钢铁制造系统环境边界形态与物质能量代谢行为的系统演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以国家自然科学基金“基于辅料资源运行特性的钢铁绿色制造系统集成运行模式研究(70971102)”、国家科技支撑计划项目“制造企业生产过程绿色规划与优化运行技术(2006BAF02A03)”、湖北省教育厅科学研究计划项目“炼铁生产系统环境边界类生命组织形态研究(Q20121104)”和湖北省高等学校优秀中青年科技创新团队计划项目“钢铁制造系统绿色优化方法及其支持技术(T201102)”为依托,在借鉴绿色制造系统工程学、工程演化论和人工生命科学等前沿领域研究成果的基础上,对钢铁制造系统面临的资源环境问题及应对这些问题的工艺措施、技术方法和理论基础,进行了深入而具有创新性的探索研究。
     钢铁制造系统在其复杂的系统环境边界上与自然生态系统发生大规模的物质能量代谢行为,并在外界环境的约束和刺激下触发更具环境适应性的系统演化行为。论文将钢铁制造系统作为非碳物质载体的人工生命形态,研究其物质能量代谢行为在环境边界上的形态特征与耦合机理,利用基于工艺子系统Agent的人工生命建模方法,建立钢铁制造系统物质能量代谢行为的系统演化模型,揭示钢铁制造系统物质能量代谢的系统演化行为及其基本规律。
     1.通过解析钢铁制造系统的基本结构和工艺流程,对钢铁制造系统中普遍存在的动态递阶环境边界形态进行数学描述,建立各工艺子系统内部的物质能量代谢行为规则。
     2.根据物质能量代谢平衡的基本原则,研究基于时间工艺流程和空间递阶结构的环境边界耦合机理,建立各工艺子系统及与自然生态系统之间物质能量代谢行为的外部规则。
     3.基于对钢铁制造系统环境边界形态的解析与耦合,通过对物质能量代谢内外部行为规则的数学描述,设计基于吨钢能值、吨钢无效能值和吨钢环境排放的钢铁制造系统环境适应性指标与系统演化方向,利用基于工艺子系统Agent的人工生命建模方法,建立钢铁制造系统物质能量代谢行为的系统演化模型。
     4.借助非受控排序遗传算法等人工生命演化算法对该模型进行求解,获取资源环境效益最优的物质能量代谢行为向量,揭示钢铁制造系统物质能量代谢行为的系统演化规律。
     5.将钢铁制造系统演化模型中的物质能量代谢行为与我国东部地区某重点国有钢铁联合企业的实际生产数据进行对比分析和实证研究,验证系统演化模型的正确性和有效性。
     论文研究揭示了钢铁制造系统在物质能量代谢行为方面与自然生态系统的相似性和差异性,探索了钢铁制造系统物质能量运行的基本规律,讨论了不同的系统演化方向对钢铁制造系统物质能量行为的影响作用,研究结论可以为实现钢铁制造系统物质能量资源的优化控制和高效利用提供新的理论研究方法。
The thesis relies on the item70971102supported by the Research Fund of National NaturalScience Foundation, the item2006BAF02A03supported by the National Science andTechnology Supporting Program, the item Q20121104and the item T201102supported by theEducational Office of Hubei Province. Based on the extensive study on the frontier fields such assystematic engineering of green manufacturing, industrial ecology, engineering evolution andartificial life, some intensive research works are discussed in this thesis to pose the seriouschallenges for the steelmaking processes. Based on the further research in this thesis, someinnovative technologies and fundamental principles are contributed to solve the resource andenvironmental issues that steel industrial system is confronted with.
     Iron and steel industrial system has numerous metabolic behaviors with substance andenergy on the complicated environmental boundaries existed between the steel industrial systemand the natural ecosystem. These metabolic behaviors will touch off the systematic evolutionwith the best fitness under the constraints and stimulations exerted by the external environment.The thesis regards the iron and steel-making system as a form of non-carbon carrier of theartificail life. Based on this vision, the morphology characters and coupling mechanism of themetabolic behaviors of substance and energy on the environmental boundary is discussed in thisthesis. A systematic evolutionary model for the metabolic behaviors of the substance and energyin the steel industrial system is established by the modeling approach of artificial life based onthe Agent of the processing subsystem. The thesis devotes to discover the systematic evolutionaybehaviors and laws of the metabolism of substance and energy in the steel industrial system withthe systematic evolutionay model.
