O_2/CO_2下循环流化床高氧气浓度燃烧特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤生成的C02对环境的危害已经引起了世界各国的关注。富氧燃烧技术有利于捕集、储存和利用燃煤生成的CO2,被认为是短期内减缓C02排放较为可行的技术,而且能用于现有燃烧设备的改造。循环流化床富氧燃烧技术将循环流化床洁净燃烧技术和富氧燃烧技术有机结合,但其研究起步较晚,还有许多问题需要解决。在当前研究中氧气浓度较低的背景下,本论文在热重-质谱联用仪、鼓泡流化床和循环流化床三个试验平台上开展系统的试验研究,探索了高氧气浓度下循环流化床富氧燃烧技术的可行性,分析了燃烧温度、燃烧气氛、氧气浓度和操作参数等因素对煤的燃烧特性、气体污染物生成特性和传热特性的影响。
     在热重分析仪和5kW鼓泡流化床富氧燃烧试验系统上,分别进行了02/N2和02/C02气氛下的富氧燃烧试验,研究了朔州烟煤的燃烧特性。研究发现,提高氧气浓度和燃烧温度能明显改善煤的燃烧特性;与02/N2气氛相比,02/C02气氛对煤的燃烧特性略有改善。
     在鼓泡流化床和热重-质谱联用仪上,同时研究了朔州烟煤富氧燃烧的污染物生成特性。TG-MS试验结果表明,与02/N2气氛相比,02/C02气氛降低了S02、NO、NO2、NH3和HCN等的排放浓度。随着氧气浓度的增大,所有气体的析出时间明显变短,析出峰强度变大。NO呈现双峰析出,N02呈现单峰析出,而S02则由双峰析出向单峰析出转变。鼓泡流化床试验结果表明,氧气浓度增大,NO和N20的排放浓度均降低:温度升高,NO的排放浓度先降低后升高,N2O的排放浓度降低。02/C02气氛抑制了部分S02的生成,钙基脱硫剂对S02的脱除作用明显。添加钙基脱硫剂后,在两种气氛下N20的排放浓度均有降低,NO的排放浓度在02/C02气氛下基本不变,在02/N2气氛下则有较大幅度升高。
     在0.15MWth循环流化床富氧燃烧试验系统上,进行了高氧气浓度下的循环流化床富氧燃烧试验,研究了炉膛的传热特性。研究表明,0.15MWth循环流化床富氧燃烧试验系统的炉膛总传热系数约为27W/(m2.K),流化速度、一次风率和燃烧气氛对试验系统的炉膛总传热系数几乎没有影响,高氧气浓度下循环流化床富氧燃烧的传热特性与常规循环流化床燃烧的差异很小。
     在改造后的0.1MWth循环流化床富氧燃烧试验系统上,进行了高氧气浓度下的循环流化床O2/CO2燃烧试验,研究了燃烧温度、整体氧气浓度、过量氧气系数、二次风比例和一次风氧气浓度等因素对煤的燃烧特性和污染物排放特性的影响。研究结果表明,提高燃烧温度和整体氧气浓度,有利于改善煤在循环流化床内的燃烧,CO、SO2与N2O的排放浓度降低,但NO的排放浓度略有升高。过量氧气系数对循环流化床02/CO2燃烧作用明显,过量氧气系数增大,CO的排放浓度显著降低,而NO和N20的排放浓度逐渐升高,SO2的排放浓度略有降低。增大二次风比例可以改善煤的燃烧特性,同时SO2的排放浓度增高。提高一次风氧气浓度降低了SO2的排放浓度,而CO和N20的排放浓度先增大后降低,NO排放浓度先降低后增大,但在一次风氧气浓度超过45%以后,N2O和NO的排放浓度变化很小。在高氧气浓度循环流化床富氧燃烧中,分级燃烧仍然是一个有效控制气体污染物排放的技术。
     对0.1MWth循环流化床富氧燃烧试验系统进行了改造,添加了烟气再循环系统,探索了高氧气浓度下循环流化床氧气/再循环烟气(O2/RFG)燃烧的启动与切换操作工艺,研究了燃烧温度、燃烧气氛和钙基脱硫剂等因素对于燃烧特性和污染物排放特性的影响。结果表明,0.1MWth循环流化床富氧燃烧系统能够进行O2/RFG燃烧且运行稳定,02/N2气氛向O2/RFG气氛的切换时间约40分钟,从点火启动至达到烟气再循环稳定运行状态的时间约9小时;在一次风氧气浓度为49.6%-55.2%、二次风氧气浓度为45.3%~51.7%的范围内,燃烧后的干烟气中C02浓度在90%以上;与02/C02配气燃烧相比,除NO的排放浓度基本不变外,CO与SO2的排放浓度均有一定程度的增加,N2O的排放浓度则明显降低;在O2/RFG气氛下,飞灰含碳量为26.1%~34.1%,烟气中S02浓度为87~197mg/MJ,N20浓度为48~78mg/MJ, NO浓度仅为19~44mg/MJ。
CO2emission from coal combustion is harmful to the environment, which has been greatly concerned in many countries. As one of the feasible technology for CO2mitigation in the short term, oxy-fuel combustion is beneficial to the capture, storage, and utilization of CO2from coal combustion, and can be applied to the existent combustion equipments. The technology of oxy-fuel combustion in circulating fluidized bed (CFB) takes the advantages of circulating fluidized bed combustion (CFBC) and oxy-fuel combustion. However, the research on oxy-fuel CFBC starts late and there are many problems to be solved, and the low concentration of oxygen is usually focused on in the present study, In this paper, three test platforms are used to carry out a series of experiments:thermo gravimetric and mass spectrometric (TG-MS) analyzer, bubbling fluidized bed (BFB) and circulating fluidized bed (CFB). In this paper, the feasibility of oxy-fuel CFBC at high oxygen concentration is explored, and the effects of combustion temperature and atmosphere, oxygen concentration, and operating parameters on the characteristics of coal combustion, gas pollutant formation, heat transfer are investigated.
