重大工程场地地震动输入参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合理的地震动输入是保证结构抗震设计结果可靠与经济的必要条件。目前国内外普遍采用的反应谱法没有考虑地震动持时及空间变化性的影响;拟合目标反应谱的人造地震动方法不能得到频率非平稳加速度;国内规范在加速度峰值的选取方面存在不相衔接的现象;一致概率反应谱并不是同一地震事件的真实反应谱,该谱的中、长周期值不合理显著偏大,造成抗震设计十分困难。本文针对本文针对地震加速度峰值特性、时频谱的衰减特性及地震动参数的空间变化性等方面进行了深入研究,并在此基础上探讨了综合考虑地震动三要素影响的设定地震方法和工程场地非平稳加速度时程的合成方法;最后将研究结果应用于新疆克孜尔坝址地震动输入参数的确定。主要内容及成果如下:
     (1)通过对地震加速度记录放大系数谱的计算分析,给出了基岩和土层记录的水平和竖向地震分量的有效峰值加速度(EPA)的计算式。通过对峰值加速度(PGA)和EPA统计分析表明,PGA与EPA间存在强线性和对数线性相关性,可根据相关性方程进行PGA与EPA间的相互转换或预测,便于国内规范的配套使用。通过影响因素分析发现,衰减关系式的选取、年超越概率的大小、场点与潜在震源的位置关系及潜在震源的震级上限的大小等都将直接影响PGA和EPA取值及两者的比例关系。
     (2)根据中国大陆与美国西部在地震构造、地震成因等方面的相似性,利用美国西部基岩加速度强震记录资料,建立了适用于中国大陆的时变功率谱和能量等效速度谱的衰减关系式。分析了震级、震中距对时变功率谱及能量等效速度谱的影响规律。
     (3)应用通过分析局部空间位置变化对地震动参数影响显著程度来研究地震动参数空间分布规律的方法,建立了地震动参数随局部空间位置坐标变化的随机预测模型。结果表明:空间位置坐标的变化对不同的地震动参数或模型参数的影响规律及影响程度不相同,不同的地震动参数具有不同的空间分布形式。
     (4)提出了由EPA确定最大贡献潜源、由0.2s周期点的能量等效速度谱确定设定地震的震级和震中距、并根据地震构造条件确定设定地震的具体位置的设定地震方法。该方法综合考虑了地震动三要素—幅值、频谱和持时对设定地震结果的影响。
     (5)探讨了根据时变功率谱衰减规律、地震动参数空间变化模型及设定地震结果进行多点输入非平稳加速度时程合成的方法。
     (6)利用本文提出的方法,对新疆克孜尔坝址所在的地震研究区进行了地震危险性分析和设定地震研究,确定了坝址4种超越概率下的地震动输入参数——加速度峰值、加速度反应谱及加速度时程。并对依据不同参数进行设定地震所取得的结果进行了比较分析,验证了本文设定地震方法的合理性。
The reasonable earthquake ground motion input parameters are necessary to insure the correct designed results. However, nowadays, the response spectrum method does not take the influence of the temporal and spatial variability of the ground motion on the structure seismic response into account, and the ground motion frequency nonstationarity is not considered properly. Besides, there is in concordance in selecting acceleration peak in different domestic specifications. In this paper, some problems on the characteristics of ground motion acceleration peak, spatial variabilities and attenuation laws of the evolutionary power spectrum and the absolute elastic input energy equivalent velocity spectrum have been studied. Then, the methods of generating the scenario earthquake and synthesizing nonstationary strong ground motion have been discussed. Finally, the method was applied to determine the earthquake input parameters of Kezier dam site in Xinjiang. The main results of this paper are as following:
    (1) The calculated methods of effective peak ground acceleration (EPA) were put forward by analyzing the acceleration average magnified coefficient spectrum. The statistical results indicated that there was strong linear and logarithm linear correlation between peak ground acceleration (PGA) and EPA. The feasibility and rationality about using EPA to replace PGA were also demonstrated. The main effect factors on PGA, EPA and the proportion of PGA and EPA were discussed. The results suggested that the attenuation relationship, annual exceeding probability, the locations of site and potential earthquake sources and the maximum magnitude of potential earthquake source had directly influence on the value of PGA, EPA and PGA/EPA.
    (2) Based on the rock strong motion dataset in western North America, the attenuation relationships of evolutionary power spectrum and energy equivalent velocity spectrum were developed according to the similarity in geology, seismology and regional tectonics et al between China and western North America. The results revealed that models presented in this paper fitted the record's values better than those in correlative literature.
    (3) The method being used to analyze ground motion spatial variabilities by analyzing the influence of the variation of spatial distances on ground parameters was studied, and the stochastic prediction models were suggested as well. The results proposed that different parameters had different spatial distribution forms.
    (4) A scenario earthquake method which integrated the amplitude, duration and frequency of ground motion was presented. In this method, the dominant potential earthquake sources, which had the largest contribution to the site, were chosen from earthquake sources according to the EPA attenuation relationship. The magnitude and hypocentral distance of scenario earthquake were determined by energy equivalent velocity spectra attenuation relationship at 0.2 seconds periods within the dominant potential earthquake sources, and the specific
引文
[1] 陈寿梁,魏琏编.抗震防灾对策[M].河南郑州:河南科学技术出版社.1988.
    [2] 崔江余.高拱坝地震动输入机制研究[D].北京:中国水利水电科学研究院博士学位论文.1999.
    [3] 李英民.工程地震动的模型化研究[D].重庆:重庆建筑大学学位论文.2000.
    [4] 陈厚群,李敏,张艳红.300m级高拱坝抗震技术研究——地震危险性分析和地震动输入机制研究研究成果汇编[R].中国水利水电科学研究院.“九五”国家重点科技攻关96-211-03-01.
    [5] 霍俊荣.近场强地面运动衰减规律的研究[D].北京:国家地震局工程力学研究所博士学位论文.1989.
