新型复合吸收剂液相同时脱硫脱硝的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
到目前为止,就烟尘、SO2、NOx等单一污染物而言,国际上已经先后发展出了一系列相应的成熟技术,其中一部分到了工程应用,成为市场上的主流工艺,如静电除尘、钙基烟气脱硫、选择性催化还原(SCR)和选择性非催化还原(SNCR)脱硝、活性炭脱汞。这些技术的特点是:一项技术仅针对一种污染物,通过一套专门的设备实现污染物的脱除。这种污染物分级治理方式,存在占地面积大、设备投资和运行费用及能耗高、烟气系统稳定性差等问题,严重影响燃煤污染控制的经济性和适用性。因此开展烟气多污染物同时脱除的研究具有重要现实意义,已成为当前国内外新兴的研究领域。
     基于当前研究热点,论文详细地研究了亚氯酸钠/次氯酸钠溶液和过氧化氢/碱性溶液两种新型复合吸收剂体系中影响同时脱硫脱硝的因素,发现吸收剂溶液pH、吸收剂浓度、反应温度和吸收剂组成及比例对脱除效率影响显著。研究获得了两种新型复合吸收剂体系最佳脱硫脱硝实验条件。其中以亚氯酸钠/次氯酸钠溶液为吸收剂的最佳实验条件为:溶液pH为5.5,次氯酸钠与亚氯酸钠摩尔比为4,反应温度为50℃;在最佳条件下,二氧化硫脱除效率几乎达到100%,氮氧化物脱除效率达到80%。过氧化氢/碱性溶液为吸收剂的最佳实验条件为:溶液pH为10.5,过氧化氢浓度为0.8175 mol·L-1,反应温度为47.5℃;在最佳条件下,二氧化硫脱除效率几乎达到100%,氮氧化物脱除效率达到70%。
     通过新型复合吸收剂同时脱硫脱硝产物分析,揭示了脱除反应机理,其中亚氯酸钠/次氯酸钠溶液同时脱硫脱硝反应历程为以亚氯酸根离子、次氯酸及中间产物二氧化氯和氯气共同与二氧化硫和一氧化氮发生了氧化吸收反应,且反应可同时发生于气液两相;过氧化氢碱性溶液同时脱硫脱硝反应历程为过氧化氢、过氧氢根离子及相关自由基在液相共同与二氧化硫和一氧化氮发生了氧化吸收反应。
     基于新型复合吸收剂同时脱硫脱硝宏观反应动力学研究表明,亚氯酸钠/次氯酸钠溶液同时脱硫脱硝反应过程中二氧化硫分压和一氧化氮分压的分级数均为一级,宏观反应平均活化能分别为21.598 kJ·mol-1和8.166 kJ·mol-1。过氧化氢碱性溶液脱硫脱硝反应过程中二氧化硫分压和一氧化氮分压的分级数均为一级,宏观反应平均活化能分别为1.378 kJ·mol-1和3.722 kJ·mol-1;同时脱硫脱硝时,二氧化硫对一氧化氮吸收具有抑制作用,对一氧化氮吸收速率影响与其气相分压成1.2次方关系,抑制反应活化能为46.634 kJ·mol-1;一氧化氮对二氧化硫的吸收具有促进作用,对二氧化硫吸收速率影响与其气相分压成2.8次方关系,促吸收反应活化能为155.86 kJ·mol-1;同时脱硫脱硝传质反应动力学研究表明,二氧化硫吸收为传质控制步骤,一氧化氮吸收为反应控制步骤,一级反应平均活化能分别为42.654 kJ·mol-1和27.768 kJ·mol-1。
So far, a series of mature technologies have successively developed to remove single pollutant such as dust, SO2, NOx, and some have been the mainstream processes in the market and applied in engineering, such as electrostatic precipitation technology, wet flue gas dcsulfurization technology with calcium base absorbent, selective catalytic reduction (SCR) denitration technology, selective non-catalytic reduction (SNCR) denitration technology and mercury technology with activated carbon. But it has obvious characteristic that one technology is only used to remove one pollutant by a set of special equipment. For multi-pollutant removal, the graded treatment mode has some problems such as big floor occupation, high equipment investment and operating cost, high energy consumption, less stability of flue gas system. In order to obtain better economy and applicability of the coal-fired pollution control, the research on simultaneous removal of multi-pollutants has important realistic significance, and has become a current new field in both at home and abroad.
