玉米幼苗对不同土壤水分条件的生理反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节水农业的中心是提高自然降水和灌溉水利用效率,在这方面也存在着巨大潜力。为实现这一目标,根据作物各生理过程对水分亏缺的敏感程度,确定作物对土壤水分亏缺的下限指标,建立节水高效的灌溉制度是农田水分管理的重要手段。玉米苗期是玉米节水的主要阶段,要实现玉米节水灌溉,研究玉米苗期各生理过程与土壤水分的关系是很有现实意义的。通过对玉米各生理过程随土壤水分连续的动态变化规律及静态对比条件下的变化规律的进一步研究,确定出玉米的最适土壤水分供给水平,以期为节水农业灌溉提供理论基础。
     通过对土壤逐步干旱条件下玉米幼苗气体交换参数动态变化的研究发现,在土壤逐步干旱初期,玉米的光合速率、蒸腾速率有所升高,在土壤相对含水量为90%时达最大。其后随土壤干旱的加剧,玉米的光合速率、蒸腾速率开始下降,下降初期较缓,自70%后几乎呈直线。分析表明这种变化是由气孔因子和非气孔因子交替或综合调节的结果。单叶水平的水分利用效率与土壤相对含水量之间呈抛物线关系,其最大值出现在土壤相对含水量为65N左右。由叶片的相对含水量与土壤相对含水量之间的模拟曲线显示,土壤相对含水量在60%以上时,叶片相对含水量变化较缓,几乎保持在一个水平上。以上现象的机制可能是,当土壤相对含水量在60%以上时,由于叶片代谢反应的调节使叶片相对含水量得到维持,同时也使叶片的光合速率对气孔的轻微关闭变得不是很敏感,而蒸腾速率一直保持对气孔开度的敏感性,结果导致了水分利用效率的增加,至土壤相对含水量在65%左右时达到最大。当土壤水分的进一步干旱,因叶片代谢调节的有限,使得光合速率对干旱变得敏感,结果导致单叶水分利用效率的逐渐降低。本实验结果显示,土壤相对含水量为60%是玉米苗期节水的一个关键值,低于此值玉米苗的叶片相对含水量就开始迅速降低,生长受到抑制。与叶水势的相关分析表明叶水势在—0.8Mpa是气孔最敏感的一个阈值点,也是光合速率和蒸腾速率与叶水势关系变化的一个临界值。
     通过对在静态对比条件下不同土壤相对含水量对玉米幼苗的影响的研究发现,土壤相对含水量在40%—70%范围时,玉米叶片光合速率和蒸腾速率有所下降,但对叶片的水分利用效率的影响却不大,并且土壤相对含水量为70%时,玉米叶片的光利用效率、羧化效率以及
    
    月‘冲目睁勺亩月分刁刘口习匕.目火分月卜们网睡月口.之几月匕
    植株的生长几乎不受到水分胁迫的影响,因此提出土坡相对含水量为70%是玉米苗期适宜的
    供水上限,高于70%则不利于节水。通过对不同干早处理复水至充分后玉米幼苗的影响发现,
    不同干早处理被复水至充分后,均表现为气孔导度增大、光合能力恢复、单叶水分利用效率
    提高,甚至出现补偿现象,这种补偿现象与复水前水分干早程度和复水后水分充足持续的时
    间有关。其中,土城相对含水t为50%一70%的处理组被复水后,植物对光的利用效率也出
    现了补偿效应,其狡化效率也大幅度恢复,光合潜能有所提高,因此认为土坡相对含水t在
    50%是玉米苗期实施节水的最低范围闽值点。
     本研究为玉米在苗期实施节水灌溉确定了一定的最适土集水分供给水平,也为节水农业
    灌溉提供了理论墓础。
Improving water use efficiency of natural rainfall and irrigation is the core issue of water-saving agriculture, and it has great potential. It is essential to understand the sensitivity of every physiological process to water deficit and the threshold of crops to soil water deficit in order to establish a high efficiency water-saving system. Seedling stage is the crucial stage in maize to improve water use efficiency. So, studying the relationship between every physiological process and soil water content is of important practical significance in order to carry out water-saving irrigation. The author conducted the experiments with following three treatment groups: progressive drying; constant soil water continuum; drought with rewatering, to study the physiological responses of maize (Zea mays L.) to soil water content and to confirm proper water-providing amount and time in seedling stage of maize.