    [6] Ambraseys, N.N.. Dynamics and Response of Foundation Materials in Epicentral Regions of Strong Earthquakes[A]. In: Proceedings of the 5th World Conference on Earthquake Engineering [C]. Rome, Italy, 1973.1: CXXⅥ-CXLⅤⅢ.
    [7] 刘文廷.土石坝地基随机地震反应分[D].辽宁大连:大连理工大学博士学位论文.1993.
    [8] 汪小刚.加强高坝大库震灾机理及安全寿命基础研究的现实意义和工作展望[J].水利规划与设计(增刊).2004,(4):13-17.
    [9] 胡聿贤.地震工程学[M].北京:地震出版社.1988.
    [10] 蒋溥,梁小华,雷军著.工程地震动时程合成与模拟[M].北京:地震出版社.1991.
    [11] 李杰,李国强著,地震工程学导论[M],北京:地震出版社.1992.
    [12] Schnabel, P.B. and Seed H.B.. Accelerations in rock for earthquake in the western United States[J]. Bulletin of the Seismological Society of America. 1973, 63(2): 501-516.
    [13] 陈厚群,郭明珠.重大工程场地设计地震动参数选择[A].见:中国水利水电科学研究院会议文集[C].北京.2002,(1):552-568.
    [14] 胡聿贤.中国院士书系——地震工程[M].河北石家庄:河北教育出版社,2000.
    [15] Hanks T.C.. b value and ω~(-γ) seismic source models: implications for tectonic stress variation along active crustal fault zones and the estimation of high-frequency strong ground motion[J]. Journal of Geophysical Research, 1979, 84(B5): 2235-2242.
    [16] Ohsaki, Y., Watabe, M. and Tohdo, M.. Analysis on seismic ground motion parameters including vertical components[A]. In: Proceedings of the 7th World Conference on Earthquake Engineering[C]. Istanbui, Turkey. 1980, 2(Ⅱ): 97-104.
    [17] Mortgat, C.P.. A probabilistic definition on earthquake acceleration[A]. Proceedings of the 2nd US National Conference on Earthquake Engineering[C]. 1979, (1): 743-752.
    [18] Bolt, B.A. and Abrahamson, N.A.. New attenuation relations for peak and expected accelerations of strong motion[J]. Bulletin of the Seismological Society of America. 1982, 72(6): 2307-2321.
    [19] Nutti, O.W.. The relation of sustained maximum ground acceleration and velocity to earthquake intensity and magnitude[R] state-of-the-Art for Assessing Earthquake Hazards in the United States, U.S. Army Eng. Waterways Experiment Station Misc. Paper S-73-1, Report 16, Vicks berg, Mississippi. 1979.
    [20] Hasegawa, H.S. et al. Attenuation relations for strong seismic ground motion in Canada[J]. Bulletin of the Seismological Society of America. 1981, 71(6): 1943-1962.
    [21] Seed, H.B. and Idriss, I.M.. Influence of soil conditions on building damage potential during earthquake[J]. American Society of Civil Engineering. 1971, 97(ST2): 639-663.
    [22] Vanmarcke, E.H.. and Lai, S.S.P.. Strong motion duration and RMS amplitude of earthquakes[J]. Bulletin of the Seismological Society of America. 1980, 70(4): 1293-1307.
    [23] Frankel, A.D. et al. USGS National Seismic Hazard Maps[J]. Earthquake Spectra. 2000, 16(1): 1-19.
    [24] GB18306-2001.《中国地震动参数区划图》[S].北京:国家质量技术监督局,2001.
    [25] Kanai, K.. Semi-empirical formula for the seismic characteristics of ground motions[J], Bulletin of the Earthquake Research Institute. University of Tokyo. Tokyo, Japan. 1957, 35: 309-325.
    [26] Tajimi, H.. A statistical method of determining the maximum response of a building structure during a earthquake [A]. Proceeding of the 2nd World Conference on Earthquake Engineering[C]. Tokyo-Kyoto, Japan. 1960, 2: 781-797.
    [27] Housner, G.W. and Jennings, P.C.. Generation of Artificial Earthquake[J], Journal of the Engineering Mechanics Division. American Society of Civil Engineering. 1966, 90(EM1): 113-150.
    [28] Sues, R.H. et al. Stochastic seismic performance evaluation of buildings[R]. Technical Report UILI-ENG-83-2008, University of Illinois, 1983.
    [29] Lai, S.S.. Statistical characterization of strong ground motion using power spectral density function[J]. Bulletin of the Seismological Society of America. 1982, 72(1): 259-276.
    [30] 江近仁等.强震运动谱的统计特性[R].国家地震局工程力学研究所研究报告 87-032,1987.
    [31] 孙景江,江近仁.与规范反应谱相对应的金井清谱的谱参数[J].世界地震工程.1990,(1):42-48.
    [32] 屈铁军.水工建筑物地震动场模拟及核电站控制棒下落时间分析[D].北京:中国水利水电科学研究院博士后研究工作报告.1997.
    [33] 胡聿贤,周锡元,弹性体系在平稳和平稳化地面运动下的反应[R].地震工程研究报告集第一集,北京:科学出版社.1982,33-35.
    [34] Clough,R.W.and Penzien,J.(著),王光远等(译).结构动力学[M].北京:科学出版社.1983.
    [35] 王君杰.多点多维地震动随机模型及结构的反应谱分析方法[D].黑龙江哈尔滨:国家地震局工程力学研究所博士学位论文,1992.
    [36] 欧进萍,牛荻涛,杜修力.设计用随机地震动模型及其参数确定[J].地震工程与工程振动.1991,11(3):45-54.
    [37] 叶天义.结构抗震的随机振动理论及应用研究[D].重庆:重庆建筑大学硕士学位论文.1993.
    [38] 赖明,叶天义,李英明.地震动的双重过滤白噪声模型[J].土木工程学报.1995,28(6):60-66.
    [39] 杜修力.水工建筑物抗震可靠度设计和分析用的随机地震输入模型[J].地震工程与工程振动.1998,18(4):76-81.