     Based on the current research focus, the influence factors on removal efficiencies of SO2 and NO in two new complex absorbent system including the solution of NaClO2/NaCIO and alkaline solution of H2O2 were investigated detailedly in this paper.These factors such as solution pH, absorbent concentration, reaction temperature, absorbent composition and proportion have significant effects on removal efficiencies of SO2 and NO. The best experimental conditions of desulfurization and denitration were obtained based on two new complex absorbent system. The optimal removal conditions based on the solution of NaClO2/NaClO included the solution pH was 5.5, the molar ratio of NaCIO to NaCIO2 was 4, and the absorption temperature was 50℃. Under the best conditions, the removal efficiency of SO2 reached almost 100%, and the removal efficiency of NOx reached 80%. The optimal removal conditions based on the alkaline solution of H2O2 included the solution pH was 10.5, the H2O2 concentration was 0.8175 mol·L-1, and the absorption temperature was 47.5℃. Under the best conditions, the removal efficiency of SO2 reached almost 100%, and the removal efficiency of NOx reached 70%.
     The removal reaction mechanisms was revealed according to product analysis results of desulfurization and denitration, the oxidation absorption reactions of SO2 and NO with chlorite anion, hypochlorite and intermediate products such as chlorine dioxide and chlorine could occur when solution of NaClO2/NaClO was used as complex absorbent. Moreover, the oxidation reactions may happen in both gas phase and liquid phase. The oxidation absorption reactions of SO2 and NO with hydrogen peroxide, peroxide anion and related free radicals could occur when alkaline solution of H2O2 was used as complex absorbent.
     The macro-kinetics experimental results of simultaneous desulfurization and denitration indicated that the apparent reaction orders of SO2 and NO were both one order, and the apparent activation energies were 21.598 kJ·mol-1 and 8.166 kJ·mol-1 respectively when the solution of NaClO2/NaC10 was used as complex absorbent; the apparent reaction orders of SO2 and NO were both one order, the apparent activation energies were 1.3784 kJ·mol-1 and 3.7220 kJ·mol-1 respectively when the alkaline solution of H2O2 was used as complex absorbent. For simultaneous desulfurization and denitration using alkaline solution of H2O2, the inhibition of SO2 existed in the absorption of NO and the facilitation of NO existed in the absorption of SO2; the effect of SO2 on NO absorption rate was liner with 1.2 power exponent of its partial pressure in gas phase, and the apparent activation energy was 46.634 kJ·mol-1; the effect of NO on SO2 absorption rate was liner with 2.8 power exponent of its partial pressure in gas phase, and the apparent activation energy was 155.86 kJ·mol-1. The experimental results of mass transfer and reaction kinetics indicated that the mass transfer was the control step in the absorption of SO2 and reaction process was the control step in the absorption of NO; the obtained apparent activation energies for pseudo-first-order reaction were 42.654 kJ·mol-1 and 27.768 kJ·mol-1 respectively.