     1. The thesis analyzes the fundamental framework and the processing flows of the steelindustrial system and illustrates the morphology and the dynamic hierarchical properties ofenvironmental boundaries generally existing in the steel industrial system, with correctmathematic approaches. The interior rules of the metabolic behaviors of substance and energy inits processing subsystem are established on the environmental boundary around the steel-makingsystem.
     2. Depending on the timing sequence of processing flow and the hierarchical sequence ofspace structure, the coupling mechanism of the environmental boundaries is constructed with theexterior rules under the metabolic equilibrium principles of substance and energy. The exteriorrules are formulated to describe the metabolic behaviors of substance and energy occurringbetween the processing subsystem and the ecological system.
     3. The indicators for the environmental fitness and the systematic evolutionary directions,including the emergy per metric ton of crude steel, the unavailable emergy per metric ton ofcrude steel and the environmental emission per metric ton of crude steel, are reasonably designed for the steel industrial system by the discretization and coupling of the environmental boundaryand the mathematic description for the rules of the metabolic behaviors of substance and energy,whatever interior or exterior ones. The systematic evolutionary model for the metabolicbehaviors of substance and energy in the steel industrial system is established with the modelingapproach of artificial life based on the Agent of the processing subsystem.
     4. Solved by the evolutionary algorithms such as the Non-dominated sorting in geneticalgorithms, the systematic evolutionary model deduces the optimized vectors of metabolicbehaviors of substance and energy with the best benefits of the systematic resource and energy. Italso discovers the evolutionary laws of the metabolic behaviors of substance and energy in thesteel industrial system.
     5. Compared with the actual production data from a state owned integrated steelworks ineastern China, the vectors of the metabolic behaviors demonstrated in the systematicevolutionary model verify the accuracy and validity of the systematic evolutionary model.
     The thesis illustrates the similitude and the difference of the metabolic behaviors ofsubstance and energy both in the steel industrial system and in the ecological system. The thesisdiscovers the basic laws of the substance and energy operations in the steel industrial system anddiscusses the influences which the various directions of the systematic evolution exert on themetabolic behaviors of substance and energy in the steel industrial system. The works andconclusions in the academic research present an innovative theory and methodology for theoptimized control and efficient utilization of the substance and energy resources in the steelindustrial system.
引文
[1]张群,赵刚,戴淑芬.论自然资源与钢铁生产发展的关系.钢铁,2002;37(3):72-74.
    [2] IPCC. Climate change2001[A]. In the Third Assessment Report of the Governmental Panelon Climate Change [C]. London Cambridge University Press,2001:45–50.
    [3]吴兑.温室气体与温室效应[M].北京气象出版社,2003.
    [4] International Energy Agency. World Energy Outlook2002[M].Beijing China PetrochemicalPress2004.
    [5] Houghton J T. Greenhouse gas inventory reference manual [A]. IPCC Guidelines forNational Greenhouse Gas Inventories[C]. IPCC1997.
    [6] Jack Weinberg,持久性有机污染物NGO指南——行动框架:远离持久性有机污染物,保护人类健康和环境[M],2009; http://www.saicm.org/index.php?option=com_content&view=article&id=120&Itemid=529
    [7]赵扬,钢铁企业清洁生产审核中的硫素代谢分析.能源与环境.2007;5:102-104.
    [8]殷瑞钰.冶金流程工程学(第2版)[M].北京:冶金工业出版社,2009.3.
    [9]中华人民共和国国家统计局.中国统计年鉴2011[M].北京:中国统计出版社,2011.9.
    [10]中华人民共和国国家统计局.2012年12月份及全年主要统计数据,2013,1,18;http://www.stats.gov.cn/was40/gjtjj_detail.jsp?searchword=%C9%FA%CC%FA&channelid=6697&record=1.
    [11]储满生.钢铁冶金原燃料及辅助材料[M].北京:冶金工业出版社,2010.
    [12]工业和信息化部.钢铁工业“十二五”发展规划.河北冶金,2012;(1):76-82,(3):82,50.
