海相地层元素、碳氧同位素分布与沉积环境和烃源岩发育关系——以鄂尔多斯盆地为分例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国海相地层分布广,多具高演化、低有机质丰度的特点,尤其下古生界经历了漫长的热演化史,致使有机质丰度、质量等都产生了很大变化,给烃源岩评价造成了极大困难。因此,探索高演化海相有效烃源岩的判识仍是当前我国油气领域重要研究任务之一。不少学者试图通过降低有机碳下限值、对原始有机质丰度和质量的恢复等方法解决存在问题,但困难不少,分歧较大。本论文以“环境控源”为切入点,以鄂尔多斯下古生界典型剖面为解剖对象,综合研究受热演化影响小、具继承性、能表征有效烃源岩形成古环境的无机地球化学参数体系,结合必要的有机地球化学研究,系统探讨了海相沉积环境与有效烃源岩发育的关系,进而判识研究区奥陶系潜在有效烃源岩及其分布规律。主要成果和认识:
     1.聚类、对应分析结果表明,以CaO、MgO、Zn、Zr、Ni、Al_2O_3、Rb、V、P和Ba等变量组合为特征的前四个因子(f_1~f_4)是研究区主控因素,反映不同沉积条件下元素丰度及其组合特征,可以反演高演化海相烃源岩发育环境。
     2.研究区无机参数分布总体呈两种形式,①TOC≥0.2%的层段(西缘克里摩里组和乌拉力克组、旬邑地区马六段),其Zr/Rb<1,Rb/K值高,Rb/K与δ~(18)O呈同步变化趋势,指示水动力弱、盐度高;亲铁、亲硫元素和U含量相对于沉积岩平均值高,V/(V+Ni)>0.50,表明当时水—沉积界面处于缺氧状态;通过稀土元素的分布模式推断出沉降速率的变化,富有机质层段的沉降速率倾向于缓慢,但在快速低密度浊流沉积下亦可富集有机质和发育烃源岩;P、Ba含量高,碳酸盐δ~(13)C值正向偏移等暗示有机质埋藏量和保存率高,且δ~(13)C_(org)<-28‰,指示为Ⅰ—Ⅱ型母质,生烃潜力较高;②TOC<0.2%的层段(西缘桌子山组和三道沟组、岐山地区马家沟组),其亲铁、亲硫和亲生物元素缺乏富集是底部水体不缺氧、有机质难以保存的强有力证据,Zr/Rb>1,加之稀土元素特征均反映出快速沉积的高能环境,且δ~(13)C_(org)值介于-24‰~-28‰,属Ⅱ—Ⅲ型,生烃潜力较差。
     运用稀土元素分异程度及Zr/Rb、Ti/Al等元素比值可以有效恢复古沉降速率和水动力条件,对微量元素示踪及古环境研究具有重要的理论与应用价值。
     上述无机参数在海相碳酸盐岩中,即使其有机质热演化程度已达高—过成熟阶段,仍可提供重要的碳酸盐岩沉积—早期成岩作用的信息,尤其它们作为控制碳酸盐岩中有机质聚集和保存过程的主因子的特征变量组合,可反映出原始沉积环境性质及其演化的主要特征。利用其组合,结合必要的有机参数,重塑烃源岩发育环境,进而判识海相有效烃源岩及其分布规律是可行、有效的,为高演化海相碳酸盐岩有效烃源岩的评价提供了新途径,对油气勘探开发有着特殊的意义。
     3.沉积有机质的质量转化受控于生态及沉积环境。缺氧条件下,沉积有机质经历强烈微生物改造,不稳定部分被优先降解,使有机质向富氢、富脂质转化,
    
    形成类型好,生烃潜力高的油气母质,其碳同位素组成显示为富集’℃的趋势。
     氧化环境中,有机质不易保存,即使有少量的有机质保存下来,因不存在“优
    先降解”过程,其质量不仅受控于腐殖化作用,还受原始富氢生源(贫’3C)与
    贫氢生源(富’3C)间竞争的影响,当有机质,,二/(有机质.:3c+有机质;:矽值
    增加时,有机质倾向于腐殖型、富集重同位素组成,反之亦然。
     研究区占’3Cor,的纵横向分布特征不仅蕴涵着有机质类型的信息,还可结合
    其它指标追踪古环境,为研究海相烃源岩,尤其判识高过成熟海相有效烃源岩及
    其展布规律提供重要依据。
     4.生物繁盛、适宜的沉积速率及底层水为缺氧、滞静、低能等无疑是海相
    有效烃源岩发育的关键性控制因子,可用微量元素和碳氧同位素等无机参数对其
    进行表征。本文建立了判识海相有效烃源岩及其分布规律的环境分析基本模式。
     鄂尔多斯盆地存在三种利于烃源岩发育的环境:①大陆边缘滞流、低能、缺
    氧的半封闭性环境,泥质含量对有机质有显著影响,如西缘克里摩里组;②盆地
    内部蒸发、泻湖、局限环境,盐度可能起着关键性的作用,如旬邑地区马六段;
    ③斜坡带低密度浊流沉积,与沉积速率密切相关,如西缘乌拉力克组。前两种属
     “保存模式”;③第三种为“生产力模式”。
     5.鄂尔多斯盆地奥陶系烃源岩发育不均匀。克里摩里组与乌拉力克组在桌子
    山地区连续沉积,具良好的有机质富集条件,有机碳含量较高,为腐泥型,生烃
    潜力高,可视为潜在有效烃源岩,结合其上、下层位的粗粒岩层和顶部溶蚀面考
    虑,是极具勘探潜力的生储盖组合。平凉地区乌拉力克组和旬邑地区马六段亦有
    较高的生烃潜力。西缘桌子山组和三道沟组、岐山地区马家沟组属非有效烃源岩。
     6.碳酸盐岩碳、氧同位素组成忠实记录了研究区相对海平面的波动,二者
    具相似的变化趋势,其地层曲线可代表相对海平面变化曲线。克里摩里期,桌子
    山地区受贺兰裂谷强烈沉降,相对海平面上升幅度较大,导致浮游生物繁盛,底
    栖生物缺乏,盐跃层、低能、缺氧条件等形成,接受了有机碳含量较高、有机质
    类型又好的细粒碳酸盐岩及笔石相。在岐山地区,马家沟期相对海?