引文
[1]中华人民共和国环境保护部.中国环境状况公报[EB/OL].(2010-06-03).http://www.mep.gov.cn/gzfw/xzzx
    [2]谢绍东,张远航,唐孝炎.我国城市地区机动车污染现状与趋势[J].环境科学研究,2000,13(4):22-25,38
    [3]王令南,陈罕立.中国大城市:阻击氮氧化物污染迫在眉睫[J].环境经济,2004,7:36-40
    [4]中华人民共和国环境保护部.2008年环境统计年报[EB/OL].(2010-06-21).http://www.mep.gov.cn/zwgk/hjtj
    [5]赵安平.浅谈煤炭燃前脱硫技术现状及展望[J].煤,2004,13(1):50-51
    [6]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2007,1
    [7]雷放鸣.燃煤脱硫技术述评[J].节能,2002,(10):16-18
    [8]喻舒.煤炭燃前脱硫技术[J].电站系统工程,2005,21(5):41-42
    [9]孙仲侦,徐东耀,孙启萌.煤粉炉燃中固硫技术研究与实践[J].能源环境保护,2005,19(1):60
    [10]秦国彤,贺林,路新瀛.液体排渣立式旋风炉燃烧中脱硫研究[J].炭转化,2002,25(1):45
    [11]张慧明.中国燃煤工业锅炉排放二氧化硫对大气的污染及工业固硫型煤的应用[J].环境科学进展,1999,7(1):54-61
    [12]杨巧云,许绿丝,曾汉才.火电厂脱硫技术选型[J].湖北电力,2003,27(5):28-30
    [13]金晶.火电厂烟气脱硫工艺的选择[J].电力环境保护,2001,17(1):28-29
    [14]刘孜.火电氮氧化物防治面面观[J].环境保护,2009,7:40-41
    [15]于明金,解海龙,樊睿源等.燃煤电站锅炉低NOx燃烧技术初探[J].节能技术、2006,22(2):9-10
    [16]周涛,刘少光,吴进明.火电厂氮氧化物排放控制技术[J].环境工程,2008,26(6):82-85
    [17]朱法华,赵国华.燃煤电厂烟气脱硝的政策要求与建议[J].中国电力,2008,41(2):51-54
    [18]姚雨,郭占成,赵团.烟气脱硫脱硝技术的现状与发展[J].钢铁,2003,38(1):62
    [19]淳于菱.几种先进烟气脱硫技术综合性能评价及在我国应用前景分析[J].电力环境保护,2000,1:19
    [20]Ekkehard Richter, Hans-Jurgen Schmidt, Hans-Gerg Schecker. Adsorption and catalytic reactions of NO and NH3 on activated carbon [J]. Chemical Engineering & Technology,1990,13(1):332-340
    [21]Bon Jun Ku, Joog Kee Lee, Dalkeun Park, et al. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia[J]. Research on Chemical Intermediates,1994,33(11):2868-2874
    [22]Isao Mochida, Yuji Kawabachi, Shizuo Kawano, et al. High catalytic activity of pitch-based activated carbon fibres of morderate surface area for oxidation of NO to NO2 at room temperature[J]. Fuel,1997,76(6):543-548
    [23]韩慧,白敏冬,白希尧.脱硫脱硝技术展望[J].环境科学研究,2002,15(1):55-57,60
    [24]张虎,佟会玲,陈昌和.燃煤烟气同时脱硫脱硝机理概述[J].环境科学与技术,2006,29(7):103-105
    [25]谢国勇,刘振宇,刘有智.用CuO/γ-Al2O3催化剂同时脱除烟气中的SO2和NO[J].催化学报,2004,25(1):33-38
    [26]Sang Joon Chung, K.Chandrasekara Pillai and Ⅱ Shik Moon. A sustainable environmentally friendly NOx removal process using Ag(Ⅱ)/Ag(Ⅰ)-mediated electrochemical oxidation[J]. Separation and Purification Technology,2009,65(2): 156-163
    [27]K.H.Kleifges, E.Juzeliunas and K.Juttner. Electrochemical study of direct and indirect NO reduction with complexing agents and redox mediator[J]. Electrochimica Acta,1997,42(19):2947-2953
    [28]Yi Zhao, Xiaojun Sun, Hua Fang, et al. Simultaneous removal of SO2 and NO from flue gas using "Oxygen-Enriched" highly reactive absorbent[J]. Environmental Engineering Science,2007,24(3):372-382
    [29]Yi Zhao, Jing Han, Yuan Shao. et al. Simultaneous SO2 and NO removal from flue gas based on TiO2 photocatalytic oxidation[J]. Environmental Technology,2009, 30(14):1555-1563
    [30]Zhao Yi, Liu Feng, Guo Tianxiang, et al. Experiments and reaction characteristics of liquid phase simultaneous removal of SO2 and NO[J].Science in China Series E-Technological Sciences,2009.52(6):1768-1775
