cancer A549 cells: proteomic identification of proteins associated with cell migration. UID - 19137550. Proteomics 2009, 9, (3), 757-67.
    101. Cecconi, D.; Zamo, A.; Parisi, A.; Bianchi, E.; Parolini, C.; Timperio, A. M.; Zolla, L.; Chilosi, M., Induction of apoptosis in Jeko-1 mantle cell lymphoma cell line by resveratrol: a proteomic analysis. Journal of proteome research 2008, 7, (7), 2670-80 PHST- 2008/05/29 [aheadofprint].
    102. Jeon, J. P.; Buono, R. J.; Han, B. G.; Jang, E. Y.; Kim, S. C.; Yang, C. H.; Hwang, M. A.-m.; Ctyp, D. O. I. p. s. C.-L. S., Proteomic and Behavioral Analysis of Response to Isoliquiritigenin in Brains of Acute Cocaine Treated Rats. UID - 18998721. Journal of proteome research 2008.
    103. Nguyen-Khuong, T.; White, M. Y.; Hung, T. T.; Seeto, S.; Thomas, M. L.; Fitzgerald, A. M.; Martucci, C. E.; Luk, S.; Pang, S. F.; Russell, P. J.; Walsh, B. J., Alterations to the protein profile of bladder carcinoma cell lines induced by plant extract MINA-05 in vitro. Proteomics 2009, 9, (7), 1883-1892.
    104. Wu, T. F.; Hsu, C. Y.; Huang, H. S.; Chou, S. P.; Wu, H., Proteomic analysis of Pycnogenol effects in RAW 264.7 macrophage reveals induction of cathepsin D expression and enhancement of phagocytosis. Journal of Agricultural and Food Chemistry 2007, 55, (24), 9784-9791.
    105. Ong, E. S.; Len, S. M.; Lee, A. C. H., Differential protein expression of the inhibitory effects of a standardized extract from Scutellariae radix in liver cancer cell lines using liquid chromatography and tandem mass spectrometry. Journal of Agricultural and Food Chemistry 2005, 53, (1), 8-16.
    106. Huang, J. F.; Jiang, Z. Z.; Wang, T.; Yao, J. C.; Zhang, L. Y., Overview of research on drug-induced liver injury. progress in Pharmaceutical Sciences 2008, 32, (8), 357-362.
    107. Chu, H. Y.; Jin, G. Z.; Friedman, E.; Zhen, X. C., Recent development in studies oftetrahydroprotoberberines: Mechanism in antinociception and drug addiction. Cellular and Molecular Neurobiology 2008, 28, (4), 491-499.
    108. Barceloux, D. G., Jin Bu Huan and Tetrahydropamatine. Medical Toxicology of Natural Substances 2008, Chapter 74, 518-521.
    109. Divinsky, M., Case report: Jin bu huan - not so benign herbal medicine. Canadian Family Physician 2002, 48, 1640-1642.
    110. Lai, C. K.; Chan, A. Y. W., Tetrahydropalmatine poisoning: Diagnoses of nine adult overdoses based on toxicology screens by HPLC with diode-array detection and gas chromatography mass spectrometry. Clinical Chemistry 1999, 45, (2), 229-236.
    111. Wang, C.; Zhou, J. R.; Wang, S. W.; Ye, M. L.; Fan, G. R.; Zou, H. F.; Jiang, C. L., Shotgun approach based comparative proteomic analysis of levo-tetrahydropalmatine-induced apoptosis in hepatocytes. Toxicology Letters 2010, In press.
    112. Hall, S. E., Chemoproteomics-driven drug discovery: addressing high attrition rates. Drug Discovery Today 2006, 11, (11-12), 495-502.
    113. Tian, R. J.; Xu, S. Y.; Lei, X. Y.; Jin, W. H.; Ye, M. L.; Zou, H. F., Characterization of small-molecule-biomicromolecule interactions: From simple to complex. Trac-Trends in Analytical Chemistry 2005, 24, (9), 810-825.
    114. Duncan, J. S.; Gyenis, L.; Lenehan, J.; Bretner, M.; Graves, L. M.; Haystead, T. A.; Litchfield, D. W., An unbiased evaluation of CK2 inhibitors by chemoproteomics. Molecular & Cellular Proteomics 2008, 7, (6), 1077-1088.
    115. Godl, K.; Gruss, O. J.; Eickhoff, J.; Wissing, J.; Blencke, S.; Weber, M.; Degen, H.; Brehmer, D.; Orfi, L.; Horvath, Z.; Keri, G.; Muller, S.; Cotten, M.; Ullrich, A.; Daub, H., Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Research 2005, 65, (15), 6919-6926.
    116. Wissing, J.; Godl, K.; Brehmer, D.; Blencke, S.; Weber, M.; Habenberger, P.; Stein-Gerlach, M.; Missio, A.; Cotten, M.; Muller, S.; Daub, H., Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors. Molecular & Cellular Proteomics 2004, 3, (12), 1181-1193.
    117. Prathipati, P.; Ma, N. L.; Manjunatha, U. H.; Bender, A., Fishing the Target ofAntitubercular Compounds: In Silico Target Deconvolution Model Development and Validation. Journal of Proteome Research 2009, 8, (6), 2788-2798.
    118. von Rechenberg, M.; Blake, B. K.; Ho, Y. S. J.; Zhen, Y. J.; Chepanoske, C. L.; Richardson, B. E.; Xu, N. F.; Kery, V., Ampicillin/penicillin-binding protein interactions as a model drug-target system to optimize affinity pull-down and mass spectrometric strategies for target and pathway identification. Proteomics 2005, 5, (7), 1764-1773.