Lower Paleozoic marine deposits that commonly displays high-over maturity (Ro ranging 1.3 %~4.5%) and lower total organic carbon contents (TOC were widespread in China, where were further complicated to distinguish the efficient hydrocarbon source rocks because of TOC , H/C, etc. have been changed by a long thermal evolution. Currently, the accurate evaluation of validity for marine hydrocarbon source rocks is one of the pending important problem in oil and gas exploration and developments. Some scholars had discussed different restoring methods for hydrocarbon generation potential of high-over mature potential source rock by many methods of geochemistry, but those have some difficulties and differences.
    The developments of hydrocarbon source rocks are primarily controlled by sedimentary environment that including ( i) productivity in the surface waters, (ii) sediment accumulation rate, (iii) bottom-water oxicity, and (iv) organic-matter source, these can be accepted as key variables. The chemic stability of trace elements and carbon isotope composition are stronger than organic matters even in high-over mature stage. Therefore, the inorganic parameters can show original sedimentary environment reliably, and have more predominance to further differentiate efficient hydorocarbon source rock in high-over mature stage. The Ordovician strata distribute widely in the West-South area, Ordos Basin. The Majiagou Formation (O_1m) in this area is made up of a suite of platform carbonate sediments, whereas the Wulalike Formation (O_2w) consists of a suite of foreslope gravity-flow sediments including clastic rocks intercalated with mudstone and carbonate rocks. In this paper, the paleoenvironments of potential hydrocar
    bon source rock of these Formations is discussed using inorganic parameters. The aim of this study was to grope for new approach for distinguishing the efficient hydrocarbon source rocks in high-over
    
    
    
    mature marine deposits.
    1. The main oxides, trace elements, rare earth elements and carbon,oxygen isotope compositions display a regular temporal and spatial evolution. The cluster and correspondence analytical results show that geochemically the different formations in the researchful area are not only independent but also correlated. Vertically, the geochemical signatures of these strata also exhibit an episodic and cyclic pattern of evolution, i.e. the simultaneous increase or decrease in most of the elements and parameters. In this respect, the evidences in favour of the above-mentioned regular evolution in time and space are strongly supported by the macroscopic features and depositional environments of these strata.