    [31]Sun Bao-Ming, Yin Shui-E, Wang Zhong-Li. Study on the experiments of flue gas denitrification and desulfurization using nitric acid solution[A].Proceedings of the 2nd International Conference on Energy Sustainability[C].Amer Soc Mechanical Engineerings,2009,239-246
    [32]范貌宏,庄亚辉FeSO4水溶液吸收脱硫及其影响因素实验[J].环境科学,1998,19(1):5-8
    [33]马双忱,赵毅,郑福玲,等.液相催化氧化脱除烟道气中SO2和NOx的研究[J].中国环境科学,2001,21(1):33-37
    [34]Eizo Sada, Hidehiro Kumazawa, Yasuharu Takada. Chemical reactions accompanying absorption of nitric oxide into aqueous mixed solutions of iron(II)-EDTA and sodium sulfite[J]. Industrial & Engineering Chemistry Fundamentals,1984,23(1):60-64
    [35]Yangxian Liu, Jun Zhang. Changdong Sheng, et al.Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J].Chemical Engineering Journal,2010,162(3):1006-1011
    [36]陆雅静,熊源泉,高鸣等.尿素/三乙醇胺湿法烟气脱硫脱硝试验研究[J].中国电机工程学报,2008,28(5):44-50
    [37]Teramoto M, Ikeda M, Teranishi H. Absorption rates of NO in mixed aqueous solutions of NaClO2 and NaOH[J]. Kagaku Kogaku ronbunshu,1976,2(5):637-640
    [38]Eizo Sada, Hidehiro Kumazawa, Yasuo Yamanaka, et al. Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide[J]. Journal of Chemical Engineering of Japan,1978,11(4): 276-282
    [39]Eizo Sada, Hidehiro Kumazawa, Ichibei Kudo, et al. Absorption of no in aqueous mixedsolutions of NaCl02 and NaOH[J]. Chemical Engineering Science, 1978,33(3):315-318
    [40]Eizo Sada, Hidehiro Kumazawa, Ichibei Kudo, et al. Absorption of lean NO in aqueous slurries of Ca(OH)2 with NaCl02 or Mg(OH)2 with NaCl02[J]. Chemical Engineering Science,1979,34 (5):719-724
    [41]K F Chan. Experimental investigation and computer simulation of NOx and SOx absorption in a continuous-flow packed column[D]. Canda:University of Windor,1991
    [42]Hsu H.W., Lee C. J., Chou K. S. Absorption of NO by NaClO2 solution: performance characteristics[J]. Chemical Engineering Communications,1998, 170(1):67-81
    [43]Charlotte Brogren, Hans T.Karlsson, Ingermar Bjerle. Absorption of NO in an aqueous solution of NaC102[J]. Chemical Engineering & Technology,1998.21(1): 61-70
    [44]Yusuf G. Adewuyi, Samuel O. Owusu. Ultrasound-induced aqueous removal of nitric oxide from flue gases:effects of sulfur dioxide, chloride, and chemical oxidant[J]. The Journal of Physical Chemistry A,2006,110(38):11098-11107
    [45]Tsung-Wen Chien, Hsin Chu and Hsin-Ta Hsueh. Spray scrubbing of the nitrogen oxides into NaClO2 solution under acidic conditions[J]. Journal of Environmental Science and Health(Part A):Toxic/Hazardous Substances and Environmental Engineering,2001,36(4):403-414
    [46]Tsung Wen Chien, Hsin Chu and Hsin Ta Hsueh. Kinetic study on absorption of SO2 and NOx with acidic NaClO2 solutions using the spraying column[J]. Journal of Environmental Engineering,2003,129 (11):967-974