    [40] 张敏政.近场地震动工程参数的估计[D].北京:国家地震局工程力学研究所博士学位论文.1986.
    [41] 徐国栋.强震地面运动超随机特性[D].北京:北京工业大学博士学位论文.2005.
    [42] Priestley, M.B.. Evolutionary spectra and nonstationary processes[J]. Journal of Royal Statistical Society, Seres B, 1965, 27:204-237.
    [43] Priestley, M.B.. Power spectral analysis of non7stationary random processes[J]. Journal of Sound and Vibrations. 1967, 6(1): 86-97.
    [44] Mark, W.D.. Spectral analysis of the convolution and filtering of nonstationary stochastic processes[J], Journal of Sound and Vibrations, 1970, 11(1): 19-63.
    [45] Liu, S.C.. Evolutionary power spectral density of strong motion earthquake[J], Bulletin of the Seismological Society of America. 1970, 60(3): 891-900.
    [46] Shinozuka, M.. Random processes with evolutionary power[J], Journal of the Engineering Mechanics Division, American Society of Civil Engineering. 1970, 96(EM4): 543-555.
    [47] Kameda, H., Sugito, M. and Asamura, T.. Simulated earthquake motions scaled for magnitude, distance, and local soil conditions[A]. Proceedings of the 7th World Conference on Earthquake Engineering[C]. Istanbul, Turkey, 1980, 2(11): 295-302.
    [48] Kameda, H.. Evolutionary spectra of seismogram by multi-filter[J]. Journal of Engineering Mechanism Division. American Society of Civil Engineering. 1975, 101: 787-801.
    [49] Goto, H., Sugito, M., Kameda H., Saito, H. and Ohtaki, T.. Prediction of nonstationary earthquake motions for moderate and Great earthquakes on rock surface [R]. Annuals disaster prevention research institute. Kyoto University. 1984, 27(B-2): 19-48.
    [50] Sugito, M., Furumoto, Y. and Sugiyama, T. Strong motion prediction rock surface by superposed evolutionary spectra[A]. Proceedings of the 12th Word Conference on Earthquake Engineering[C]. Auckland, Febbraio, New Zealand. No.2111/4/A, 2000.
    [51] Trifunac, M.D.. Response envelope spectrum and interpretation of strong ground motion[J]. Bulletin of the Seismological Society of America. 1971, 61(2): 343-356.
    [52] 章在墉.地面运动持续时间的研究现状和前景[R].中国科学院工程力学研究报告.1979.
    [53] Bolt, B.A.. Dutation of Strong Ground Motion[A]. Proceedings of the 5th World Conference on Earthquake Engineering[C]. Rome, Italy. 1973, 1: 1304-1313.
    [54] Aptikeva, F. and Kopnochev, J.. Correlation between seismic vibration parameters and structural damage[A]. Proceedings of the 7th World Conference on Earthquake Ebgineering[C], Istanbul, Turkey, Part Ⅰ. 1980, 107-110.
    [55] Husid, R.L.. Analisis de Terremotos: Analysis General, Revista del IDIEM, Santiago Chile. 1969, 8(1):21-42.
    [56] Trifunac, M.D. and Brady, A.G.. A Study of the Duration of Strong Earthquake Ground Motion[J]. Bulletin of the Seismological Society of America. 1975, 6(5): 581-626.
    [57] Takizawa, H. and Jennings, P.C.. Collapse of a Model for Ductile Reinforced Concrete Frames Under Extreme Earthquake Motion[J]. Earthquake Engineering and Structural Dynamics. 1980, 8(2): 117-144.
    [58] 谢礼立,张晓志.地震动记录持时与工程持时[J].地震工程与工程振动.19883,8(1):31-38.
    [59] 尹保江,黄宗明,白绍良.对地震地面运动持续时间定义的对比分析及改进建议[J].工程抗震.1999,(2):43-46.
    [60] Shinozuka, M. and Sato, Y.. Simulation of Nonstationary Random Process[J]. Journal of Engineering Mechanism Division. American Society of Civil Engineering. 1967, 93(1): 11-40.
    [61] Iyengar, R.N. and Iyengar, K.T.. A nonstationary random process model for earthquake accelerogram[J]. Bulletin of the Seismological Society of America. 1969, 59(3): 1163-1188.
    [62] Goto, H. and Toki, K.. Structural Response to Nonstationary Random Excitation[A], Proceedings of the 4th World Conference Earthquake Engineering[C]. Santiago, Chile. 1969, 130-144,
    [63] 霍俊荣,胡聿贤,冯启民.地面运动时程强度包络函数的研究[J].地震工程与工程振动.1991,11(1):1-12.
    [64] Amin, M. and Ang, A.H-S. nonstationary stochastic model of earthquake motions[J]. Journal of Engineering Mechanism Division. American Society of Civil Engineering. 1968, 94(2):559-583.
    [65] 李山有.重大工程结构的设计地震输入[D].黑龙江哈尔滨:中国地震局工程力学研究所博士学位论文.2000.
    [66] DL5073-1997,水工建筑物抗震设计规范[S].北京:中国电力出版社,1997.
    [67] 鄢家全,陈家庚,郝玉芹.地震区划图的不适用范围及其补救措施[J].国际地震动态,2000,(7):1-4.
    [68] 易立新.设定地震方法及工程应用和水库诱发地震危险性评价方法研究[D].北京:中国水利水电科学研究院博士后工作报告.2003.
    [69] 胡聿贤,张敏政.缺乏强震观测资料地区地震动参数的估计方法[J].地震工程与工程振动.1984, 4(1):1-11.
    [70] 田启文,廖振鹏,孙平善.根据烈度资料估算我国地震动参数衰减规律[J].地震工程与工程振动.1986,6(1):22-35.
    [71] 胡聿贤等.缺乏地震动加速度记录地区地震动估计的映射法[J].地震工程与工程振动.1996,16(3):1-10.