    2. High contents of Barium, Positive 513Ccarb excursions have reflected a high paleo-productivity and burial amounts of organic matter in Oik, Oaw in West and Oim6 Formation of Well XT1 that contain 0.2% total organic carbon, and have a good type of organic matters, high hydrocarbon potential. So these Formations can be regarded as efficient hydrocarbon source rocks. However, in O\z, O\s in West and Dim4"6Formations of Qishan section, TOC<0.2%, Ba<25 (xlO'6) , 613Ccarbmost have negative values, which indicate a low burial quantity, unfavorable preserved conditions, and low-quality of organic matters. These suggest that carbonate rocks in such environments are poor hydrocarbon source rocks. Rare-earth elements and oganic matter, both have osculatory correlation, REE fractionating degree can reflect sedimentation rate. Poor source rocks are rapidly deposited in shallow water, but efficient hydrocarbon source rocks are slowly deposited in bottom-water anoxicity, stagnated, bathyal environment mainly, black shales also can develop the efficient hydrocarbon source rocks, which sedimentation rate is high part. Therefore, paleo-productivity, burial amounts of organic matter, and sedimentation rate can be rebuilded effectively using inorganic parameters ?Ba, stable carbon isotopic composition and rare-earth elements, etc, and can be applied in further estimate studies for the validity of
引文
1.赵政璋,赵贤正,何海清.中国石油近期油气勘探新进展及未来主要勘探对象与潜力.中国石油勘探,2004,9(1):1~7
    2.赵贤正,李景明,李东旭等.中国天然气资源潜力及供需趋势.天然气工业,2004,24(3):1~4
    3.中国科学院地球化学研究所编.高等地球化学.北京:科学出版社,2000.1~378
    4.黄第藩.21世纪初我国油气地球化学面临的任务和展望.见:梁狄刚,黄第藩,马新华等主编.有机地球化学研究新进展.北京:石油工业出版社,2001.3~10
    5.程克明,王兆云.高成熟和过成熟海相碳酸盐岩生烃条件评价方法研究.中国科学(D辑),1996,26(6):537~543
    6.程克明,王兆云,钟宁宁等.碳酸盐岩油气生成理论与实践.北京:石油工业出版社,1996.1~317
    7.郝石生,高岗,王飞宇等.高过成熟海相烃源岩.北京:石油工业出版社.1996.1~176
    8.夏新宇,戴金星.碳酸盐岩生烃指标及生烃量评价的新认识.石油学报,2000,21(4):36~41
    9.梁狄刚,张水吕,张宝民等.从塔里木盆地看中国海相生油问题.地学前缘,2000,7(4):534~547
    10.赵伦山,赵善仁,叶荣.跨越世纪:地球化学的理论与应用,见:欧阳自远主编。世纪之交矿物学岩石学地球化学的回顾与展望.北京:原子能出版社,1998.159~167
    11.欧阳自远,邹永廖,刘建忠等.地球化学若干领域的回顾与展望.地球科学进展,2001,16(5):617~623
    12.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000.1~316
    13.赵振华.微量元素地球化学原理.北京:科学出版社,1997.1~238
    14.Emery D, Robinson A等.无机地球化学在石油地质学中的应用.王铁冠等译.北京:石油工业出版社,1999.1~242
    15.Galimov E M.生物圈碳同位素组成全球变化特点.李红光译自,1999,(8):787-803.天然气地球化学,2002,13(1-2):1~17.
    16.王大锐.油气稳定同位素地球化学.北京:石油工业出版社,2000.1~294
    17.冯洪真,刘家润,施贵军.湖北宜昌地区寒武系一下奥陶统的碳氧同位素记录.高校地质学报,2000,6(1):106~115
    18.万晓樵,刘文灿,李国彪等.白垩纪黑色页岩与海水含氧量变化—以西藏南部为例.中国地质,2003,30(1):36~47
    19.朱井泉,李永铁,江茂生等.藏北措勒盆地早白垩世Aptian—Albian浅水碳酸盐岩碳同位素组成及其意义.中国科学(D辑).2003,33(3):216~222
    20. Hitonon B, Filby R H. Use of Trace Elements for Classification of Crude Oils in Families Example from Alberta, Canada. AAPG, Bull. 1984, 68:693
    21. Lewan M D. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim. Cosmochim. Acta, 1984, 48:2231~2238
    22.徐正球,邓平.干酪根和原油中的微量元素研究及其在油气勘探中的应用—(中科院兰州地质所1990~1992研究年报).兰州:甘肃科学技术出版社,1993.186~198
    23.Peters K E, Moldowan J M.生物标记化合物指南—古代沉积物和石油分子化石的解释.姜乃煌,张水昌等译.北京:石油工业出版社,1995.4~148
    
    
    24. Alberdi-Genolet M, Tocco R. Trace metals and organic geochemistry of the Machiques Member (Aptian-Albian) and La Luna Formation (Cenomanian-Campanian), Venezuela. Chemical Geology, 1999, 160:19~38
    25. Aharon P, Fu Baoshun. Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chemical Geology, 2003,195:201~218
    26. Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 1992, 99:65~82
    27. Jones B J, Manning A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in anicient mudstones. Palaeogeogr. Palaeoclim atol. Palaeoecol. 1994, 111:111~129
    28.吴朝东,杨承运,陈其英.湘两黑色岩系地球化学特征和成因意义.岩石矿物学杂志,1999,18(1):26~39
    29.徐永昌.陆相生油及其衍生热点.第四纪研究,2000,20(1):56~67
    30. Tissot B P, Welte D H. Petroleum Formation and Occurrence-A New Approach to Oil and Gas Exploration, Springer-Verlag, Berlin, Heidelberg, New York, 1978.1~538
    31. Demaison G J, Moore G T. Anoxic Environments and Oil Source Bed Genesis. AAPG Bull.,1980, 64: 1179~1209
    32. Chester R. Marine Geochemistry. Blackwell publishing, 2003.373~378
    33.陈践发,张水昌,王大锐等,中国典型叠合盆地油气形成富集与分布预测,中国石油勘探开发研究院,国家重点基础研究(973)项目中期评估报告(G1999043306),2001
    34.赵文智,张光亚,何海清等.中国海相石油地质与叠合含油气盆地.北京:地质出版社,2002.1~360
    35. Hunt J M. Petroleum Geochemistry and Geology. New York: Freman. 1979. 1~273
    36.曾允孚,夏文杰.沉积岩石学.北京:地质出版社,1986.1~274
    37.李荣西.有机质热演化与极低级变质作用.地质科技情报,1996,15(3):64~66
    38.王中刚,于学元,赵振华等.稀土元素地球化学.北京:科学出版社,1989.1~300
    39.Schidlowski M~(13)C/~(12)C值作为生物成因标志.见:Johns R B主编.沉积记录中的生物标志物.王铁冠,黄第藩等译.北京:科学出版社,1991.205~213.