    [13]中华人民共和国国家统计局.中国统计年鉴2005-2012[M].北京:中国统计出版社,2013.1; http://www.stats.gov.cn/tjsj/ndsj/2012/indexce.htm.
    [14]王维兴.科学评价中国钢铁工业能耗现状与国内外对标.四川冶金,2009.8;31(4):1-6.
    [15]窦彬.中日韩钢铁工业能源强度的比较研究[J].中国人口·资源与环境,2008;18(3):130-134.
    [16]清华大学核能与新能源技术研究院.中国能源展望2004[M].北京:清华大学出版社,2004.
    [17]张春霞,胡长庆,严定鎏等.温室气体和钢铁工业减排措施.中国冶金,2007.1;17(1):7-12.
    [18]殷瑞钰,王晓齐,李世俊,苏天森.中国钢铁工业崛起与技术进步[M].北京:冶金工业出版社,2004.
    [19]胡长庆.物质流、能量流分析与新一代钢铁制造流程[D].北京:钢铁研究总院,2006.
    [20]翟圣佳,任洪岩,苏艺.我国钢铁行业环境现状分析与对策研究.环境保护科学,2012.6;38(3):106-110.
    [21]Paul Konijn, Sake de Boer, Jan van Dalen (1997) Input-Output Analysis of Material Flowswith Application to Iron, Steel and Zinc. Structural Change and Economic Dynamics8(1):129-153.
    [22]Matthias Ruth. Dematerialization in five US metals sectors: implications for energy use andCO2emissions. Resources Policy,1998,24(1):1-18.
    [23]T. Spengler, J. Geldermann, S. Htihre, A. Sieverdingbeck,0. Rentz. Development of amultiple criteria based decision support system for environmental assessment of recyclingmeasures in the iron and steel making industry. Journal of Cleaner Production,1998,6(1):37-52.
    [24]A. Akisawa, Y.T. Kang, Y. Shimazaki, T. Kashiwagi. Environmentally friendly energysystem models using material circulation and energy cascade—the optimization work. Energy,1999,24:561–578.
    [25]Y Sakamoto, Y Tonooka, Y Yanagisawa. Estimation of CO2emission for each process in theJapanese steel industry: a process analysis. Energy Conversion and Management, July1999;40(11):1129-1140.
    [26]Jan Peter Andersen, Barry Hyman. Energy and material flow models for the US steelindustry. Energy,2001,26:137-159.
    [27]Karen R. Polenske, Francis C. McMichael. A Chinese cokemaking process-flow model forenergy and environmental analyses. Energy Policy, August2002;30(10):865-883.
    [28]Mikael Larsson, Chuan Wang, Jan Dahl. Development of a method for analysing energy,environmental and economic efficiency for an integrated steel plant. Applied ThermalEngineering, September2006;26(13):1353-1361
    [29]J. Davis, R. Geyer, J. Ley, et al. Time-dependent material flow analysis of iron and steel inthe UK. Resources, Conservation and Recycling,2007,51:118–140.
    [30]C. Rynikiewicz. The climate change challenge and transitions for radical changes in theEuropean steel industry. Journal of Cleaner Production,2008,16:781-789.
    [31]Ana-Maria Iosif, Francois Hanrot, Denis Ablitzer. Process integrated modelling forsteelmaking Life Cycle Inventory analysis Original Research Article. Environmental ImpactAssessment Review, October2008;28(7):429-438.
    [32]Anthony de Carvalho. Challenges and opportunities for the steel industry in moving towardsgreen growth. The Proceedings of the Workshop on Delivering Green Growth, Seoul, Korea,4-5March,2010: www.oecd.org/sti/industryandglobalisation/45010081.pdf.
    [33]Mohan Yellishetty, Gavin M. Mudd, P.G. Ranjith. The steel industry, abiotic resourcedepletion and life cycle assessment: a real or perceived issue. Journal of Cleaner Production,2011,19:78-90.
    [34]Mohan Yellishetty, Gavin M. Mudd, P.G. Ranjith, A. Tharumarajah. Environmentallife-cycle comparisons of steel production and recycling: sustainability issues, problems andprospects. Environmental science&policy,2011,14:650-663.