     The oxy-fuel combustion experiments were conducted at O2/N2and O2/CO2atmosphere in a5kW oxy-fuel BFBC test platform and a thermo gravimetric analyzer respectively, in order to study the combustion characteristics of Shuozhou bituminous coal. It is found that the increase in the oxygen concentration and combustion temperature can improve the combustion characteristics of bituminous coal, which are slightly better at O2/CO2atmosphere than that at O2/N2atmosphere.
     Meanwhile, oxy-fuel combustion tests were also conducted at a BFBC test platform and TG-MS analyzer to study the gaseous pollutant generation characteristics of Shuozhou bituminous coal. The results of TG-MS tests show that, compared with O2/N2atmosphere, the emission of SO2, NO, NO2, NH3and HCN reduces at O2/CO2atmosphere. With the increase in the oxygen concentration, all the gases precipitate quickly significantly, and the intensity of precipitation peak increases. NO presents a double peak precipitation, and NO2shows an unimodal precipitation, while SO2shifts from a double peak precipitation to single peak. The results of tests in the BFBC platform reveal that NO and N2O emission decreases with the increase in the oxygen concentration; and when the combustion temperature increases, NO emission first decreases and then increases while N2O emission decreases. At O2/CO2atmosphere, SO2emission is inhibited, and the effect of calcium based sorbent on SO2removal is obvious. With the addition of calcium based sorbent, N2O emission decreases at both atmospheres, and NO emission remains unchanged at O2/CO2atmosphere while increases greatly at O2/N2atmosphere.
     In order to study the effects on the heat transfer characteristics of the furnace, experimental tests at high oxygen concentration were conducted in a0.15MW4oxy-fuel CFBC test platform. The results demonstrate that the total heat transfer coefficient of0.15MWth oxy-fuel CFBC test platform is about27W/(m2K); The fluidization velocity, the primary air ratio, and the combustion atmosphere has little influence on the total heat transfer coefficient of the test platform. There is little difference of heat transfer characteristics between oxy-fuel CFBC and air CFBC at high oxygen concentration.
     The CFB O2/CO2combustion tests at high oxygen concentration were carried out in the reformed0.1MWth oxy-fuel CFBC test platform to investigate the effects of the combustion temperature, overall oxygen concentration, excess oxygen ratio, secondary flow ratio and the oxygen concentration in primary flow on the combustion and pollutant emission characteristics. The research results show that the increase in the combustion temperature and overall oxygen concentration is benefit to improve coal combustion in CFB, the emission of CO, SO2and N2O decreases, while NO emission increases slightly. The effect of excess oxygen ratio is noticeable. With its increase, CO emission decreases significantly, SO2emission decreases slightly, while NO and N2O emission increases gradually. When the oxygen concentration in primary flow increases, SO2emission decreases, while CO and N2O emission increases at first and then decreases, NO emission decreases at first and then increases. But when the oxygen concentration in primary flow is over45%, there is little change of in N2O and NO emission. In oxy-fuel CFBC at high oxygen concentration, flow staging and oxygen staging is still an effective method to control the gas pollutant emission.