    40.陈衍景,邓健,胡桂兴.环境对沉积物微量元素含量和分配型式的制约.地质地球化学,1996,(3):97~105
    41.张水昌,梁狄刚,张大江等.关于古生界烃源岩有机质丰度的评价标准.石油勘探与开发.2002,29(2):8~12
    42.长庆油田石油地质志编写组。中国石油地质志(卷十二,长庆油田).北京:石油工业出版社.1992.1~489
    43.杨俊杰,裴锡古.中国天然气地质学(卷四)北京:石油丁业出版社,1996.1~291
    44.杨俊杰.鄂尔多斯盆地构造演化与油气分布规律.北京:石油工业出版社,2002.1~228
    45.戴金星,王庭斌,宋岩等.中国大中型天然气田形成条件与分布规律.北京:地质出版社,1997.1~300
    46.关士聪.中国海陆变迁、海域沉积相与油气(晚元古代—三叠纪).1987.见:关士聪地质文选.北京:地质出版社,1988.125~148
    47.张抗.鄂尔多斯断块构造和资源.西安:陕西科学技术出版社,1989.13l~141
    
    
    48.周志毅等.西北地区地层、古地理和板块构造.南京:南京大学出版社,1995.1~298
    49.冯增昭,鲍志东,张永生等.鄂尔多斯盆地奥陶纪碳酸盐岩地层岩石岩相古地理.北京:地质出版社,1998.1~142
    50.侯方浩,方少仙,赵敬松等.鄂尔多斯盆地中奥陶统马家沟组沉积环境模式.海相油气地质,2002:7(1):38~46.
    51.戴金星,夏新宇,卫延召.中国天然气资源及前景分析—兼论“西气东输”的储量保证.石油与天然气地质.2001,22(1):1~8
    52.胡见义.石油地质学前沿和勘探新领域.中国石油勘探,2004,9(1):8~14.
    53. Klemme H D, Ulmishek G E Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. AAPG Bull, 1991, 75(12): 1809~1851
    54.徐永昌,沈平,张晓宝.中国西部大中型气田同位素特征及西气东输的资源储备.矿物岩石地球化学通报,2002,21(2):73~77
    55. Ronov A B. Organic carbon in sedimentary rocks (in relation to presence of petroleum). Translation in Geochemistry, 1958, 5: 510~536
    56. Murris R J. Middle East: Stratigraphic evolution and oil habitate. AAPG Bull, 1980, 64 (5):597~618
    57. Ayies M G, et al. Hydrocarbon habitat in main producing area, Saudi Arabia. AAPG Bull, 1982, 66:1~9
    58. Powell T G. Some aspects of the hydrocarbon geochemistry of a modern Devoian barried-reef complex. In petroleum geochemistry and source rock potential of carbonate rocks, eds. Palacas J G. AAPG studies in Geology 18,Tulsa, 1984:45~61
    59. James K H. The Venezuelan hydrocarbon habitat, Classic petroleum provinces, Geol. Soc. London Spec Publication. 1990, 50:9~351
    60.程克明,王铁冠,钟宁宁等.烃源岩地球化学.北京:科学出版社,1995.83~88
    61.李晋超,马永生,张大江等.中国海相油气勘探若干重大科学问题.石油勘探与开发.1998,25(5):1~7
    62.夏新宇.碳酸盐岩生烃与长庆气田气源.石油工业出版社,2000.1~158
    63.王飞宇,张水昌,张宝民等.塔里木盆地库车坳陷中生界烃源岩有机质成熟度.1999,20(3):221~224
    64.钟宁宁,耿安松.中国典型叠合盆地碳酸盐岩烃源岩生排烃机理与效率.北京:石油大学,2001
    65.郜建军,李明宅.我国海相碳酸盐岩的有机相及其生油气潜力.见:石油与天然气地质(第四集).北京:地质出版社,1995.65~77
    66.肖贤明,刘德汉,傅家谟等.海相镜质体—海相烃源岩中一种重要生烃母质.石油学报,1997,18(1):44~48
    67.赵孟军,张宝民,肖中尧等.塔里木盆地奥陶系偏腐殖型烃源岩的发现.天然气工业,1998,18(5):32~36
    68.赵孟军.张宝民,边立曾等.奥陶系类Ⅲ型烃源岩及其生成天然气的特征.科学通报,1999,44(21):2333~2336
    69.王飞宇,边立曾,张水昌等.塔里木盆地奥陶系海相源岩中两类生烃母质.中国科学(D辑)2001,31(2):96~102
    70. Heroux Yvon. Chagron Andre, Betrand udolf. Compilation and correlation of major maturation indicators. AAPG, 1979, 63(12): 2128~2144
    
    
    71. Goodarzi F, Fowler M G, Bustin M, et al. Thermal maturity of early Paleozoic sediments as determined by the optical properties of marine-derived organic matter, a review. In: Schidlowski M, et al. eds. Early Organic Evolution: Implications for Mineral and Energy Resources. New York: Springer-Verlag, 1992. 279~295