    The dynamic of photosynthetic parameters of Z. mays.L during seedling stage were studied in response to progressive drought The results showed that photosynthetic rate (Pn) and transpiration rate (Tr) increased a little with the declining of soil water content during the early drought days. When soil relative water content (SRWC) was 90% Field Water Capacity (FWC), bom Pn and Tr reached the maximum. Then they began to decrease with unceasing drought .The rate of decreasing was slow when soil water was higher than 70% FWC, but decreased linearly with decreasing soil water when soil water was lower than 70% FWC. It was indicated that the changes were caused synthetically or alternately by stomatal and non-stomatal factors. The curve of water use efficiency of single leaf (WUE) to SRWC was a parabola, its maximum occured under soil water content of 65% FWC. By analysing the curve of leaf relative water content (LRWC) to SRWC, the author found that when SRWC was above 60%, the change of LRWC was mild, nearly kee
    ping on the same level, which was suggested to be the result of adjustment of leaf metabolic reaction. The adjustment also made Pn to become insensitive to stomatal closure, while Tr was always keeping sensitive to stoma, which resulted in single leaf WUE of enhancing. When SRWC was about 65%, WUE reached
    
    
    
    the maximum. With more drought and SRWC was less than 60%, Pn became sensitive to stomatal closure since the adjustment of leaf metabolic reaction was limited, which resulted in single leaf WUE of decreasing. It was concluded from the above results that SRWC 60% was the key to water-saving irrigation at seedling stage of maize. Under this soil water content, LRWC decreased rapidly and the growth was restrained. By analysing with leaf water potential , it can be found that stoma was the most sensitive to with leaf water potential when at -0.8Mpa, and it was also a crucial point to Pn and Tr.
    In constant soil water treatment, the effects of soil relative water on different physiological parameters of maize seedling were studied. It was found that Pn and Tr decreased when SRWC was 40%-70%, while WUE was little affected. At the same time, light use efficiency, carboxylated efficiency and the growth of maize were hardly affected when SRWC was 70%. Based on above results, it was infered that SRWC 70% was the upper threshold for proper water-providing and it was of little benefit to water-saving beyond this range.
    By rewatering for different invariable soil relative water to 100% FWC, the author found that Pn and WUE restored to normal level, and even exceeded the normal level. The intensity and occurring time of compensatory effects was changed with soil water level and days after rewatering. Especially, light use efficiency of maize showed compensatory reponse, and carboxylated efficiency was increased a lot when rewatering from 50%-70% to 100% FWC. So, 50% FWC can be considered to be the minimum value of water-saving during seedling stage of maize.
    The present studies provided theoretical basic for water-saving irrigation and were helpful to ascertain the proper water-providing range for seedling of
引文
【1】 “华北平原作物水分胁迫与干旱研究”课题组编著,作物水分胁迫与干旱研究,河南科学技术出版社第一次出版,1991