     The0.1MWth oxy-fuel CFBC test platform is reformed by adding the flue gas recycle system. The start-up and switch procedures of the O2/recycled flue gas (O2/RFG) combustion at high oxygen concentration in the0.1MWth oxy-fuel CFBC test platform are explored, and the effects of combustion temperature, combustion atmosphere, calcium based sorbent on combustion and pollutant emission characteristics was investigated. The results show that the0.1MWth oxy-fuel CFBC test platform can be used for O2/RFG combustion and operated stably. It takes about40minutes to switch from O2/N2atmosphere to O2/RFG atmosphere, and about9hours from ignition to stable operation of O2/RFG combustion. When the oxygen concentration is in the range of49.6%-55.2%and45.3%-51.7%in the primary flow and secondary flow respectively, CO2concentration in the dry flue gas can be higher than90%. Compared with O2/CO2combustion, NO emission basically remains unchanged, CO and SO2emission increases to some extent, and N2O emission decreases. Under O2/RFG atmosphere, the carbon content of the fly ash is26.1%-34.1%, the SO2emission in flue gas is87-197mg/MJ, N2O emission is48-78mg/MJ, and NO emission is19-44mg/MJ.
引文
[1]中华人民共和国统计局.中国统计年鉴2013[M].北京:中国统计出版社,2013.
    [2]International Energy Agency. World Energy Outlook [M]. Paris:OECD/IEA,2013,
    [3]Desideri U, Paolucci A. Performance modelling of a carbon dioxide removal system for power plants [J]. Energy Conversion and Management,1999,40(18):1899-1915.
    [4]张阿玲,方栋.温室气体CO2的控制和回收利用[M].北京:中国环境科学出版社,1996.
    [5]王志轩.《京都议定书》与中国电力行业的应对措施建议[J].中国电力,2003,36(1):71-74.
    [6]Hossain M M, de Lasa H I. Chemical-looping combustion (CLC) for inherent CO2 separations-a review [J]. Chemical Engineering Science,2008,63(18):4433-4451.
    [7]Wall T F. Combustion processes for carbon capture [J]. Proceedings of the Combustion Institute,2007,31(1):31-47.
    [8]White C M, Strazisar B R, Granite E J, et al. Separation and capture of CO2 from large stationary sources and sequestration in geological formations-Coalbeds and deep saline aquifers [J]. Journal of the Air & Waste Management Association,2003,53(6):645-715.
    [9]Rao A B, Rubin E S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control [J]. Environmental Science & Technology,2002,36(20):4467-4475.
    [10]Dean C C, Blarney J, Florin N H, et al. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production [J]. Chemical Engineering Research& Design,2011,89(6A):836-855.
    [11]Plasynski S I, Litynski J T, McIlvried H G, et al. Progress and New Developments in Carbon Capture and Storage [J]. Critical Reviews in Plant Sciences,2009,28(3):23-138.
    [12]Thiruvenkatachari R, Su S, An H, et al. Post combustion CO2 capture by carbon fibre monolithic adsorbents [J]. Progress in Energy and Combustion Science,2009,35(5): 438-455.
    [13]Buhre B J P, Elliott L K, Sheng C D, et al. Oxy-fuel combustion technology for coal-fired power generation [J]. Progress in Energy and Combustion Science,2005,31(4):283-307.
    [14]Scheffknecht G, Al-Makhadmeh L, Schnell U, et al. Oxy-fuel coal combustion-A review of the current state-of-the-art [J]. International Journal of Greenhouse Gas Contro,2011,5: S16-S35.
    [15]Toftegaard M B, Brix J, Jensen P A, et al. Oxy-fuel combustion of solid fuels [J]. Progress in Energy and Combustion Science,2010,36(5):581-625.
    [16]李洪宇,王华.低氧燃烧与富氧燃烧的性能比较分析[J].工业加热,2003,32(5):9-12.