    72. Buchardt B, Lewan M D. Reflectance of vitrinite-like macerals as a thermal maturity index for Cambrian-Ordivician Alum shale Southern Scandinavia. AAPG, 1990, 74:394~406
    73.金奎励.有机岩石学研究——以塔里木为例.北京:地震出版社,1997.18~22
    74.钟宁宁,秦勇.碳酸盐岩有机岩石学——显微组分特征、成因、演化及其与油气关系.北京:科学出版社,1995.58~60
    75.王涛.中国天然气地质理论基础与实践.北京:石油工业出版社,1997.1~285
    76.戴金星,刘德良,曹高社等.华北石油天然气烃源岩的确认及其地质矿产意义.地质通报,2002,21(6):345~347
    77.陈义才,沈忠民,李延军等.过成熟碳酸盐烃源岩有机碳含量下限值探讨—以鄂尔多斯盆地奥陶系马家沟组为例.石油实验地质.2002,24(5):427~430
    78.傅家谟,刘德汉.碳酸盐岩有机质热演化特征及油气评价.石油学报,1982,(1):1~9
    79.郝石生.碳酸盐岩有机质丰度及其演化特征的讨论.石油实验地质,1984,6(1):67~71
    80.刘宝泉,梁狄刚,方杰.华北地区中上元古界、下古生界碳酸盐岩有机质成熟度与找油远景.地球化学,1985,(2):150~162
    81.陈丕济.碳酸盐岩生油地化中几个问题.石油实验地质,1985,7(1):3~12
    82.刘德汉,杨秀珍,孙永革等.鄂尔多斯盆地东部下奥陶统碳酸盐一蒸发盐地球化学特征和生气规律,沉积学报,1995,13(2):93~140
    83.黄第藩,卢双舫.煤成油地球化学进展.北京:石油工业出版社,1992.1~25
    84. Stow D A V, Huc A Y, Bertrand P. Depositional processes of black shales in deep water. Marine and Petroleum Geology. 2001, 18:491~498
    85.赵伦山,张本仁.地球化学.北京:地质出版社,1986.1~400
    86.王启军,陈建渝.油气地球化学。北京:中国地质大学出版社,1988.1~327
    87.颜佳新,徐四平,李方林.湖北巴东栖霞组缺氧沉积环境的地球化学特征.岩相古地理,1998,18(6):27~32
    88. Degens E T, Paluska A. Hypersaline solutions interact with organic detritus to produce oil. Nature, 1979, 281:666~668
    89. Kirkland D W, Evans R. Source rock potential of evaporitic environment, AAPG Bull, 1981, 65:181~190
    90.李任伟.蒸发盐环境沉积岩有机质和生油研究.北京:海洋出版社,1993.1~159
    91. Hollander D J, Smith M A. Microbially mediated carbon cycling as a control on theδ~(13)C of sedimentary carbon in eutrophic Lake Mendota (USA): New models for interpreting isotopic excursions in the sedimentary record. Geochimica et Cosmochimica acta, 2001, 65(23):4321~4337
    92. Kevin W, Mandernack H, Krouse R, et al. A stable sulfur and oxygen isotopic investigation of sulfur cycling in an anoxic marine basin, Framvaren Fjord, Norway. Chemical Geology, 2003, 195: 181~200
    93. Foree, E. G., and P. L. McCarty. Anaerobic decomposition of alagae: Environ. Sci. Technology, 1970, 4: 842~849
    94. Lehmann M F, Bernasconi S M, Barbieri A, et al. Preservation of organic matter and
    
    alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta, 2002, 66 (20): 3573~3584
    95. Orr W L, Gaines A G. Observations on rate of sulfate reduction and organic matter oxidation in the bottom waters of an estuadne basin: the upper basin of the Pettaquamseutt River ((Rhode Island), in Advances in organic geochemistry. Pads, Technilp, 1974:790~812
    96.王兆云,程克明.碳酸盐岩生烃机制及“三段式”成烃模式研究。中国科学(D辑)1997,27(3):250~254
    97. Freudenthal T, Wagner T, Wenzhfer F, et al. Early diagenesis of organic mateer from sediments of the eastern subtropical atlantic: evidence from stable nitrogen and carbon isotopes. Geochimica et Cosmochimica aeta, 2001, 65 (11): 1795~1808