    119. Bender, A.; Mikhailov, D.; Glick, M.; Scheiber, J.; Davies, J. W.; Cleaver, S.; Marshall, S.; Tallarico, J. A.; Harrington, E.; Cornella-Taracido, I.; Jenkins, J. L., Use of Ligand Based Models for Protein Domains To Predict Novel Molecular Targets and Applications To Triage Affinity Chromatography Data. Journal of Proteome Research 2009, 8, (5), 2575-2585.
    120. Rix, U.; Superti-Furga, G., Target profiling of small molecules by chemical proteomics. Nature Chemical Biology 2009, 5, (9), 616-624.
    121.杜青雄,五行学说是中医理论的核心架构.世界中医药2009, 4, (4), 181-182.
    122.刘带;李锐锋,论中医理论的系统整体性思想.系统科学学报2009, 17, (3), 90-93.
    123.于虹,中药配伍理论的应用意义.中草药2003, 34, (4), 12-13.
    124. Hong, Z. Y.; Fan, G. R.; Le, J.; Chai, Y. F.; Yin, X. P.; Wu, Y. T., Brain pharmacokinetics and tissue distribution of tetrahydropalmatine enantiomers in rats after oral administration of the racemate. Biopharmaceutics & Drug Disposition 2006, 27, (3), 111-117.
    125. Camps, M.; Cortes, R.; Gueye, B.; Probst, A.; Palacios, J. M., Dopamine-Receptors in Human-Brain - Autoradiographic Distribution of D2 Sites. Neuroscience 1989, 28, (2), 275-290.
    126. Robertson, G. S.; Vincent, S. R.; Fibiger, H. C., D1 and D2 Dopamine-Receptors Differentially Regulate C-Fos Expression in Striatonigral and Striatopallidal Neurons. Neuroscience 1992, 49, (2), 285-296.
    127. Bittencourt, A. L.; Takahashi, R. N., Mazindol and lidocaine are antinociceptives in the mouse formalin model: involvement of dopamine receptor. Eur J Pharmacol 1997, 330, (2-3), 109-13.
    128. Shimizu, T.; Iwata, S.; Morioka, H.; Masuyama, T.; Fukuda, T.; Nomoto, M., Antinociceptive mechanism of L-DOPA. Pain 2004, 110, (1-2), 246-9.
    129. Asencio, M.; Delaquerriere, B.; Cassels, B. K.; Speisky, H.; Comoy, E.; Protais, P., Biochemical and behavioral effects of boldine and glaucine on dopamine systems. Pharmacology Biochemistry and Behavior 1999, 62, (1), 7-13.
    130. Asencio, M.; Hurtado-Guzman, C.; Lopez, J. J.; Cassels, B. K.; Protais, P.; Chagraoui, A., Structure-affinity relationships of halogenated predicentrine and glaucine derivatives at D-1 and D-2 dopaminergic receptors: halogenation and D-1 receptor selectivity. Bioorganic & Medicinal Chemistry 2005, 13, (11), 3699-3704.
    131. Loghin, F.; Chagraoui, A.; Asencio, M.; Comoy, E.; Speisky, H.; Cassels, B. K.; Protais, P., Effects of some antioxidative aporphine derivatives on striatal dopaminergic transmission and on MPTP-induced striatal dopamine depletion in B6CBA mice. European Journal of Pharmaceutical Sciences 2003, 18, (2), 133-140.
    132. Xu, L. F.; Chu, W. J.; Qing, X. Y.; Li, S.; Wang, X. S.; Qing, G. W.; Fei, J.; Guo, L. H., Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. Neuropharmacology 2006, 50, (8), 934-940.
    133. Mochizucki, D., Serotonin and noradrenaline reuptake inhibitors in animal models of pain. Human Psychopharmacology-Clinical and Experimental 2004, 19, S15-S19.
    134. Millan, M. J., The induction of pain: An integrative review. Progress in Neurobiology 1999, 57, (1), 1-164.
    135. Fundytus, M. E., Glutamate receptors and nociception - Implications for the drug treatment of pain. Cns Drugs 2001, 15, (1), 29-58.
    136. Xie, Y.; Chen, Y.; Lin, M.; Wen, J.; Fan, G. R.; Wu, Y. T., High-performance liquid chromatographic method for the determination and pharmacokinetic study of oxypeucedanin hydrate and byak-angelicin after oral administration of Angelica dahurica extracts in mongrel dog plasma. Journal of Pharmaceutical and Biomedical Analysis 2007, 44, (1), 166-172.
    137. Kang, O. H.; Chae, H. S.; Oh, Y. C.; Choi, J. G.; Lee, Y. S.; Jang, H. J.; Kim, J. H.; Kim, Y. C.; Sohn, D. H.; Park, H.; Kwon, D. Y., Anti-Nociceptive and Anti-Inflammatory Effects of Angelicae Dahuricae Radix Through Inhibition of the Expression of Inducible Nitric Oxide Synthase and NO Production. American Journal of Chinese Medicine 2008, 36, (5), 913-928.
    138. Hong, Z. Y.; Le, R.; Lin, M.; Fan, G. R.; Chai, Y. F.; Yin, X. P.; Wu, Y. T., Comparative studies on pharmacokinetic fates of tetrahydropalmatine enantiomers in different chemical environments in rats. Chirality 2008, 20, (2), 119-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700