    【2】 王根轩等编著,作物干旱生理生态方法与进展,兰州大学出版社出版发行,1997
    【3】 Boyer JS., Plant productivity and environment, Science, 1982,218:443~448
    【4】 丁圣彦,农业干旱问题及其对策研究,河南大学学报(社会科学版本),May,2001,41,(3):20-23
    【5】 刘奉觉,郑世锴等,杨树水分生理研究,北京农业大学出版社,1991
    【6】 王沙生,高荣孚等,植物生理学,中国林业出版社,1990
    【7】 李原圆,李英能,苏人琼等编,中国农业水危机及其对策,北京:中国国家技术委员会农村科技司,1997:52-54
    【8】 朱丕荣等,世界的水资源与灌溉农业,世界农业,1997,(1):3-5
    【9】 於琍,不同水分条件下冬小麦干物质积累及分配规律的研究,安微农业大学硕士论文,2001
    【10】 王克勤,王斌瑞,王震洪,金矮生苹果水分利用效率,生态学报,Vol 22,No5,May,2002
    【11】 山仑,黄占斌,张岁岐,节水农业,2000,清华大学出版社
    【12】 杨建伟,韩蕊莲,魏宇昆,孙群,梁宗锁,不同土壤水分状况对杨树、沙棘水分关系及生长的影响,西北植物学报,2002,22(3):579-586
    【13】 王慧,水分亏缺对冬小麦净光合速率影响程度研究,生态学报,1997,16(5):1-6
    【14】 马瑞昆,蹇家利,贾秀领,刘淑贞,高产冬小麦叶水势的变化特点与节水调控,华北农学报,1994,9(2):14-19
    【15】 王孝威,段艳红,曹慧,郑王义,水分胁迫对短枝型果树光合作用的非气孔限制,西北植物学报,2003,23(9):1609-1613
    【16】 张喜英,冬小麦、夏玉米叶水势、蒸腾和液态水流阻力的田间试验研究,地理学报,1997,11,Vol 53(6):543-550
    【17】 张喜英,裴冬,由懋正.几种作物生理指标对土壤水分变动的阈值反应,植物生态学报,2000.24(3):280-283
    
    
    【18】 樊梦康,植物生理生化进展,1986,4:32-42
    【19】 Levitt J., Responses of Plant to environmental stresses, academic press, 1972. New York.
    【20】 上官周平,不同抗旱性冬小麦品种渗透调节的研究,干旱地区农业研究,1991,4:61-65
    【21】 李德全,抗旱性不同的冬小麦品种渗透调节能力的研究,山东农业大学学报,1991,4:377-383
    【22】 高爱丽,水分胁迫下小麦叶片渗透调节与抗旱性的关系,西北植物学报,1991,11(1):58-63
    【23】 王霞,候平,植物对干旱胁迫的适宜机制,干旱区研究,2001,18(2):42-46
    【24】 李德全,土壤干旱下不同小麦品种的渗透调节和渗透调节物质,植物生理学报,1992,18(1):37-44
    【25】 Hsiao T.C., E.Aceredo, E.Fereres and D.W.Heenderson. Water stress, growth and osmotic adjustment. Phil Trans.R.Soc.Land.Ser.B., 1976, 273:493-500
    【26】 王玉国,水分胁迫下高梁叶片的渗透调节与延伸生长的关系,植物生理学报,1991,17(1):37-43
    【27】 Hsiao T.C., E.Aceredo, E.Fereres and D.W.Heenderson. Maize leaf elongation: contionus measurement and close dependence on plant water stress. Science, 1970, 24:519-570
    【28】 潘瑞炽,董愚得编著,植物生理学(第三版),高等教育出版社,1999
    【29】 许大全,光合作用效率,上海科学技术出版社,2002,8
    【30】 钟继洪,廖观荣,郭庆荣,廖新荣,李淑仪,蓝佩玲,不同土壤水分条件下幼龄桉树生理生态特点分析,水土保持学报,2003,17(5):126-127
    【31】 董合忠,李维江,唐薇,李振怀,张冬梅,干旱和淹水对棉苗某些生理特性的影响,西北植物学报,2003,23(10):1695-1699
    【32】 黄占斌,山仑,春小麦水分利用效率日变化及其生理生态基础的研究,应用生态学报,1997,6,8(3):263-269
    【33】 黄占斌,山仑,不同供水下作物水分利用效率和光合速率日变化的时段性及其机理研究,华北农学报,1999,14(1):47-52
    【34】 毛明策,郭东伟 梁银丽,水分处理对油菜叶位光合速率、蒸腾速率及水分利用效率的
    
    影响,中国生态农业学报,2001,Vol.9(1):49-51
    【35】 刘志嫒,党选民.曹振木,土壤水分对黄秋葵苗期生长及光合作用的影响,热带作物学报,2003,24(3):70-72
    【36】 Joly R J, Hahn DT, Net CO_2 assimilation of cacao seedlings during periods of plant water deficit. Photosynth Res, 1989, 21:151-159
    【37】 范晶,东北东部主要成林树种光合生理生态研究,东北林业大学博士学位论文,2002
    【38】 王会肖,刘昌明,作物光合、蒸腾与水分高效利用的试验研究,应用生态学报,Oct,2003,14(10):1632-1636
    【39】 孙伟,王德利,王立,杨允菲,模拟光条件下禾本科植物和黎科植物蒸腾特性与水分利用效率比较生态学报,2003,4,Vol 23(4):814-819
    【40】 Andi Bahrun, Christian R. Jensen, Folkard Asch and Vagn O. Mogensen, Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). Journal of Experimental Botany, February 1, 2002, 53(367):251-263
    【41】 Hartung W, Jescke WD. Abscisic acid: a long-distance stress signal in salt-stressed plants. In: Lerner HR, ed. Plant responses to environmental stresses: from phytohormones to genome reorganization. New York: Marcel Dekker, 1999:333-348
    【42】 Dodd IC, Davies WJ, The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone, Plant, Cell and Environment, 1996. 19:1047-1056
    【43】 靳家海,肖庆德,水分胁迫和胁迫后对玉米生长速率的影响,植物生理学报,1987,13(1):51-57.