    [47]Tsung-Wen Chien and Hsin Chu. Removal of SO2 and NO from flue flue gas by wet scrubbing using an aqueous NaClO2 solution[J]. Journal of Hazardous Materials, 2000,80(1-3):43-57
    [48]Tsung Wen Chien, Hsin Chu and Yarn Chi Li. Absorption kinetics of nitrogen oxides using sodium chlorite solutions in twin spray columns[J].Water, Air & Soil Pollution,2005,166(1-4).237-250
    [49]Bal Raj Deshwal, Si Hyun Lee, Jong Hyeon Jung, et al. Study on the removal of NOx from simulated flue gas using acidic NaClO2 solution[J]. Journal of Environmental Sciences,2008,20(1):33-38
    [50]Charlotte Brogren, Hans T. Karlsson, Ingemar Bjerle. Absorption of NO in an aqueous solution of NaClO2[J]. Chemical Engineering & Tecnology,1998,21(1): 61-70
    [51]Hsin Chu, Tsung-Wen Chien and Bour-Wei Twu. The absorption kinetics of NO in NaClO2/NaOH solutions[J]. Journal of Hazardous Materials,2001,84(2-3): 241-252
    [52]Hsin Chu, Tsung-Wen Chien and Bour-Wei Twu. Simultaneous absorption of SO2 and NO in a stirred tank reactor with NaClO2/NaOH solutions[J].Water, Air & Soil Pollution,2003,143(1-4):337-350
    [53]Hyung-Keun Lee, Bal Raj Deshwal and Kyung-Seun Yoo. Simultaneous removal of SO2 and NO by sodium chlorite solution in wetted-wall column[J]. Korean Journal of Chemical Engineering,2005,22(2):208-213
    [54]Nick D.Hutson, Renata Krzyzynska and Ravi K.Srivastava. Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber[J]. Industrial & Engineering Chemistry Research,2008,47(16):5825-5831
    [55]Chen-Lu Yang. Aqueous absorption of nitrogen oxides induced by oxychlorine compounds:a process development study for flue gas treatment[D].America:New Jersey Institute of Technology,1994
    [56]Chen-Lu Yang, Henry Shaw. Absorption of NO promoted by strong oxidizing agents:1.inorganic oxychlorites in nitric acid[J]. Chemical Engineering Communications,1996,143(1):23-38
    [57]Chen-Lu Yang, Henry Shaw. Aqueous absorption of nitric oxide induced by sodium chlorite oxidation in the presence of sulfur dioxide[J]. Environmental Progress,1998,17(2):80-85
    [58]王琼,胡将军,邹鹏NaCIO2湿法烟气脱硫脱硝技术的研究[J].江西电力,2004,28(6):14-16
    [59]王琼,胡将军,邹鹏NaCIO2湿法烟气脱硫脱硝技术研究[J].2005,21(2):4-6
    [60]白云峰,李永旺,吴树志,等.钙基吸收剂液相氧化协同脱硫脱硝试验[J].环境科学学报,2009,29(3):505-510
    [61]华北电力大学≠赵毅.一种液相烟气脱硫脱硝净化方法及装置[P].中国专利:200610012525.2,2006-10-11
    [62]马宵颖.液相烟气脱汞实验研究[D].保定:华北电力大学,2008
    [63]万敬敏.液相烟气同时脱硫脱硝的实验研究[D].保定:华北电力大学,2006
    [64]刘凤,赵毅,王亚君,等.酸性NaClO2溶液同时脱硫脱硝的试验研究[J].动力工程,2008,28(3):425-429
    [65]赵毅,刘凤,赵音等.亚氯酸钠溶液同时脱硫脱硝的热力学研究[J].化学学报,2008,66(15):1827-1832
    [66]刘凤.喷射鼓泡反应器同时脱硫脱硝实验及机理研究[D].保定:华北电力大学,2009
    [67]Jozef Kuropka.Simultaneous desulphfurisation and denitrification of flue gases[J]. Environment Protection Engineering,2008,34(4):187-195