    [17]周泽兴.火电厂排放CO2的分离回收和固定技术的研究开发现状[J].环境科学进展,1993,1(1):56-57.
    [18]Myohanen K, Hyppanen T, Pikkarainen T, et al. Near Zero CO2 Emissions in Coal Firing with Oxy-Fuel Circulating Fluidized Bed Boiler [J]. Chemical Engineering & Technology, 2009,32(3):355-363.
    [19]Wolsky A, Daniels E, Jody B. Recovering CO2 from Large and Medium Size Stationary Combustors [J]. Journal of the Air and Waste Management Association,1991,41(4): 449-454.
    [20]段翠九.煤的循环流化床富氧燃烧及排放特性研究[D].北京:中国科学院研究生院,2012.
    [21]Basu P, Fraser S A. Circulating fluidized bed boilers: design and operations [M]. Boston: Butterworth-Heinemann,1991.
    [22]阎维平.温室气体的排放以及烟气再循环煤粉燃烧技术的研究[J].中国电力,1997,30(6):59-62.
    [23]Chui E H, Douglas M A, Tan Y. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal [J]. Fuel,2003,82(10):1201-1210.
    [24]Horn F, Steinberg M. Carbon dioxide power plant for total emission control and enhanced oil recovery [J]. Brookhaven National Laboratory,1981.
    [25]Croiset E, Thambimuthu K, Palmer A. Coal combustion in O2/CO2 mixtures compared with air [J]. Canadian Journal of Chemical Engineering,2000,78(2):402-407.
    [26]Croiset E, Thambimuthu K V. NOx and SO2 emissions from O2/CO2 recycle coal combustion [J]. Fue,2001,80(14):2117-2121.
    [27]Tan Y W, Croiset E, Douglas M A, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas [J]. Fuel,2006,85(4):507-512.
    [28]Stromberg L, Lindgrena G, Jacoby J, et al. Update on Vattenfall's 30 MWth Oxyfuel Pilot Plant in Schwarze Pumpe [J]. Greenhouse Gas Control Technologies,2009,1(1):581-589.
    [29]Anheden M, Burchhardt U, Ecke H, et al. Overview of Operational Experience and Results from Test Activities in Vattenfall's 30 MWth Oxyfuel Pilot Plant in Schwarze Pumpe [J]. 10th International Conference on Greenhouse Gas Control Technologies,2011,4:941-950.
    [30]Okawa M, Kimura N, Kiga T, et al. Trial design for a CO2 recovery power plant by burning pulverized coal in O2/CO2 [J]. Energy Conversion and Management,1997,38:S123-S127.
    [31]Kimura N, Omata K, Kiga T, et al. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery [J]. Energy Conversion and Management,1995,36(6-9): 805-808.
    [32]Nozaki T, Takano S, Kiga T, et al. Analysis of the flame formed during oxidation of pulverized coal by an O2-CO2 mixture [J]. Energy,1997,22(2-3):199-205.
    [33]Yamada T, Kiga T, Okawa M, et al. Characteristics of pulverized-coal combustion in CO2-recovery power plant applied O2/CO2 combustion [J]. Jsme International Journal Series B-Fluids and Thermal Engineering,1998,41(4):1017-1022.
    [34]Liu H, Zailani R, Gibbs B A. Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle [J]. Fuel,2005,84(16):2109-2115.
    [35]Liu H, Zailani R, Gibbs B M. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2 [J]. Fuel,2005,84(7-8):833-840.
    [36]Zou C, Huang Z J, Xiong J, et al. A pilot scale study on co-capture of SO2 and NOx in O2/CO2 recycled coal combustion and techno-economic evaluation [J]. Science China-Technological Sciences,2010,53(1):155-159.
    [37]邹春,黄志军,初琨,等.燃煤O2/CO2循环燃烧过程中SO2与NOX协同脱除的中试研究[J].中国电机工程学报,2009,29(2):20-24.
    [38]黄志军,邹春,初琨,等.O2/CO2循环燃烧中NOx的中试试验研究[J].工程热物理学报,2009,30(12):2141-2144.
    [39]张利琴,宋蔷,吴宁,等.煤烟气再循环富氧燃烧污染物排放特性研究[J].中国电机工程学报,2009,29(29):35-40.
    [40]张利琴.煤烟气再循环燃烧颗粒物排放特性的试验研究[D].北京:清华大学,2008.