    【44】 上官周平,陈培元,玉米对渗透胁迫的反应和生理反应,植物学通报,1990,7:30-33
    【45】 韩建民,史吉平,董永华,干旱且无昼夜温差条件下玉米叶片Ψ_(-a)、Ψ_(-s)、Ψ_(-p)和叶片伸长速率的变化,河北农业大学学报,1996,19(1):22-25
    【46】 Michelena V A, Boyer J S, Complete Turgor Maintenance at low Water Potentials in the Elongating Region of Maize Leaves, Plant Physiol, 1982, 69:1145-1149
    
    
    【47】 戴俊英,顾慰连,沈秀瑛,玉米不同品种各生育期干旱对生育及产量的影响,沈阳农业大学学报,1990,21(3),181-185
    【48】 戴俊英,顾慰连,沈秀瑛,玉米不同时期的抗旱性,植物生理学通讯,1989,14(3):18-21
    【49】 王万里,植物对水分胁迫的响应,植物生理学通讯,1981,(5):55-64
    【50】 Hisao, T.C.and Jing, J.H., Leaf and root expansive growth in response to water deficits, In "Physiology of Expansion during Plant Growth", Am.Soc.Plant Physiology, Rockvilla, M.D., USA, 1987, 180-192
    【51】 李连朝,王学臣,水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系,植物生理学通讯,1998,34(3):161-167
    【52】 王晓琴,玉米幼苗对水分胁迫的生理反应及其与品种抗旱性的关系研究,四川农业大学硕士学位论文,2002
    【53】 刘志敏,水分胁迫对盆栽桃树生长的影响,中国农业大学硕士学位论文,2002
    【54】 李风英,黄占斌,山仑,夏玉米水分利用效率的时空变化规律研究,西北植物学报,2000,20(6):1010-1015
    【55】 苏珮,山仑,拔节期复水对玉米苗期受旱胁迫的补偿效应,植物生理学通讯,1995,31(5):341-344
    【56】 Rao N H et al, Real time adaptive irrigation scheduling under a limited water supply, Agriculture Water Mamagemant, 1992, 20:267-269
    【57】 盛承发,生长的冗余—作物对于虫害超越补偿作用的一种解释,应用生态学报,1990,1:26-30
    【58】 陈亚新,康绍忠,非充分灌溉原理,北京,水利电力出版社,1995
    【59】 王晨阳,干旱胁迫对冬小麦根系活性氧代谢的影响,华北农学报,1997,7(4):31-36
    【60】 伍贤进,土壤水分对苗期烤烟生长发育及光合生理特性的影响,怀化师专学报,1995,14,(2):53-57
    【61】 李素美,东先旺,陈建华,不同土壤目标含水量对夏玉米光合性能及产量的影响,华
    
    北农学报,1999,14,3:55-59
    【62】 上官周平,小麦叶片的渗透调节及其与光合机构运转关系的探讨,中国科学院水利部西北水土保持研究所硕士学位论文,1989
    【63】 Mohanty P, Boyer J S. Chloroplast response to low leaf water potentials.Ⅳ.Quantum yield is reduced. Plant Physiol, 1976, 57:704-709
    【64】 Davies F S.Flore J A. Short-term flooding effects on gas exchage and quantum yield of rabbiteye blueberry (Vaccinium ashei Reade). Plant Physiol, 1986, 81:289-292
    【65】 卢从明,张其德,匡廷云,水分胁迫对光合作用影响的研究进展,植物学通报,1994,11(增刊):9~14
    【66】 郭连旺,沈允钢,高等植物光合机构避免强光破坏的保护机制,植物生理学通讯,1996,32(1):1~8
    【67】 Mehdy MC, Active Oxygen Species in Plant Defense against Pathogens, Plant Physiol. 1994, 105:467~472
    【68】 施建忠,王天铎,李临颖,Experimental study and mathematical simulation of water use efficiency in wheat leaves affected by some environmental factors,植物学报,1994,36(12):940-946
    【69】 陈德兴,王天铎,桑树叶光合的数学模型,植物学报,1991,33(6):465-472
    【70】 王克勤,王斌瑞,土壤水分对金矮生苹果光合速率的影响,生态学报,2002,22(2):206-214