    [68]Mieczyslaw Adam Gostomczyk, Renata Krzyzynska. Multi-Pollutant Control from Pulverized Coal-fired Boiler OP-430(A). Proceeding of the EPA-DOE_EPRI-A and WMA Power Plant Air Pollutant Control Mega Symposium[C],2006, 1038-1052
    [69]P.V. Deo. The use of hydrogen peroxide for the control of air pollution[J]. Studies in Environmental Science,1988,34:275-292
    [70]David Gray, Eduardo Lissi, Julian Heicklen. Reaction of hydrogen peroxide with nitrogen dioxide and Nitric oxide[J]. The Journal of Physical Chemistry,1972, 76(14):1919-1924
    [71]Diane Thomas, Sandrine Colle and Jacques Vanderschuren.Kinetics of SO2 absorption into fairly concentrated sulphuric acid solutions containing hydrogen peroxide[J]. Chemical Engineering and Processing,2003,42(6):487-494
    [72]Sandrine Colle, Jacques Vanderschuren and Diane Thomas.Simulation of SO2 absorption into sulfuric acid solutions containing hydrogen peroxide in the fast and moderately fast kinetic regimes[J]. Chemical Engineering Science,2005,60(22): 6472-6479
    [73]Sandrine Colle, Jacques Vanderschuren and Diane Thomas. Pilot-scale validation of the kinetics of SO2 absorption into sulphuric acid solutions containing hydrogen peroxide[J]. Chemical Engineering and Processing,2004,43(11): 1397-1402
    [74]Sandrine Colle, Jacques Vanderschuren and Diane Thomas. Effect of temperature on SO2 absorption into sulphuric acid solutions containing hydrogen peroxide[J]. Chemical Engineering and Processing:Process Intensification,2008.47 (9-10):1603-1608
    [75]Diane Thomas and Jacques Vanderschuren. The absorption-oxidation of NOx with hydrogen peroxide for the treatment of tail gases[J]. Chemistry Engineering Science,1996,51(11):2649-2654
    [76]Diane Thomas and Jacques Vanderschuren. Modeling of NOx absorption into nitric acid solutions containing hydrogen peroxide[J]. Industrial & Engineering Chemistry Research,1997,36(4):3315-3322
    [77]Diane Thomas and Jacques Vanderschuren. Effect of temperature on NOx absorption into nitric acid solutions containing hydrogen peroxide[J]. Industrial & Engineering Chemistry Research,1998,37(11):4418-4423
    [78]Collins Michelle Maynard, C.David Cooper, John D. Dietz, et al. Pilot-scale evaluation of H2O2 injection to control to NOx emissions[J]. Journal of Environmental Engineering,2001,127(4):329-336
    [79]Collins, Michelle Maynard.Pilot scale study for control of industrial boiler nitrogen oxide emissions using hydrogen peroxide treatment coupled with wet scrubbing-system design[D]. America:University of Central Florida,1998
    [80]Piyavadee Limvoranusorn, C.David Cooper, John D. Dietz, et al. Kinetic modeling of the gas-phase oxidation of nitric oxide using hydrogen peroxide[J]. Journal of Environmental Engineering,2005,131 (4):518-525
    [81]Jordan M.Haywood and C.David Cooper.The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant flue gases[J]. Journal of the Air & Waste Management Association,1998,48(3):238-246