    [72] 廖振鹏,郑天愉.工程地震学在中国的发展[J].地球物理学报(增刊).1997,(40):177-191.
    [73] 胡聿贤.基岩地震动参数与震级和距离的关系[J].地震学报.1982.4(2):199-207.
    [74] 俞言祥.长周期地震动衰减关系研究[D].北京:中国地震局地球物理研究所博士学位论文.2002.
    [75] 符圣聪,江静贝.用时变谱拟合地震动[J].工程抗震.2002,(3):29-33.
    [76] 肖明葵,刘波,白绍良.抗震结构总输入能量及其影响因素分析[J].重庆建筑大学学报.1996,18(2):20-33.
    [77] Housner, G.W.. Limit design of structures to resist earthquakes[A]. Proceedings of the 1st World Conference Earthquake Engineering[C]. Berkeley, California, 1956, 5: 1-11.
    [78] Hagiwara, Y.. Momentary energy absorbed and effective loading cycles of structures during earthquakes[A]. Proceedings of the 12th World Conference Earthquake Engineering[C]. Auckland, Febbraio. 2000.
    [79] Hori, N., Iwasaki T. and Inoue, N.. Damaging properties of ground motions and response behavior of structures based on momentary energy response[A]. Proceedings of the 12th World Conference Earthquake Engineering[C]. Auckland, Febbraio. 2000
    [80] Irie, T., Mazda, T. and Samara, A.D.. Application of an estimation method four response of structures by equilibrium of energies[A]. Proceedings of the 12th World Conference Earthquake Engineering[C]. Auckland, Febbraio. 2000.
    [81] Medeot, R.. New design approaches based on energy concepts and related seismic hardware[A]. Proceedings of the 12th World Conference Earthquake Engineering[C]. Auckland, Febbraio. 2000.
    [82] Naeim, F. and Anderson J.C.. Classification and evaluation of earthquake records for design. Report No.93-08, Department of Civil Engineering, Univercity of Southern California. 1993, July.
    [83] Rossi, P.P.. Ductility and energy dissipation demands of asymmetric buildings[A]. Proceedings of the 12th World Conference Earthquake Engineering[C]. Auckland, Febbraio. 2000.
    [84] Huang, Z.M., Wang, S.F. and Lai, M.. Energy analysis for the nonlinear earthquake responses of structures[A]. Proceedings of the 10th World Conference Earthquake Engineering[C]. Madrid, Spain, 1992.
    [85] Chapman, M.C.. Disaggregated Seismic Hazard and the Elastic Input Energy Spectrum: An Approach to Design Earthquake Selection[D]. Blacksburg, Virginia. The Faculty of the Virginia Polytechnic Institute and State University. Blacksburg, Virginia. 1998.
    [86] Chapman, M.C.. On the use of elastic input energy for seismic hazard analysis[J]. Earthquake Spectral. 1999, 15(4): 607-635.
    [87] 公茂盛,谢礼立,章文波.地震动输入能量衰减规律的研究[J].地震工程与工程振动.2003,23(3):15-24.
    [88] 公茂盛.地震动能量衰减规律的研究[D].黑龙江哈尔滨:中国地震局工程力学研究所硕士学位论文.2002.
    [89] Cotton, F., Scherbaum, F., Bommer, J.J. and Bungum, H.. Criteria for selecting and adjusting ground-motion models for specific target regions: Application to Central Europe and rock sites[J]. Journal of Seismology. 2006,10:137-156.
    [90] William, A.F. and Jeffrey, K.H. Guidelines for Use of the Consequence-Hazard Matrix and Selection of Ground Motion Parameters[R]. The Resources Agency Department of Water Resources Division of Safety of Dams. October 4, 2002.
    [91] Joyner, W.B. and Boore, D.M. Measurement Characterization and Prediction of Strong Ground Motion[A]. Proceedings of Conference on Earthquake Engineering. and Soil Dynamics Ⅱ:Recent Advances in Ground Motion Evaluation[C]. American Society of Civil Engineering. Park City, Utah, 1988, 43-102.
    [92] McGarr, A.. Scaling of Ground Motion Parameters, State of Stress, and Focal Depth[J]. Journal of Geophysical Research. 1984, 89(B8): 6969-6979.
    [93] Hanks, T.C. and Kanamori, H.. A moment magnitude scale[J]. Journal of Geophysical Research, 1979, 84(B5):2348-2350.
    [94] Howell, Jr. B.F.. On the saturation of regional magnitude values[J]. Earthquake Notes, 1981, 53(4): 25-35.
    [95] Campbell, K.W.. Near-source attenuation of peak horizontal acceleration[J]. Bulletin of the Seismological Society of America. 1981, 71(6):2039-2070.
    [96] 王国新.地震动参数衰减规律[D].黑龙江哈尔滨:中国地震局工程力学研究所硕士学位论文.1986.
    [97] Campbell, K.W. and Bozorgnia, Y.. Empirical Analysis of Strong Ground Motion from the 1992 Landers, California, Earthquake[J]. Bulletin of the Seismological Society of America. 1994, 84(3): 573-588.
    [98] Boore, D.M. and Joyner, W.B.. Estimation of ground motion at deep-soil sites in eastern North America[J], Bulletin of the Seismological Society of America. 1991, 81(6):2167-2185.
    [99] Joyner, W.B. and Boore D.M.. Method for regression of strong-motion data[J]. Bulletin of the Seismological Society of America. 1993, 83(2): 469-487.
    [100] Anderson, J.G. and Hough, S.E. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies[J]. Bulletin of the Seismological Society of America. 74(5): 1969-1993, 1984.
    [101] Anderson, J.G. and Lei, Y.T.. Nonparametric description of peak acceleration as a function of magnitude, distance, and site in Guerrero, Mexico[J]. Bulletin of the Seismological Society of America. 1994, 84(4): 1003-1017.
    [102] Toro, G. et al, Model of strong ground motions from earthquakes in Central and Eastern North America: Best estimates and uncertainties, Seismological Research Letter. 1997, 68(1): 41-57.