    【71】 包永红,樟子松对水分胁迫生态适应性的研究,内蒙古农业大学硕士学位论文,2001
    【72】 薛青武,陈培元,灌浆期土壤干旱条件下氮素营养对小麦旗叶光合作用的影响,干旱地区农业研究,1989,000(003):86~93
    【73】 Araus JL, Slafer GA, Reynolds MP, Royo C.. Plant breeding and drought in C_3 cereals: what should we breed for?. Annals of Botany, 2002, 89:925-940
    【74】 Chaves M. Water stress in the regulation of Photosynthesis in the field. Annals of Botany, 2002, 89:907-916
    【75】 Ober ES, Luterbacher MC. Genotypic variation for drought tolerance in Beta vulgaris.
    
    Annals of Botany, 2002, 89:917-924
    【76】 Martin A.J.Parry, P.John Andralojc, Shahnaz Khan, Peter J.Lea and Alfred J.Keys. Rubisco activity: effects of drought stress. Annals of Botany, 2002, 89:832-839
    【77】 Cornic G, Fresneau C. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for Photosystem Ⅱ activity during a mild drought. Annals of Botany, 2002, 89:887-894
    【78】 Tang AC, Kawamistsu Y, Kanechi M, Boyer JS. Photosynthesis oxygen evolution of low water potential in leaf discs lacking an epidermis. Annals of Botany, 2002, 89:861-870
    【79】 吕军,渍水对冬小麦生长的危害及其生理效应,植物生理学报,1994,20(3):221-226
    【80】 Zhang J, Davies WJ. ABA in roots and leaves of flooded pea plants. J Journal of Experimental Botany, 1987, 38:1649-1659
    【81】 Castongway Y, Nadeau P, Simard RR. Effects of flooding on carbohydrate and ABA levels in roots and shoots of Alfafa. Plant cell Environ, 1993, 16:698-702
    【82】 Mark A.Else, Annemiek E.Tiekstra, Stephen J.Croker, William J.Davies and Michael B.Jackson. Stomatal closure in flooded Tomato plants involves Abscisic Axid and a chemically unidentified anti-transpirant in xylem sap. Plant Physiol, 1996, 112:239-247
    【83】 H.Medrano, J.M.Escalona, J.Bota, J.Guli as and J.Flexas. Regulation of photosynthesis of C_3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany, 2002, 89:895-905
    【84】 Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW. Water stress inhibits plants photosynthesis by decreasing coupling factor and ATP. Nature, 1999, 401:914-917
    【85】 J.Flexas and H.medrano. Drought-inhibition of photosynthesis in C_3 plant: stomatal and non-stomatal limitation revisited. Annals of Botany, 2002, 89:183-189
    【86】 Lawlor DW, Cornic G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment. 2002. 25:275-294
    【87】 黄占斌,山仑,春小麦水分利用效率日变化及其生理生态基础的研究,应用生态学报,1997,8(3):263-269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700