    98. Bordovsky, O.K. Accumulation and transformation of organic substance in marine sediments: Marine Geology, 1965, 3, 3~114
    99. Schidlowski M. Isotopic inferences of ancient biochemistries: carbon sulfur, bydrogen, and nitrogen. Nature, 1988, 333:313~318
    100.叶连俊等.生物有机质成矿作用和成矿背景.北京:海洋出版社,1998.1~462
    101. Mazumdar, Banerjee D M, et al. Rare-earth elements and stable isotope geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, India). Chemical Geology, 1999, 159:275~297
    102. Wehausen R, Brumsack H J. Cyclic variations in the chemical composition of eastern Mediterranean Pliocene sediments: a key for understanding sapropel formation. Mar. Geol, 1999, 153:161-176
    103.陈建芳.古海洋研究中的地球化学新指标.地球科学进展,2002,17(3):402~409
    104. Hester R, Boyle E A. Water chemistry control of the Cd content of benthic foraminifera. Nature, 1982, 298:260~261
    105. Pastier H F, Bosch H J, Nijenhuis I A, et al. Sulphidic Mediterranean surface waters during Pliocene sapropel formation. Nature, 1999, 397:146-149
    106. Elderfield, Rickby. Oceanic Cd/P ratio and nutrient utilization in the glacial South Ocean. Nature, 2000, 405:305~310
    107. Calvert S E, Pedersen T F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 1993, 113:67~88
    108.吴朝东,储著银.黑色页岩微量元素形态分析及地质意义.矿物岩石地球化学通报,2001,20(1):14~20
    109.Wolf K H.层控矿床和层状矿床(地球化学研究).北京:地质出版社,1980,1~290
    110.刘英俊,曹励明等.元素地球化学.北京:科学出版社,1984.1~392
    111.牟保磊.元素地球化学.北京:北京大学出版社,1999.100~105
    112.刘昭蜀等.南海地质.北京:科学出版社,2002.315~400
    113. Hitonon B, Filby R H. Use of Trace Elements for Classification of Crude Oils in Families Example from Alberta, Canada. AAPG, Bull. 1984, 68:693
    114. Odermatt J R, Curiale J A. Organically bound metals and biomarkers in the Monterey Formation of the Santa Maria Basin, California. Chemical Geology,1991, 91: 99~113
    115.赵一阳,鄢明才.中国浅海沉积物地球化学.北京:科学出版社,1994.15~22
    116.谢泰俊.海相生烃碎屑岩的沉积环境及有机质的分布.沉积学报,1997,15(2):14~18
    117. Jonse R W. Organic facies. In: Adrance in Petroleum geochechemistry, Academic press,
    
    London,1987.2:1~90
    118. Demaison G J. Predictive source bed stratigraphy: A guide to regional petroleum occurrence: Chichester, John Wiley,11th World Petroleum Congress Proceedings, 1983.17~29
    119.夏新宇,洪峰等.鄂尔多斯盆地下奥陶统碳酸盐岩有机相类型及生烃潜力.沉积学报,1999,17(4):638~650
    120. Brnmsack H J. Geochemistry of recent TOC rich sediments from the Gulf of California. Geologische Rundschau, 1989, 78: 851~882
    121.王大锐,白玉雷,贾承造.塔里木盆地油区石炭系海相碳酸盐岩同位素地球化学研究.石油勘探与开发,2001,28(6):38~41
    122. Kump L R,. Arthur M A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology, 1999, 161:181~198
    123.王大锐,宋力生.论我国海相中上奥陶统烃源岩的形成条件—以塔里木盆地为例。石油学报,2002,23(1):31~34
    124.杨瑞东,王世杰,欧阳自远等.元古宙—寒武纪疑源类的辐射演化、绝灭作用与海洋地 球化学演变—兼论扬子区元古宙—奥陶纪疑源类的演化.地质地球化学,2001,29(4):65~72