    [103] Abrahamson, N.A. and Silva, W.J. Empirical response spectral attenuation relations for shallow crustal earthquakes[J]. Seismological research letters. 1997, 68(1):94-127.
    [104] 王国新,陶夏新.地震动衰减关系拟合的新两步法[J].地震工程与工程振动.2001,20(1):24-28.
    [105] Boore, D.M., Joyner, W.B. and Fumal, T.E.. Estimation of response spectra and peak accelerations from weastern North American earthquake: An interim report[R], U.S. Geological Survey Open-File Report.93-509, 1993.
    [106] Joyner, W.B. and Boore, D.M.. Peak attenuation acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake[J]. Bulletin of the Seismological Society of America. 1981, 71(6): 2011-2038.
    [107] Fukushima, Y. and Tanaka, T.. A new attenuation for peak horizontal acceleration of strong earthquake ground motion in Japan[J]. Bulletin of the Seismological Society of America. 1990, 80(4): 757-778.
    [108] 王国新.强地震动衰减研究[D].北京:国家地震局工程力学研究所博士学位论文.2001.
    [109] Feng,Q.M., Hu, Y.X.. Spatial Correlation of Earthquake Motion and Its Effect on Structural Response [A], Proceedings of US-PRC, Bilateral Workshop on Earthquake Engineering[C]. 1982, 1:A-5-1-A-5-14.
    [110] 潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报.2001,29(10):1213-1219.
    [111] Kiureghian, A.D. and Neuenhofer, A.. Response spectrum method for multi-support seismic excitations[J]. Earthquake Engineering and Structural Dynamics. 1992, 21(8): 713-740.
    [112] 陈厚群.当前我国水工抗震中的主要问题和发展动态[J].振动工程学报.1997,10(3):253-257.
    [113] 廖松涛.工程场地地震动相干函数的数值分析[D].上海:同济大学博士学位论文.2001.
    [114] Bogdanoff, J.L., Goldber, J.L. and Shiff, J.C.. The effect of ground trans mission time on the response of long structures[J]. Bulletin of the Seismological Society of America. 1965, 55(3):627-640.
    [115] 王前信,伍国周,李云林.拱式结构对地震多支点输入的反应[J].地震工程与工程振动.1984,4(2):49-81.
    [116] Zerva, A.. Response of multi-span beams to spatially incoherent seismic ground motions[J]. Earthquake Engineering and Structural Dynamics. 1990, 19(6): 819-832.
    [117] Perotti, F.. Structural response to nonstationary multiple-support random excitation[J]. Earthquake Engineering and Structural Dynamics. 1990, 19(4): 513-527.
    [118] Hao, H.. Response of multiply supported rigid plate to spatially correlated seismic excitation[J]. Earthquake Engineering and Structural Dynamics. 1991, 20: 821-838.
    [119] Hao, H., Oliveira, C.S. and Penzien, J.. Multiple-station ground motion processing and simulation based on SMART-1 array data[J]. Nuclear Engineering and Design. 1989, 111(3): 293-310.
    [120] Harichandran, R.S. and Wang, W.J.. Response of simple beam to spatially varying earthquake excitation[J]. Journal of the Engineering Mechanics Division. American Society of Civil Engineering. 1986, 114(9):1526-1540.
    [121] Harichandran, R.S., Hawwari, A. and Sweidan, B.N.. Response of long-span bridges to spatially varying ground motion[J]. Journal of the Structural Engineering. 1996, 122(5):476-484.
    [122] 冯启民,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动.1981,1(3):1-8.
    [123] 吴卓岗.台北盆地地盘放大特性之研究[D].台湾国立中央大学土木工程研究所硕士论文.2001.
    [124] Deng, D.L., Li, S.B. and Xie, L.L.. Attenuation of strong ground motion with depth observation from the Tangshan Array[A]. Proceedings of the Sino-American Workshop on Strong-motion Measurement. Pasadena[C]. Pasadena California: California Institute of Technology, 1989, 74-90.
    [125] 胡进军.地下地震动参数研究[D].黑龙江哈尔滨:中国地震局工程力学研究所硕士学位论文.2003.
    [126] 陈厚群,侯顺载,张力飞,朱栗武.拱坝多点输入动力反应的试验研究[J].水利学报.1995,(8):12-20.
    [127] 屈铁军.地面运动的空间变化特性研究及地下管线地震反应分析[D].黑龙江哈尔滨:国家地震工程局力学研究所博士学位论文.1995.
    [128] 胡聿贤主编.地震安全性评价技术教程[M].北京:地震出版社.1999.
    [129] 时振梁,张裕明等.核工程地震安全性评价方法的研究——以南口工程为例[M].北京:地震出版社.1995.
    [130] Ishikawa, Y. and Kameda, H.. Hazard-consistent Magnitude and Distance for Extended Seismic Risk Analysis[A]. Proceedings of the 9th World Conference on Earthquake Engineering[C]. Tokyo, Japan. 1988, 2: 89-94.
    [131] Ishikawa, Y. and Kameda, H.. Probability Based Determination of Specific Scenario Earthquake[A]. Proceedings of the 4th International Conference on Seismic Zonation[C]. Stanford, California. 1991, 2:3-10.
    [132] Kameda, H. and Nojima, N.. Simulation of Risk-consistent Earthquake Motion[J] Earthquake Engineering and Structural Dynamics. 1988, 16(7): 1007-1009.
    [133] Chapman, M.C.. A Probabilistic Approach to Ground-Motion Selection for Engineering Design[J]. Bulletin of the Seismological Society of America. 1995, 85(3): 937-942.
    [134] McGuire, R.K. and Shedlock, K.M.. Statistical Uncertainties in Seismic Hazard Evaluations in the United States[J]. Bulletin of the Seismological Society of America. 1981, 74(4): 1287-1308.
    [135] Mcguire, R.K.. Probabilistic Seismic Hazard Analysis and Design Earthquake: Closing the Loop[J]. Bulletin of the Seismological Society of America. 1995, 185(5): 1275-1284.