    [35]Takeshi Kuramochi, Andrea Ramírez, Wim Turkenburg, André Faaij. Comparativeassessment of CO2capture technologies for carbon-intensive industrial processes Review Article.Progress in Energy and Combustion Science, February2012;38(1):87-112.
    [36]Nastaran Ansari, Abbas Seifi. A system dynamics analysis of energy consumption andcorrective policies in Iranian iron and steel industry. Energy, July2012;43(1):334-343.
    [37]陆钟武,蔡九菊.系统节能基础[M].(第1版).北京:科学出版社,1993,8.
    [38]陆钟武,蔡九菊.系统节能基础[M].(第2版).沈阳:东北大学出版社,2010,8:15-16.
    [39]陆钟武,蔡九菊,于庆波等.钢铁生产流程的物流对能耗的影响[J].金属学报,2000,36(4):370-378.
    [40]于庆波,陆钟武,蔡九菊.钢铁生产流程中物流对能耗影响的计算方法.金属学报,2000,36(4):379-382.
    [41]陆钟武.关于钢铁工业废钢资源的基础研究.金属学报,2000,36(7):728-734.
    [42]陆钟武.论钢铁工业的废钢资源.钢铁,2002,37(4):6,66-70.
    [43]陆钟武.钢铁产品生命周期的铁流分析——关于铁排放量源头指标等问题的基础研究.金属学报,2002,38(1):58-68.
    [44]蔡九菊,陆钟武,殷瑞钰等.钢铁生产流程环境负荷评价体系的研究方法[J].钢铁,2002,37(8):66-70.
    [45]戴铁军,陆钟武.钢铁生产流程的铁流对铁资源效率的影响.金属学报,2004;40(11):1127-1132.
    [46]戴铁军,陆钟武.钢铁企业生态效率分析.东北大学学报(自然科学版),2005;26(12):1168-1173.
    [47]戴铁军,陆钟武.钢铁生产流程铁资源效率的分析.钢铁,2006;41(6):77-82.
    [48]戴铁军,陆钟武.钢铁生产流程铁资源效率与工序铁资源效率关系的分析.金属学报,2006;42(3):280-284.
    [49]戴铁军.论铁资源效率、环境效率和废钢指数间的关系.中国冶金,2008;18(7):40-44.
    [50]戴铁军.企业内部及企业之间物质循环的研究[D].东北大学热能工程(工业生态学)博士学位论文,2005.
    [51]Dai Tiejun. The influence of iron flow on iron resource efficiency in the steel manufacturingprocess. Resources, Conservation and Recycling, June2011;55(8):760-771.
    [52]陆钟武.物质流分析的跟踪观察法.中国工程科学,2006,8(1):18-25.
    [53]陆钟武.工业生态学基础[M].北京:科学出版社,2010,1.
    [54]殷瑞钰.钢铁制造流程的解析和集成.金属学报,2000,36(10):1077-1084.
    [55]殷瑞钰.钢铁制造流程结构解析及其若干工程效应问题.钢铁,2000,35(10):1-7.
    [56]殷瑞钰.关于钢铁企业的结构与钢铁工业的发展模式[J].中国工程科学,2001,3(6):24-32.
    [57]殷瑞钰.冶金流程工程学[M].(第1版).冶金工业出版社.2004,5.
    [58]郦秀萍.高炉—转炉区段工艺技术界面热能工程分析[D].东北大学博士学位论文.2005,4.
    [59]郦秀萍,张春霞,张旭孝,蔡九菊.高炉一转炉区段工艺技术界面模式发展综论.过程工程学报,2006;6(z1):118-122.
    [60]邱剑,田乃媛,郦秀平,陈少慧.高炉—转炉界面流程的研究.钢铁,2005;40(8):18-21,47.
    [61]邱剑,田乃媛.典型流程区段炼铁炼钢界面的比较优势研究.北京科技大学学报,2005,12;27(6):740-744,768.
    [62]殷瑞钰.论钢厂制造过程中能量流行为和能量流网络的构建.钢铁,2010;45(4):1-9.
    [63]殷瑞钰.钢铁制造流程的能量流行为和能量流网络问题.工程研究——跨学科视野中的工程.2010;(1):1-4.
    [64]殷瑞钰,蔡九菊.钢厂生产流程与大气排放.钢铁,1999;34(5):61-65.