    [41]Griffin T, Bill A, Marion J L, et al. CO2 control technologies: ALSTOM Power approach [C].6th Greenhouse Gas Control Technologies conference, Kyoto, Japan,2002.
    [42]Nsakala N y, Liljedahl G N. Greenhouse gas emissions control by oxygen firing in circulating fluidized bed boilers [R]. Alstom Power Inc,2003.
    [43]Liljedahl G, Turek D, Nsakala N, et al. Alstom's Oxygen-Fired CFB Technology Development Status for CO2 Mitigation [C].31st International Technical Conference on Coal Utilization & Fuel Systems. Florida, USA,2006.
    [44]鞠佳.阿尔斯通:无碳排放发电技术的引领者[J].电气应用,2008,27(23):10-12.
    [45]Eriksson T, Sippu O, Hotta A, et al. Oxyfuel CFB Boiler as a Route to Near Zero CO2 Emission Coal Firing [C]. Power-GEN Europe, Madrid, Spain,2007.
    [46]Lupion M, Nauarrete B, Otero P, et al. Experimental programme in CIUDEN's CO2 capture technology development plant for power generation [J]. Chemical Engineering Research & Design,2011,89(9):1494-1500.
    [47]Lupion M, Alvarez I, Otero P, et al.30 MWth, CIUDEN Oxy-cfb Boiler-First Experiences [J]. Energy Procedia,2013,37:6179-6188.
    [48]Jia L, Tan Y, Wang C, et al. Experimental study of oxy-fuel combustion and sulfur capture in a Mini-CFBC [J]. Energy & Fuels,2007,21(6):3160-3164.
    [49]Jia L, Tan Y, Anthony E J. Emissions of SO2 and NOX during Oxy-Fuel CFB Combustion Tests in a Mini-Circulating Fluidized Bed Combustion Reactor [J]. Energy & Fuels,2010, 24(2):910-915.
    [50]Jia L, Tan Y, McCalden D, et al. Commissioning of a 0.8 MWth CFBC for oxy-fuel combustion [J]. International Journal of Greenhouse Gas Control,2012,7:240-243.
    [51]Tan Y, Jia L, Wu Y, et al. Experiences and results on a 0.8 MWth oxy-fuel operation pilot-scale circulating fluidized bed [J]. Applied Energy,2012,92:343-347.
    [52]Wu Y H, Wang C B, Tan Y W, et al. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion [J]. Applied Energy,2011,88(9): 2940-2948.
    [53]Czakiert T, Karski S, Szetkler K, et al. Operating experience with a 0.1 MWth oxyfuel-CFB test rig [C].1st Oxyfuel Combustion Conference, Cottbus, Germany,2009.
    [54]Czakiert T, Sztekler K, Karski S, et al. Oxy-fuel circulating fluidized bed combustion in a small pilot-scale test rig [J]. Fuel Processing Technology,2010,91(11):1617-1623.
    [55]Czakiert T, Muskala W, Jankowska S, et al. Combustible Matter Conversion in an Oxy-fuel Circulating Fluidized-Bed (CFB) Environment [J]. Energy & Fuels,2012,26(9): 5437.5445.
    [56]Seddighi K S, Pallares D, Normann F, et al. Progress of Combustion in an Oxy-fuel Circulating Fluidized-Bed Furnace: Measurements and Modeling in a 4 MWth, Boiler [J]. Energy & Fuels,2013,27(10):6222-6230.
    [57]毛玉如.循环流化床富氧燃烧技术的试验和理论研究[D].杭州:浙江大学,2003.
    [58]毛玉如,方梦祥,王勤辉,等.O2/CO2气氛下循环流化床煤燃烧污染物排放的试验研究[J].动力工程,2004,24(3):411-415.
    [59]毛玉如,方梦祥,骆仲泱,等.富氧气氛下循环流化床煤燃烧试验研究[J].燃烧科学与技术,2005,11(2):188-191.
    [60]段伦博,周骛,屈成锐,等.50kW循环流化床O2/CO2气氛下煤燃烧及污染物排放特性[J].中国电机工程学报,2011,31(5):7-12.
    [61]Duan L B, Zhao C S, Zhou W, et al. O2/CO2 coal combustion characteristics in a 50 kWth, circulating fluidized bed [J]. International Journal of Greenhouse Gas Control,2011,5(4): 770-776.