    125. Hollander D J, Smith M A. Microbially mediated carbon cycling as a control on theδ~(13)C of sedimentary carbon in eutrophic Lake Mendota (USA): New models for interpreting isotopic excursions in the sedimentary record. Geochimica et Cosmochimica acta. 2001, 65 (23):4321~4337
    126.吴胜和,冯增昭,何幼斌.中下扬子地区二叠纪缺氧环境研究,沉积学报,1994,12(2):29~35
    127.范德廉,张焘,叶杰.缺氧环境与超大矿床的形成,中国科学(D辑),1998,28(增刊):57~62
    128.晋慧娟,李育慈,方国庆.古代深海底质氧控的遗迹化石群落.沉积学报,2003,21(1):76~80
    129. Hiroto Kimura et al. Ocean Anoxic Event at the Precambrian-Cambrian Boundary. Geology, 2001, 29, 11
    130. Adelson J M, Helz G R, Miller C V. Reconstructing the rise of recent coastal anoxia: molybdenum in Chesapeake Bay sediments. Geochimica et Cosmochimica Acta, 2001, 65 (2): 237~252
    131. Chaillou G, Anschutz P, Lavaux G, et al. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay. Marine Chemistry, 2002, 80:41~59
    132. Vorlicek T P, Helz G R. Catalysis by mineral surfaces: Implications for Mo geochemistry in anoxic environments. Geochimica et Cosmochimica acta. 2002, 66(21): 3679~3692
    133. Wright J, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. et Cosmochim. Acta., 1987, 51: 631~644
    134.施春华,黄秋,颜佳新.广西来宾栖霞组缺氧沉积环境地球化学特征.地质地球化学。2001,29(4):35~39
    135.腾格尔,刘文汇,徐永昌,陈践发.缺氧环境及地球化学判识标志的探讨.沉积学报,2004,22(2):×××~×××
    136. Berner R A. Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta. 1984,
    
    48:605~615137.
    137. Leventhal J S. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition. Geochim. Cosmochim. Acta, 1983, 47:133~138
    138. Raiswell R, Bemer R A. Pyrite and organic matter in Phanerozoic normal marine shales. Geochim. Cosmochim. Acta, 1986, 50: 1967~1976
    139. Calvert S A, Karlin R E, Relationships between sulphur, organic carbon, and iron in the modern sediments of the Black Sea. Geochim. Cosmochim. Acta, 1991, 55:2483~2490
    140. Johns R B. Biological Markers in the Sedimentary Record. 1986.1~23
    141. Didyk B M, Simoneit B R T, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 1978, 272:216~222
    142.李守军.正烷烃、姥鲛烷与植烷对沉积环境的指示意义—以山东济阳坳陷下第三系为例.石油大学学报(自然科学版).1999,23(5):14~19
    143.沈平,徐永昌,王晋江等.天然气中硫化氢硫同位素组成及沉积地球化学相,沉积学报,1997,15(2):216~219
    144. Fu Jiamo, Sheng Guoying, Peng Pingan, et al. Peculiarities of salt lake sediments as potential source rocks in China. Organic Geochemisty, 1986, 10:119~126
    145.卢武长.稳定同位素地球化学.成都:成都地质学院出版社,1986.1~334
    146.游海涛,程日辉,刘昌岭.古盐度复原法综述.世界地质,2002,21(2):111~117
    147.陈荣坤.稳定氧碳同位素在碳酸盐岩成岩环境研究中的应用,沉积学报.1994,12(4):11~21
    148.张秀莲.碳酸盐氧碳同位素与古盐度、古水温的关系.沉积学报,1986,3(4):17~19
    149. Veizer J. Chemical diagenesis of carbonate rocks: theory and application of trace element technique. In: Arthur M A, An~derson T F, Kaplan I R, et al. Stable Isotopes in Sedimentary Geology. SEPM Short Course, 1983, 10:Ⅲ/1~Ⅲ/100.