    [136] 高孟潭.潜在震源区期望震级和期望距离及其计算方法[J].地震学报.1994,16(3):346-351.
    [137] 韩竹君.设定地震方法研究[D].北京:中国地震局地质研究所博士论文,1997.
    [138] 罗奇峰.概率一致设定地震及其估计方法[J].地震工程与工程振动.1996,16(3):22-28.
    [139] Milne, W.G. and Weichert, D.H.. Seismic ground-motion computations at low probabilities[J]. Canada Journal of Civil Engineering. 1986, 13: 595-599.
    [140] Campos-Costa, A., Oliveira, C.S. and Sousa, M.L.. Seismic hazrd-consistent studies for Portugal[A]. Proceedings of the 10th World Conference on Earthquake Engineering[C]. Madrid Spain. 1992, (1): 477-479.
    [141] 陈厚群,李敏,张艳红.地震危险性分析和地震动输入机制研究[J].水利发电.2001,(8):48-50.
    [142] 陈厚群,李敏,石玉成.基于设定地震的重大工程场地设计反应谱的确定方法[J].水利学报.2005,36(12):1399-1404.
    [143] 沈建文,蔡长青.概率一致的期望地震和概率一致的保守地震[J].地震学报.1998,20(6):607-613.
    [144] 蔡长青,沈建文.人造地震动的时域叠加法和反应谱整体逼近技术[J],地震学报,1997,19(1):71-78.
    [145] Housner G.W. Characteristics of strong motion Earthquake[J]. Bulletin of the Seismological Society of America. 1947, 37(1): 19-31.
    [146] 程玮,刘光栋,易伟建.平稳地震动过程功率谱拟合及收敛性分析[J].世界地震工程.2002,18(2):43-47.
    [147] Penzien, J., Robert, L. and Prentice-Hall. Application of random vibration theory in earthquake engineering[J]. Earthquake Engineering. 1970.
    [148] Goodman, L.F., Rosenblueth, E. and Newmark, N.M.. A seismic design of firmly bounded elastic structure[J]. American Society of Civil Engineering. 1955, 120.
    [149] Housner, G.W.. Properties of strong ground motion Earthquakes[J]. Bulletin of the Seismological Society of America. 1955,45(3): 197-218.
    [150] Bycroft, G.N.. White Noise Representation of Earthquakes[J]. Journal of the Engineering Mechanics Division. American Society of Civil Engineering. 1960, 86(EM2):1-16.
    [151] Conte, J.P.. Effects of earthquake frequency nonstationary on inelastic structural response[A]. Proceedings of the 10th World Conference on Earthquake Engineering[C]. Madrid, Spain, 1992, 7:3645-3651.
    [152] 俞载道,曹国敖.随机振动理论及其应用[M].上海:同济大学出版社.1988.
    [153] Basu, B. and Gupta, V.K.. Nonstationary seismic response of MDOF systems by wavelet transform[J]. Earthquake Engineering and Structural Dynamics. 1997, 26: 1243-1258.
    [154] Bolotin, V.V.. Statistical theory of the aseismic design of structure[A], Proceedings of the 2nd World Conference on Earthquake Engineering[C]. Tokyo-Kyoto, Japan. 1960, 2:1365-1374.
    [155] Safak, E. and Boore, D.M.. On non-stationary stochastic models for earthquake[A]. Proceeding of 3rd U.S. National Conference on Earthquake Engineering[C]. Charleston, South Carolina. 1986.
    [156] Goto, H.K. et al. Generation of artificial earthquakes on digital computer for aseismic design of structures[A]. Proceeding Japan Earthquake Engineering Symposium. 1966.
    [157] Jurkevics, A. and Ulrych, T.J.. Representing and simulating strong ground motion[J]. Bulletin of the Seismological Society of America. 1978, 68(3): 781-801.
    [158] 陈永祁,刘锡荟,龚思礼.拟合标准反应谱的人工地震波[J].建筑结构学报.1981,2(4):34-42.
    [159] Seed, H.B., Idriss, J.M. and Kieter, F.W.. Characteristics of Rock Motions During Earthquakes[J]. American Society of Civil Engineering. 1969, 95(SM5): 1199-1218.
    [160] Hadjian, A.H.. Scaling of Earthquake Accelerograms-A Simplified Approach[J]. Journal of the Structural Division, American Society of Civil Engineering. 1972, 98(ST2):547-551.
    [161] Chang, M.K., Kwiatkowski, J.W., Nan, R.F., Oliver, R.M. and Pister, K.S.. ARMA models for earthquake ground motions[R]. Report No. UCB/EERC-79/19, Earthquake Engineering Research Center, University of Califomia, Berkeley, CA. 1979.
    [162] Polhemus, N.W. and Cakmak, A.S.. Simulation on earthquake ground motions using autoregressive moving average (ARMA) models[J]. Earthquake Engineering and Structural Dynamics. 1981, 9(4):343-354.
    [163] Cakmak, A.S., Sherif, R.L. and Ellis, G.. Modeling earthquake ground motions in California using parametric time series methods[J], Soil Dynamics and Earthquake Engineering. 1985, 4(3):124-131.
    [164] Tsai, N.C.. Spectrum-compatible motions for design purposes[J]. Journal of the Engineering Mechanics Division. American Society of Civil Engineering. 1972, 98(EM2):345-356,
    [165] Kaul, M.K.. Spectrum-consistent time-history-generation[J]. Journal of the Engineering Mechanics Division. American Society of Civil Engineering. 1978, 104(EM4): 781-788.
    [166] lyengar, R.N. and Rao, P.N.. Generation of spectrum compatible accelerograms[J]. Earthquake Engineering and Structural Dynamics. 1979, 7(3): 253-263,
    [167] Johnson, G.R. and Epstein, H.L.. Short Duration analytic earthquake[J]. Journal of the Structural Division, American Society of Civil Engineering. 1976, 102(STS): 993-1001,
    [168] Scanlan, R.H. and Sachs, K.. Earthquake Time Histories and Response Spectra[J]. Journal of the Engineering Mechanics Division, American Society of Civil Engineering. 1974, 100(EM4): 635-655.