    [65]殷瑞钰.绿色制造与钢铁工业.钢铁,2000,35(6):61-65.
    [66]殷瑞钰,张寿荣,陆钟武.绿色制造与钢铁工业.中国工程院咨询报告.2002:10-11.
    [67]殷瑞钰.节能、清洁生产、绿色制造与钢铁工业的可持续发展.钢铁,2002;37(8):1-8.
    [68]殷瑞钰,张春霞,陆钟武,蔡九菊等.钢铁工业绿色化问题.钢铁,2003;38(z1):135-138.
    [69]殷瑞钰.绿色制造与钢铁工业--钢铁工业的绿色化问题.科技和产业,2003;3(9):25-31.
    [70]殷瑞钰.钢厂模式与工业生态链——钢铁工业的未来发展模式——在第二届地球环境与钢铁工业国际研讨会上的报告.中国冶金.2003;(12):18-25.
    [71]胡长庆,张春霞,齐渊洪,殷瑞钰.钢铁工业生态化研究进展与前景分析.钢铁,2004;39(8):112-116.
    [72]Chang-Qing HU, Chun-Xia ZHANG, Xiao-Wei HAN, Rui-Yu YIN. Sulfur Flow Analysisfor New Generation Steel Manufacturing Process. International Journal of Iron and SteelResearch, July2008,15(4):12-15,37.
    [73]S. A. Mclogk, et al. Green Manufacturing. Society of Manufacuring engineers, U. S. A.,1996.
    [74]刘飞,陈晓慧,梁洁.制造系统的物能资源流模型.中国机械工程.1997;8(4):78-80.
    [75]刘飞.21世纪制造业的绿色变革与创新.机械工程学报,2000;36(1):7-10.
    [76]Gutuwski, T., J. Dahmus, S. Dalquist. Measuring the Environmental Load of ManufacturingProcesses[C]. International Society for Industrial Ecology (ISLE),3rd InternationalConference, Stockholm, Sweden. June,2005.
    [77]Floudas C.A. and X. Lin,"Mixed Integer Linear Programming in Process Scheduling:Modeling, Algorithms and Applications", Annals of Operations Research,139,131-162(2005).
    [78]Janak S.L., Floudas C.A., Kallrath J. and N.Vormbrock,"Production Scheduling of aLarge-Scale Industrial Batch Plant. II. Reactive Scheduling", Industrial EngineeringChemistry Research,45,8253-8269(2006).
    [79]Taillard E. Some Efficient Heuristic Methods for the Flow Shop Sequencing Problem.European Operation Research.1990;47(1):65-74.
    [80]刘飞,陈晓慧,梁洁.制造系统的物能资源流模型.中国机械工程.1997;8(4):78-80.
    [81]Zhang Hua,Jiang Zhigang.Modeling and analysis of waste stream ranking disposal forgreen manufacturing[C].Proceedings ofthe3rd Conference on Impulsive Dynamic Systemand Application,(2006)1267-1271.
    [82]刘飞,张华,陈晓慧.绿色制造的决策框架模型及其应用.机械工程学报.1999.10;35(5):11-15.
    [83]刘飞,张华,陈晓慧.绿色制造的集成特性和绿色集成制造系统.计算机集成制造系统.1999.8;5(4):9-13.
    [84]刘飞,曹华军.绿色制造的理论体系框架.中国机械工程.2000.9;11(9):961-964.
    [85]X. C. Tan, F. Liu, D. C. Liu, et al. Research on the diagnosis and improvement method of aprocess route in an enterprise production process in terms of sustainable development. TheInternational Journal of Advanced Manufacturing Technology,2007.8;33(11-12):1256-1262
    [86]谭显春,刘飞,曹华军等.绿色制造的一种工艺路线决策模型及其求解算法.机械工程学报.2004.4;40(4):154-159.
    [87]H. J. Cao, F. Liu, P. Yan, et al. A decision-making framework model of machining processplanning for green manufacturing and its application. International Journal ofEnvironmentally Conscious Design&Manufacturing.2003.4;11(4):20-27.
    [88]He Yan, Liu Fei, Cao Huajun, et al. A bi-objective model for job-shop scheduling problem tominimize both energy consumption and makespan. Journal of Central South University ofTechnology.12(2)(Oct.2005):167-171.