    [62]Duan L B, Zhao C S, Zhou W, et al. Effects of operation parameters on NO emission in an oxy-fired CFB combustor [J]. Fuel Processing Technology,2011,92(3):379-384.
    [63]Duan L B, Zhou W, Li H X, et al. Sulfur fate during bituminous coal combustion in an oxy-fired circulating fluidized bed combustor [J]. Korean Journal of Chemical Engineering, 2011,28(9):1952-1955.
    [64]段翠九,谭力,赵科,等.0.15MW循环流化床富氧燃烧试验研究[J].中国电机工程学报,2012,32(S1):138-142.
    [65]段翠九,赵科,谭力,等.循环流化床高氧气浓度下的煤燃烧试验[J].工程热物理学报,2012,33(5):873-876.
    [66]赵科,吕清刚,段翠九.流化床O2/CO2燃烧(Ⅰ)-高氧浓度下的燃烧试验[J].热能动力工程,2011,26(4):453-456.
    [67]赵科,段翠九,谭力,等.流化床O2/CO2燃烧(Ⅱ)-高氧浓度的中试研究[J].热能动力工程,2012,27(3):350-354.
    [68]赵科,谭力,段翠九,等1.流化床O2/CO2燃烧(Ⅲ)-氧浓度对粒径的影响[J].热能动 力工程,2012,27(4):449-454.
    [69]赵科,谭力,段翠九,等.流化床O2/CO2燃烧(Ⅳ)-氧浓度对NOX和N20的影响[J].热能动力工程,2012,27(6):702-708.
    [70]赵科,谭力,段翠九,等.流化床02/C02燃烧(V)-褐煤的高氧浓度燃烧优化[J].热能动力工程,2013,28(2):158-163.
    [71]Santoro L, Vaccaro S, Aldi A, et al. Fly ashes reactivity in relation to coal combustion under flue gas recycling conditions [J]. Thermochimica acta,1997,296(1-2):67-74.
    [72]刘彦.02/C02煤粉燃烧脱硫及NO生成特性试验和理论研究[D].杭州:浙江大学,2004.
    [73]刘彦丰,阎维平,宋之平.炭/碳粒在C02/O2气氛中燃烧速率的研究[J].工程热物理学报,1999,20(6):769-772.
    [74]Okazaki K, Ando T. NOX reduction mechanism in coal combustion with recycled CO2 [J]. Energy,1997,22(2-3):207-215.
    [75]Hu Y, Kobayashi N, Hasatani M. The reduction of recycled-NOx in coal combustion with O2/recycled flue gas under low recycling ratio [J]. Fuel,2001,80(13):1851-1855.
    [76]Hu Y, Kobayashi N, Hasatani M. Effects of coal properties on recycled-NOx reduction in coal combustion with O2/recycled flue gas [J]. Energy Conversion and Management,2003, 44(14):2331-2340.
    [77]Hosoda H, Hirama T, Azuma N, et al. NOX and N2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas:macroscopic characteristics of their formation and reduction [J]. Energy Fuels,1998,12(1):102-108.
    [78]Hayashi J, Hirama T, Okawa R, et al. Kinetic relationship between NO/N2O reduction and O2 consumption during flue-gas recycling coal combustion in a bubbling fluidized-bed [J]. Fuel,2002,81(9):1179-1188.
    [79]陈传敏,赵长遂,庞克亮,等.02/C02气氛下燃煤过程中NOX排放特性试验研究[J].东南大学学报(自然科学版),2005,35(5):84-87.
    [80]张永春,张军,盛昌栋,等.O2/N2、O2/CO2和O2/CO2/NO气氛下煤粉燃烧NOX排放特性[J].化工学报,2010,61(1):159-165.
    [81]Liu H, Katagiri S, Kaneko U, et al. Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion [J]. Fuel,2000,79(8):945-953.
    [82]Liu H, Katagiri S, Okazaki K. Drastic SOX removal and influences of various factors in O2/CO2 pulverized coal combustion system [J]. Energy & Fuels,2001,15(2):403-412.
    [83]Snow M J H, Longwell J P, Sarofim A F. Direct sulfation of calcium carbonate [J]. Industrial & Engineering Chemistry Research,1988,27(2):268-273.