    [169] Kaul M.K.. Stochastic Characterization of Earthquake through Their Response Spectrum[J]. Earthquake Engineering and Structural Dynamics. 1978, 6(5): 497-509.
    [170] Vanmarcke, E.H.. Structural response to earthquake[M]. Seismic Risk and Engineering Decision Chaper 8. 1976, 287-337.
    [171] 江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动.1984,4(3):1-11.
    [172] 赵凤新,刘爱文.地震动功率谱与反应谱的转换关系[J].地震工程与工程振动.2001,21(2):30-35.
    [173] Gasparini, D.A. and Vanmarcke, E.H.. Simulated earthquake motions compatible with prescribed response spectra[R]. MIT Department of Civil Engineering Research Report R76-4.1976.
    [174] 徐国栋,周锡元,闫维明,董娣.考虑超随机特性的人工地震动合成[J].地震工程与工程振动.2005,25(4):11-17.
    [175] 徐国栋,周锡元,闫维明,董娣.超随机特性对地震动谱特性和时间历程的影响[J].地震工程与工程振动.2005,25(5):6-16.
    [176] Saragoni, G.R. and Hart, G.C. Simulation of artificial earthquakes[J]. Earthquake Engineering and Structural Dynamics. 1974, 2(3): 249-267.
    [177] Ohsaki, Y.. On the significance of phase content in earthquake ground motion[J]. Earthquake Engineering, and Structural Dynamics. 1979, 7(5): 427-439.
    [178] 金星,廖振鹏.地震动强度包线函数与相位差谱频数分布函数的关系[J].地震工程与工程振动.1990,10(4):20-26.
    [179] 胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动.1986,6(2):37-51.
    [180] 赵凤新.时程的相位差特性及设计地震动的合成[D].北京:国家地震局地球物理研究所博士学位论文.1992.
    [181] 朱昱,冯启民.相位差谱的分布特征和人造地震动[J].地震工程与工程振动.1992,12(1):37-44.
    [182] Yang, Q. and Jiang, H.. Generation of ground motion nonstationary both in time and frequency domains based on phase difference spectrum[J]. Earthquake Engineering and Engineering Vibration. 2001, 21(3):10-16.
    [183] Findell, K.L. and Cakmak, A.S.. Modeling and simulating earthquake accelerograms using strong-motion data from the Istanbul, Turkey, region. Soil Dynamics and Earthquake Engineering. 1993, 20(4): 275-280.
    [184] 王国权,周锡元.台湾集集地震近断层强震地面运动加速度时程的随机特性[J].防灾减灾工程学报.2003,23(4):10-19.
    [185] 董娣,周锡元,徐国栋,杨润林.强震记录频率非平稳特性的若干研究[J].地震工程与工程振动.2006,26(1):22-29.
    [186] 杨庆山,姜海鹏.基于相位差谱的时-频非平稳人造地震动的反应谱拟合[J].地震工程与工程动.2002,22(1):32-38.
    [187] 杨庆山,姜海鹏,陈英俊.基于相位差谱的时一频非平稳人造地震动的生成[J].地震工程与工程振动.2001,21(3):10-16.
    [188] Conte, J.P., Pister, K.S. and Mahin, S.A.. Non-stationary ARMA modeling of seismic motions[J]. Soil Dynamics and Earthquake Engineering. 1992, 11:411-426.
    [189] Aghababaii, M.A., Rofocei, ER. and Ahmadi, G.. Simulation of earthquake records using time-varying Arma(2,1) model[J]. Journal of Probabilistic Engineering Mechanics. 2002, 17(1): 15-34.
    [190] 曾珂,牛荻涛,商瑞霞.新型随机地震动模型[J].地震工程与工程振动.2005,25(6):30-37.
    [191] Bendimerad M. F.. Modeling of recorded tri-dimensional earthquake motion in the frequency-time domain[D]. Civil Engineering Department, Stanford University. Stanford, CA. 1985.
    [192] 林家浩.受非平稳均匀调制随机演变激励结构响应快速精确算法[J].计算力学学报.1997,14(1):2-8.
    [193] 陈健云,李静,周晶,林皋.地震动频谱对小湾拱坝非线性响应的影响[J].振动工程学报.2003,16(2):207-211.
    [194] Hasgur, Z.. The sensitivity of strong motion accelerograms to frequency non-stationary and effects of involved data[A]. Proceedings of the 8th World Conference on Earthquake Engineering[C]. San Francisco, USA, 1984, 2: 493-500.
    [195] Hoshiya, M.. Three dimension analysis of San Fernando earthquake motions[A]. Proceedings of the 6th European Conference on Earthquake Engineering[C]. Dubrovnik, Yugoslavia. 1978.
    [196] Tilliouine, B. Non-stationary analysis and simulation of seismic signals[D]. Civil Engineering Department, Stanford University. Stanford, CA. 1982.
    [197] Hammoutene, M., Tiliounine, B. and Bard, P.Y.. A two dimensional non-stationary optimized accelerogram scaled for magnitude, distance and soil conditions[A], Proceedings of the 10th World Conference on Earthquake Engineering [C], Madrid, Spain, 1992, 2: 817-821.
    [198] Wang, J.J., Fan, L.CH., Qian, SH. and Zhou, J.. Simulations of nonstationary frequency content and its importance to Seismic assessment of structures[J]. Earthquake Engineering and Structural Dynamics. 2002, 31(4): 993-1005.
    [199] Conte, J.P. and Peng, B.F.. Fully nonstationary analytical Earthquake ground motion model[J]. Journal of Engineering Mechanics. 1997, 123(1):15-24.
    [200] Kanamori, H.. A Semi-empirical Approach to Prediction of Long-period Ground Motions from Great Earthquakes[J]. Bulletin of the Seismological Society of America. 1979, 69(5): 1645-1670.