    [89]张华,刘飞.制造系统产品物料资源消耗状况的一种分析方法.机械工程学报.2000.3;36(3):27-31.
    [90]江志刚,张华,肖明.面向绿色制造的生产过程多目标集成决策模型及应用.机械工程学报.2008.4;44(4):41-46.
    [91]Jiang Zhi-gang, Zhang Hua. Combination genetic algorithm based processing parametersoptimization model for green manufacturing and its application [J].Dynamics of ContinuousDiscrete and Impulsive Systems—series A—mathematical Analysis.2006;(13):1463-1470.
    [92]Raymond P. Cote, E. Cohen-Rosenthal, Designing eco-industrial parks: a synthesis of someexperiences. Journal of Cleaner Production,1998;(6):181-188.
    [93]Thomas E. Graedel, Braden R. Allenby. Industrial ecology [M]. NJ: Prentice Hall,2003.
    [94]李素芹,苍大强,李宏.工业生态学[M].北京:冶金工业出版社,2007,2:22-23.
    [95]David T. Allen, Kirsten Sinclair Rosselot. Pollution prevention at the macro scale: flows ofwastes, industrial ecology and life cycle analyses. Waste Management, Volume14, Issues3–4,1994, Pages317–328.
    [96]J. Van Caneghem, C. Block, P. Cramm, R. Mortier, C. Vandecasteele. Improvingeco-efficiency in the steel industry: The ArcelorMittal Gent case. Journal of CleanerProduction, May2010;18(8):807-814.
    [97]Hasanbeigi, Ali, Chunxia, Zhang, et al. A Comparison of Iron and Steel Production EnergyUse and Energy Intensity in China and the U.S. The Report of China Sustainable EnergyProgram of the Energy Foundation through the U.S. Department of Energy, LawrenceBerkeley National Laboratory, Berkeley, California, USA, Nov.,2011:http://china.lbl.gov/publications/comparison-iron-and-steel-production-energy-use-and-energy-intensity-china-and-us.
    [98]Ali Hasanbeigi, William Morrow, Jayant Sathaye, et al. A bottom-up model to estimate theenergy efficiency improvement and CO2emission reduction potentials in the Chinese ironand steel industry. Energy, Februray2013;50(1):315-325.
    [99]Seong-Rin Lim, Yoo Ri Kim, Seung H. Woo, Donghee Park, Jong Moon Park. Systemoptimization for eco-design by using monetization of environmental impacts: a strategy toconvert bi-objective to single-objective problems. Journal of Cleaner Production, January2013;39:303-311.
    [100]陆钟武.对工业生态学的思考.环境保护与循环经济,2010,30(2):4-6.
    [101]王兆华,尹建华,武春友.生态工业园中的生态产业链结构模型研究.中国软科学,2003,(10):149-152,148.
    [102] Von Neumann, J. Theory of Self-Reproducing Automata [M]. University of Illinois Press.1966.
    [103] C. G. Langton, et al. Artificial Life [C]. Los Alamos: The Proceedings of anInterdisciplinary Workshop on the Synthesis and Simulation of Living Systems.1987.
    [104] C.G. Langton, Artificial Life: An Introduction, MIT Press, Cambridge, MA,1995.
    [105] T. S. Ray. An approach to the synthesis of life. in: C.G. Langton, C. Taylor, J.D. Farmer, S.Rasmussen (Eds.). Artificial Life II. Addison-Wesley, Redwood City, CA.1991:371–408.
    [106] Young Kong Ahn, Jin Dae Song, Bo-Suk Yang. Optimal design of engine mount using anartificial life algorithm. Journal of Sound and Vibration.2003;261:309-328.
    [107] Jin-Dae Song, Bo-Suk Yang, Byeong-Gun Choi, Hyung-Ja Kim. Optimum design of shortjournal bearings by enhanced artificial life optimization algorithm. Tribology International.2005;38:403–412.
    [108] Bo-Suk Yang, Yun-Hi Lee, Byeong-Keun Choi, Hyung-Ja Kim. Optimum design of shortjournal bearings by artificial life algorithm. Tribology International.2001;34:427–435.