    150. Kaufman A J, knoll A H. Neoproterozoic variations in the C-isotopic composition of weawater: stratigraphic and biogechemical implications. Precambrian Research. 1995,73:27~49
    151. Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system—1: trace elements. Sediment Petrol, 1980, 50:1219~1236
    152.刘宝珺,张锦泉.沉积成岩作用.北京:科学出版社,1992.100~240
    153.赵旭东.石油数学地质概论.北京:石油工业出版社.1992.1~300
    154.徐振邦,娄元仁.数学地质基础.北京:北京大学出版社.1994.1~304
    155.赵鹏大,胡旺亮,李紫金.矿床统计预测.北京:地质出版社,1994.220~300
    156.赵永军,李汉林.石油数学地质.北京:石油工业出版社.1998.55~223
    157. Mohammed B, Elisabeth Lallier-Verg?s. Accumulation of organic matter in the Kimmeridge Clay Formation (KCF): an update fossilisation model for marine petroleum source-rocks. Marine and Petroleum Geology, 1997,14:75~83
    158. Bttcher M E, Oelschger B, Hpner T, et al. Sulfate reduction related to the early diagenetic degradation of organic matter and 'black spot'formation in tidal sand~ats of the German Wadden Sea (southern North Sea): stable isotope (~(13)C, ~(34)S, ~(18)O) and other geochemical results. Organic Geochemistry, 1998, 29:1517~1530
    159. Harvey H R, et al. Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions. Org. Geochem. 1997.27 (3~4) : 129~140
    
    
    160.杜宏宇,王铁冠,胡剑梨等.三塘湖盆地上二叠统烃源岩中的25—降藿烷系列与微生物改造作用.石油勘探与开发.2004.31(1):42~44
    161.黄第藩,李晋超,张大江.干酪根的类型及其分类参数的有效性、局限性和相关性.沉积学报,1984,2(3):18~33
    162.张俊.生物进化.北京:北京大学出版社.1998.265~268
    163.徐永昌,傅家谟,郑建京.天然气成因及大中型气田形成的地学基础.北京:科学出版社,2000.95~105
    164.谢增业,胡国艺,李剑等.鄂尔多斯盆地奥陶系烃源岩有效性判识.石油勘探与开发.2002.29(2):29~32
    165.陈安定.论鄂尔多斯盆地中部气田混合气实质.石油勘探与开发.2002.29(2):33~38
    166.刘德汉,肖贤明,贾蓉芬等.高成熟碳酸盐岩地层烃类生成和运移的激光诱导荧光显微镜观测与判识。科学通报,2000,45(增刊):2705~2709
    167.刘德汉等.鄂尔多斯盆地奥陶系海相碳酸盐岩生烃性能与中部长庆油田气源成因研究.地质学报,2003,待刊
    168.胡国艺.鄂尔多斯盆地奥陶系天然气成藏机理及其与构造演化关系.博士论文,中国科学院研究生院.2003.1~105
    169.张宗命等.中国石油大地构造.北京:石油工业出版社,1982.21~186
    170. Haq U B, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic. Science, 1987, 235:1156~1167
    171. Jenkyns H C, Gale A S, et al. Carbon and oxygen isotope stratigraphy of the English Chalk and Italy Scaglia and its palaeoclimatic significance. Geol. Mag, 1994, 131 (1): 1~34
    172. Wenzel B, Joachimski M M. Carbon and oxygen isotope composition of Silurian branchiopodas (Gotland/Sweden): palaeoceanographic implications. Palaeogeography, Palaeoclimatology. Palaeoeclogy, 1996; 122: 143~166
    173. Raup D M, Sepkoski J J. Periodic extinctions of families and genera. Science, 1984, 231: 833~836
    174. Caus E, Teixell A, et al. Depositional model of a Cenomanian~Turonian extensional basin (Sopeira Baisn, NE Spain): interplay between tectonics, eustasy and biological productivity. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 129, 23~36
    175.尹观,王成善.西藏南部中白垩世黑色页岩的碳氧同位素组成及大洋缺氧事件的讨论.矿物岩石,1998,18(1):95~101
    176.武强,郑铣鑫,应玉飞等.21世纪中国沿海地区相对海平面上升及其防治策略.中国科学(D辑),2002,32(9):760~766
    177.魏魁生,徐怀大.冀中地区早第三纪海泛特征及其层序地层意义.现代地质,1993,7(3):274~284
    178. Scholle P A, Arthur M A. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. Bull Am Ass Petrol Geol, 1980, 64:67~87
    179.沈渭洲,方一亭,倪琦生等.中国东部寒武系与奥陶系界线地层的碳氧同位素研究.沉积学报,1997,15(4):38~42
    180.李玉成.华南晚二叠世碳酸盐岩碳同位素旋回对海平面变化的响应.沉积学报,1998,16(3):52~57
    181. Grcke D R, Hesselbo S P, Jekyns.H C. Carbon-isotope composition of Lower Cretaceous
    
    fossil wood: Ocean-atmosphere chemistry and relation to sea-level change. Geology, 1999,27(2): 155~158
    182.江茂生,朱井泉,陈代钊等.塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应.中国科学(D辑),2002,32(1):36~42
    183. Vahernkamp V C. Carbon Isotope Stratigraphy of the Upper Kharaib and Shuaiba Formations: Implications for the Early Cretaceous Evolution of the Arabian Gulf Regin. AAPG Bull, 1996, 80 (5): 647~662
    184. Emiliani C, Shaekleton N J. The Brunches epoch: Isotopic palaeotemperatures and geochronology. Science, 1974, 183:511c514
    185. Miller K G, Mountain G S, et al. Drilling and dating New Jersey Oligocene~Miocene sequences: Ice volume, global sea level, and Exxon records. Science,1996, 271: 1092~1095
    186. Linsley B K. Oxygen~isotope record of sea level and climate variations in the Sulu Sea over the past 150,000 years. Nature, 1996, 380:234~237
    187. Keller G, Alfonso Pardo. Age and paleoenvironment of the Cenomanian~Turonian global stratotype section and point at Pueblo, Colorado. Marine Micropaleontology. 2004,××:×××~×××

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700