    [201] 廖振鹏,魏颖.设计地震加速度图的合成[J].地震工程与工程振动.1988,8(1):12-31.
    [202] Samara, E., Shinozuka, M. and Tsurui, A.. ARMA representation of random process[J]. Journal of the Engineering Mechanics. American Society of Civil Engineering.. 1985, 111(3): 449-461.
    [203] 星谷胜,石井清,粟田博昭.空间·时间分布特性有地震动.土木学会论文集,第386号/Ⅰ-8,1987:359-367.
    [204] Zerva, A. Seismic ground motion simulation from a class of spatial variability models[J]. Earthquake Engineering and Structural Dynamics. 1992, 21: 351-361.
    [205] 刘天云,伍朝晖,赵国藩.随机场的投影展开法[J].计算力学学报.1997,14(4):484-489.
    [206] 刘天云,刘光廷.地震动随机场投影展开法[J].计算力学学报.2000,17(4):405-409.
    [207] Chong,Y.L..苏文藻译.多支点激振引起的桥梁反应[J].国外地震工程.1984,(5).
    [208] 田景元.土石坝多点输入地震反应分析及相关方法研究[D].江苏南京:河海大学博士学位论文.2003.
    [209] Ramadan, O. and Novak, M. Simulation of spatially incoherent random ground motions[J]. Journal of the Engineering Mechanics. 1993, 119(5): 997-1016.
    [210] Ramadan, O. and Novak, M.. Simulation of multidimensional anisotropic ground motions[J]. Journal Engineering Mechanics. 1994,120(8): 1773-1785.
    [211] 夏友柏,王年桥,张尚根.一种合成多点地震动时程的方法[J].世界地震工程.2002,18(1):119-122.
    [212] 刘先明,叶继红,李爱群.空间相关多点地震动合成的简化方法[J].工程抗震.2003,(1):30-33.
    [213] Ohsaki, Y., Kanda, J., Iwasaki, R., Masao, T., Kitada, Y. and Sakata, K.. Improved method for generation of simulated earthquake ground motions[A]. Proceedings of the 8th World Conference on Earthquake Engineering[C]. San Francisco, USA, 1984, 2: 573-580.
    [214] Lilhanand, K. and Tseng, W.S. Development and application of realistic earthquake time histories compatible with multiple-damping design spectra[A]. Proceedings of the 9th World Conference on Earthquake Engineering[C]. Tokyo-Kyoto, Japan, 1988, 2: 819-824.
    [215] Hirasawa, M. and Watabe, M.. Generation of simulated earthquake motions compatible with multi-damping response spectra[A]. Proceedings of the 10th World Conference on Earthquake Engineering[C]. Madrid, Spain. 1992, 2: 807-810.
    [216] 张天中,马云生.同时满足多个阻尼反应谱的人造地震动时程合成[J].中国地震.1998.14(4):44-51.
    [217] GB17741-1999.《工程场地地震安全性评价技术规范》[S].国家质量技术监督局.北京:中国标准出版社.1999.
    [218] Dowrick, D.J.. Earthquake resistant design[M].John Wiley and Sons Press. 1977.
    [219] 李英民,丁文龙,黄宗明.地震动幅值特性参数的工程适用性研究[J].重庆建筑大学学报博士学位论文.2001,23(6):16-21.
    [220] 李桂青.抗震结构计算理论和方法.北京:地震出版社.1985.
    [221] 大崎顺彦著.吕敏申,谢礼立译.地震动的谱分析入门[M].北京:地震出版社,1980年.
    [222] 刘大海.高层建筑抗震设计[M].北京:中国建筑工业出版社.1993.
    [223] 朱勇华,邰淑彩,孙韫玉.应用数理统计[M].湖北武汉:武汉水利电力大学出版社.1999.
    [224] 国家地震局地质研究所.四川雅砻江锦屏水电站地震安全性评价报告[R].北京.1993.
    [225] Berrill, J.B. and Hanks, T.C.. High frequency amplitude errors in digitalized strong-motion accelerations[J]. EERL. VoI.Ⅳ. Paper Q. Report No.74-104. 1974.
    [226] Trifunca, M.D. and Lee, V.W.. Frequency dependent attenuation of strong earthquake ground motion[R]. Department of Civil Engineering Report. No.85-02,USC. Los Angeles.
    [227] 马宗晋,杜品仁.现今地壳运动问题[M].北京:地震出版社.1995.
    [228] 马宗晋,张德成.板块构造基本问题[M].北京:地震出版社.1986.
    [229] Uang C.M. and Bertero, V.V.. Evaluation of seismic energy in structure[J]. Earthquake Engineering and Structural Dynamics. 1990. 19(1): 77-90.
    [230] Shinozuka, M.. Engineering modeling of ground motion[A]. Proceedings of the 9th World Conference Earthquake Engineering. Tokyo-Kyoto, Japan. 1988. 8:51-62.
    [231] 新疆防御自然灾害研究所.克孜尔水库地震危险性分析及对策[R].新疆乌鲁木齐.1999.
    [232] 胡晓,张艳红,钟菊芳等.中国重要大坝强震监测与地震动输入机制研究[R].北京:科学技术部2002年度社会公益研究专项项目,中国水利水电科学研究院.2006,2.
    [233] 中国地震局地质研究所,中国石油天然气股份有限公司,塔里木油田分公司规划中心.英买7等气田区块及其至轮南输气管道地震安全性评价报告[R].北京.2001.
    [234] 胥广银,高孟潭.潜在震源区内非均匀特征研究[J].中国地震.1996,12(3):294-299.
    [235] Goni, J.J.. Simulation of earthquake ground acceleration using a seismological model of the Fourier Amplitude Spectrum and its minimum phase spectrum[D]. The Civil Engineering Department of the Graduate School of Tulane University. 1989.
    [236] Hao, H.. Effects of spatial variation of ground motion on large multiply-supported structures[R]. Report No.UCB/EERC-89/06, 1989. 7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700