    [84]Hajaligol M R, Longwell J P, Sarofim A F. Analysis and modeling of the direct sulfation of calcium carbonate [J]. Industrial & Engineering Chemistry Research,1988,27(12): 2203-2210.
    [85]刘彦,韦宏敏,齐学义,等.在O2/CO2-空气两种不同气氛下石灰石硫化特性的比较[J].动力工程,2006,26(2):267-272.
    [86]刘彦,周俊虎,方磊,等.O2/CO2气氛煤粉燃烧及固硫特性研究[J].中国电机工程学报,2004,24(8):227-231.
    [87]陈传敏,赵长遂,梁财,等.高CO2浓度下石灰石硫化特性试验研究[J].燃烧科学与技术,2006,12(5):453-456.
    [88]陈传敏,赵长遂,赵毅,等.O2/CO2气氛下燃煤过程中SO2排放特性试验[J].东南大学学报(自然科学版),2006,36(4):546-550.
    [89]李英杰,赵长遂,段伦博.O2/CO2气氛下煤燃烧产物的热力学分析[J].热能动力工程,2007,22(3):332-335.
    [90]董学文,王宏,刘豪,等.不同气氛下燃煤SO2的排放规律研究[J].环境科学学报,2003,23(3):232-236.
    [91]王宏,董学文,王泉海,等.新型燃烧方式下SO2脱除机理[J].化学工程学报,2005,56(10):1948-1954.
    [92]刘鸿,周克毅,徐啸虎,等.循环流化床炉内传热特性分析[J].中国电机工程学报,2004,24(6):211-213.
    [93]侯伟军,卢广.富氧燃烧下循环流化床锅炉稀相区传热模型研究[J].东北电力技术,2009,30(9):11-14.
    [94]侯伟军.循环流化床锅炉富氧燃烧下传热特性研究[D].保定:华北电力大学,2010.
    [95]王春波,侯伟军,陈传敏,等.富氧燃烧循环流化床锅炉炉内传热特性[J].中国电机工程学报,2011,31(20):1-6.
    [96]Andersson B A. Effects of bed particle size on heat transfer in circulating fluidized bed boilers [J]. Powder Technology,1996,87(3):239-248.
    [97]Andersson K, Johansson R, Hjartstam S, et al. Radiation intensity of lignite-fired oxy-fuel flames [J]. Experimental Thermal and Fluid Science,2008,33(1):67-76.
    [98]Bolea I, Romeo L M, Pallares D. The role of external heat exchangers in oxy-fuel circulating fluidized bed [J]. Applied Energy,2012,94:215-223.
    [99]Wang C B, Hou W J, Zhang W, et al. A Study on Heat Transfer Model in Sparse Zone of Oxy-fuel Fired CFB [C].2009 International Conference on Energy and Environment Technology, Guangxi, China,2009.
    [100]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,2002.
    [101]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1):72-76.
    [102]李余增.热分析[M].北京:清华大学出版社,1987.
    [103]胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社,2001.
    [104]叶江明.电厂锅炉原理及设备[M].北京:中国电力出版社,2010.
    [105]牛胜利,路春美,赵建立,等.02/C02气氛下煤粉的燃烧规律与动力学特性[J].动力工程,2008,28(5):769-773.
    [106]黄庠永,刘加勋,姜秀民.O2/CO2气氛中超细煤粉着火特性[J].中国电机工程学报,2010,30(11):50-55.
    [107]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1998.
    [108]Arenillas A, Rubiera F, Pis J J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals [J]. Journal of Analytical and Applied Pyrolysis,1999,50(1):31-46.
    [109]Liu F, Xie L, Guo H, et al. Sulfur release and transformation behaviors of sulfur-containing model compounds during pyrolysis under oxidative atmosphere [J]. Fuel,2014,115: 596-599.
    [110]Arenillas A, Rubiera F, Pis J J, et al. The effect of the textural properties of bituminous coal chars on NO emissions [J]. Fuel,1999,78(14):1779-1785.
    [111]Arenillas A, Pevida C, Rubiera F, et al. Characterisation of model compounds and a synthetic coal by TG/MS/FTIR. to represent the pyrolysis behaviour of coal [J]. Journal of Analytical and Applied Pyrolysis,2004,71(2):747-763.
    [112]Arenillas A, Rubiera F, Pis J J, et al. Thermal behaviour during the pyrolysis of low rank perhydrous coals [J]. Journal of Analytical and Applied Pyrolysis,2003,68-69:371-385.