    [109] Domenico Parisi. Artificial Life and Higher Level Cognition. Brain and Cognition.1997.34:160–184.
    [110] Alvaro Moreno. Artificial Life: A Bridge toward a New Artificial Intelligence. Brain andCognition.1997.34:1–4.
    [111] Evan Thompson. Symbol Grounding: A Bridge from Artificial Life to ArtificialIntelligence. Brain and Cognition.1997.34:48-71.
    [112] Lenski R.E., et al. The evolutionary origin of complex features. Nature.2003;423:139-144.
    [113] Adami C., et al. Evolution of biological complexity. Proc. Natl. Acad. Sci. U.S.A.2000;97:4463-4468.
    [114] T. Jinzenji, M. Sasaki. An advanced railway power simulation scheme for electric systemsbased on artificial life approach. Applied Mathematics and Computation.1998;91:23-32.
    [115] Wang Dingwei. Colony location algorithm for assignment problems [J]. Journal of ControlTheory and Applications.2004.2;(2):111-116.
    [116] Tu Xuyan. Generalized Artificial Life Race and Model [C]. Japan:Proceedings of the8thInternational Symposium on Artificial Life and Robotics,2003.126.
    [117]涂序彦.广义人工生命及其应用[A].人工生命及应用——中国人工智能学会第一届“人工生命及应用”专题学术会议论文集[M].北京:北京邮电大学出版社,2004.
    [118] Hu Jiyang, Hu Haiying, Fang Yongzhe, Hu Ruian. Research into models and algorithms ofartificial life. Artificial Intelligence in Engineering.1996;10:299-310.
    [119]李志强,胡晓峰,杨雪生,岳峰.虚拟环境中大规模群体行为建模研究进展.计算机工程与应用.2008;44(8):45-48.
    [120]熊斌,钱碧波,谭建荣.敏捷制造企业的生命系统理论研究.系统工程理论与实践.2002;22(5):12-18.
    [121]王培霞,贾育秦.熵污染与绿色制造.现代物理知识.2004;16(1):31-32.
    [122]殷瑞钰.工程演化论初议.工程研究——跨学科视野中的工程,2009;1(1):75-82.
    [123]殷瑞钰.工程演化与产业结构优化.中国工程科学,2012;14(3):8-14.
    [124]王社斌,许并社.钢铁生产节能减排技术.北京:化学工业出版社.2009.3:74.
    [125]张华,江志刚,赵刚等.绿色制造系统工程理论与实践.北京:科学出版社,2013.1.
    [126]贝塔朗菲.一般系统论基础、发展和应用[M].北京:清华大学出版社,1987:218.
    [127]中国钢铁工业协会.中国钢铁工业统计指标体系.北京:冶金工业出版社,2003:21-29.
    [128] World Steel Association.2008Sustainability report of the world steel industry. Oct7,2008.http://www.worldsteel.org/publications/bookshop.html?bookID=f13f3d5c-7c1e-4e4f-ae81-4fcb738c439a.
    [129]杜涛,蔡九菊.钢铁工业能源节约对环境负荷的影响.材料与冶金学报,2003.9;2(3):232-236.
    [130]杜涛,蔡九菊.中国钢铁工业能源环境负荷分析及减负对策.中国冶金,2006.3;16(3):37-41,52.
    [131]蔡九菊,杜涛,陆钟武等.钢铁生产流程环境负荷分析体系的研究方法[J].钢铁,2002,37(8):66-70.
    [132]那树人.炼铁计算.北京:冶金工业出版社,2005.3.
    [133]卢宇飞.炼铁工艺.北京:冶金工业出版社,2006.
    [134]张殿有.高炉冶炼操作技术[M].北京:冶金工业出版社,2007.
    [135]胡秀莲,李爱仙,陈海红,辛定国,张管生,郑彬.综合能耗计算通则.中华人民共和国国家标准GB-T2589-2008.国家发展和改革委员会能源研究所,中国标准化研究院,中国技能监察信息网.
    [136] Frost P. D., et al. Energy consumption in the primary production of metals. Iron and SteelEngineer,1979(4).
    [137]阎维平,赵文娟,鲁晓宇.适合富氧燃烧发电系统的空分制氧能耗分析.低温工程,2011;(2):19-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700