    [82]Sirpa K.Nelo, Kaisu M.Leskela, Jorma J.K.Sohlo. Simultaneous oxidation of nitrogen oxides and sulfur dioxide with ozone and hydrogen peroxide[J]. Chemical Engineering & Technology,1997,20(1):40-42
    [83]叶向高.NOx气体的氧化吸收工艺[J].电镀与环保,1987,7(1):24-27
    [84]柳瑶斌,周月桂,彭军等.半干法烟气脱硫中过氧化氢溶液强化吸收二氧化硫的研究[J].燃料化学学报,2008,36(4):474-477
    [85]赵毅,曹春梅,马双忱等.H2O2复合体系及其在环境治理中的应用.电力环境保护,2008,24(5):26-28
    [86]马京香.高级氧化技术用于烟气多污物控制的实验研究[D].保定:华北电力大学,2008
    [87]赵文,王晓红,唐继国等.化工原理[M].山东:石油大学出版社.2001,288
    [88]Zhao Wei-rong, Shi Hui-xiang and Wang Da-hui. Modeling of mass transfer characteristics of bubble column reactor with surfactant present[J]. Journal of Zhejiang University-Science A,2004,5(6):714-720
    [89]要杰.液相烟气脱汞动力学研究[D].保定:华北电力大学,2009
    [90]申思.复合吸收剂液相同时脱硫脱硝实验研究[D].保定:华北电力大学2010
    [91]叶群峰.吸收法脱除模拟烟气中气态汞的研究[D].杭州:浙江大学,2006
    [92]J.A.迪安.兰式化学手册[M].北京:科学出版社,1999,15th
    [93]Tuula Lehtimaa, Ville Tarvo, Gerard Mortha, et al. Reactions and kinetics of Cl(Ⅲ) decomposition[J]. Industrial & Engineering Chemistry Research,2008, 47(15):5284-5290
    [94]Balazs Kormanyos, Istvan Nagypal, Gabor Peintler, et al. Effect of chloride ion on the kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid[J]. Inorganic Chemistry,2008,47(17):7914-7920
    [95]Bal Raj Deshwal, Hang-Dae Jo. Hyung Keun Lee. Reaction kinetics of decomposition of acidic sodium chlorite[J]. The Canadian Journal of Chemical Engineering,2008,82(3):619-623
    [96]Eizo Sada, Hidehiro Kumazawa. Yasuo Yamanaka et al. Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide[J]. Journal of Chemical Engineering of Japan,1978,11(4): 276-282
    [97]Luke Chen, Chung-Hao Hsu, Chen-Lu Yang. Oxidation and absorption of nitric oxide in a packed tower with sodium hypochlorite aqueous solutions[J]. Environmental Progress & Sustainable Energy,2005,24(3):279-288
    [98]Kiman Lee, Youngchul Byun, Dong Jun Koh, et al. Characteristics of NO Oxidation Using NaClO2[J]. Korean Chemical Engineering Research,2008,46(5): 988-993
    [99]吕希伦.无机过氧化合物化学[M].北京:科学出版社,1987,79-80
    [100]David Littlejohn. Kinetics of the reaction of nitric oxide with sulfite and bisulfite ions in aqueous solution[J]. Inorganic Chemistry,1986,25(18):3131-3135
    [101]David Littlejohn, Yizhong Wang, Shih Ger Chang. Oxidation of aqueous sulfite ion by nitrogen dioxide[J]. Environmental Science & Technology,1993, 27(10):2162-2167
    [102]陈甘棠.化学反应工程[M].北京:化学工业出版社,2007,248
    [103]Bird R B, Steuart W E. Lightfoot E N, Transport Phenomena[M]. John Wiley&Sons, Inc.,1960,
    [104]姚玉英.化工原理[M].天津:天津科学技术出版社,2006,355
    [105]王福安,蒋登高,傅举孚.化工数据导引[M].北京:化学工业出版社,1995,273-275
    [106]B.M.拉姆.气体吸收[M].北京:化学工业出版社,1985,343-344
    [107]毛在砂,陈家镛.化学反应工程基础[M].北京:科学出版社,2004,147-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700