    [113]Calvo L F, Sanchez M E, Moran A, et al. TG-MS as a technique for a better monitoring of the pyrolysis, gasification and combustion of two kinds of sewage sludge [J]. Journal of Thermal Analysis and Calorimetry,2004,78(2):587-598.
    [114]王宏.O2/C02气氛下燃煤中硫与氮在热场中转化行为的研究[D].武汉:华中科技大学,2006.
    [115]段伦博,赵长遂,卢骏营,等.O2/C02气氛下煤燃烧SO2/NO析出特性[J].化工学报,2009,60(5):1268-1274.
    [116]王萌,吴昊,刘浩,等.O2/C02气氛下煤粉燃烧NO的排放特性[J].煤炭学报,2013,38(6):1072-1077.
    [117]王贲,苏胜,孙路石,等.02/C02条件下煤焦-NO生成特性的试验研究[J].煤炭学报,2012,37(10):1743-1748.
    [118]Li Y H, Radovic L R, Lu G Q, et al. A new kinetic model for the NO-carbon reaction [J]. Chemical Engineering Science,1999,54(19):4125-4136.
    [119]Chu X, Schmidt L D. Intrinsic rates of nitrogen oxide (NOx)-carbon reactions [J]. Industrial & Engineering Chemistry Research,1993,32(7):1359-1366.
    [120]Glarborg P, Jensen A D, Johnsson J E. Fuel nitrogen conversion in solid fuel fired systems [J]. Progress in Energy and Combustion Science,2003,29(2):89-113.
    [121]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion [J]. Progress in Energy and Combustion Science,1989,15(4):287-338.
    [122]Johnsson J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion [J]. Fuel,1994,73(9):1398-1415.
    [123]de Diego L F, Rufas A, Garcia-Labiano F, et al. Optimum temperature for sulphur retention in fluidised beds working under oxy-fuel combustion conditions [J]. Fuel,2013,114: 106-113.
    [124]Fuertes A B, Velasco G, Fuente E, et al. Study of the direct sulfation of limestone particles at high CO2 partial pressures [J]. Fuel Processing Technology,1994,38(3):181-192.
    [125]李金晶,李燕,吕俊复,等.循环流化床锅炉炉内传热的影响因素[J].清华大学学报(自然科学版),2007,47(11):2026-2030.
    [126]Park J, Lee K H, Lee K. NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar [J]. International Journal of Energy Research,2002,26(3): 229-243.
    [127]Park J, Park J S, Kim H P, et al. NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide [J]. Energy & Fuels,2007,21(1):121-129.
    [128]Hu Y, Naito S, Kobayashi N, et al. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases [J]. Fuel,2000,79(15):1925-1932.
    [129]Cheng L, Luo Z, Shi Z, et al. Combustion behavior and SO2, NOx emissions of an anthracite coal in a circulating fluidized bed [C]. Proceedings of the 18th International Conference on Fluidized Bed Combustion, Toronto, Canada,2005.
    [130]de Diego L F, Londono C A, Wang X S, et al. Influence of operating parameters on NOx and N2O axial profiles in a circulating fluidized bed combustor [J]. Fuel,1996,75(8): 971-978.
    [131]Zhu J, Lu Q, Niu T, et al. NO emission on pulverized coal combustion in high temperature air from circulating fluidized bed-An experimental study [J]. Fuel Processing Technology, 2009,90(5):664-670.
    [132]赵然.高浓度C02气氛下NO释放及火焰特性的动力学研究[D].武汉:华中科技大学,2011.
    [133]Amand L E, Leckner B. Influence of fuel on the emission of nitrogen oxides (NO and N2O) from an 8-MW fluidized bed boiler [J]. Combustion and Flame,1991,84(1-2):181-196.
    [134]Talukdar J, Basu P, Greenblatt J H. Reduction of calcium sulfate in a coal-fired circulating fluidized bed furnace [J]. Fuel,1996,75(9):1115-1123.
    [135]Hoteit A, Bouquet E, Schonnenbeck C, et al. Sulfate decomposition from circulating fluidized bed combustors bottom ash [J]. Chemical Engineering Science,2007,62(23): 6827-6835.
    [136]Stephen R T. An introduction to combustion: concepts and applicationss [M]. New York: McGrw-Hill Companies, Inc,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700