烤烟根际微生物的群落结构及其动态变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
德国科学家Lorenz Hiltner在1904年首先提出了根际(Rhizosphere)的概念,用于描述植物根系周围的微区土壤。在根际微区内,植物、土壤和微生物相互作用,土壤的理化和生物学特性显著不同于非根际土壤,是一个极其特殊的土壤生态系统。值得注意的是,根际微生物的数量、活性和群落结构也不同于非根际土壤,它们与植物的养分吸收、土壤养分的生物有效性和土传病害的发生密切相关。
     青枯菌(Ralstonia solanacearum)主要存在于根际土壤,是引起烟草青枯病的病原微生物,并在世界范围内严重危害烤烟生长,在我国西南地区尤其严重。贵州省是我国重要的烤烟生产基地,而黄壤又是当地的主要地带性土壤。但是,在黄壤上种植烤烟,青枯病发病率极高,严重地影响烤烟的生产。因此,研究烤烟青枯病发病机理,找出解决办法,不仅可以丰富生态病理学的理论和实践,同时对当地烤烟生产的可持续发展也有重要意义。
     试验选择贵州省三种典型、具有代表性的植烟土壤为研究对象,它们是砂岩发育的黄壤、石灰岩发育的黄色石灰土和泥岩发育的中性紫色土。在烤烟生长的团棵期、现蕾期和成熟期,田间采集根际土壤,研究了根际微生物群落结构和数量动态变化。目的是为防控烤烟青枯病,了解根际土壤中的养分转化,以及烤烟的科学管理提供基础资料与理论依据。试验结果表明:
     1.烤烟根际微生物的数量细菌>放线菌>真菌,其数量范围分别为10~9-10~(10)、10~7-10~9和10~4-10~6CFU·g~(-1)干土。此外,土壤类型不同,根际细菌和放线菌的数量也不一样,黄壤>黄色石灰土>中性紫色土,黄壤和中性紫色之间的差异达到显著水平(p<0.05)。在不同土壤中,真菌的数量差异未达显著水准,但仍存在中性紫色土>黄壤>黄色石灰土的趋势。
     2.在烤烟生长过程中,根际微生物的数量随生育时期不同而变化。细菌在团棵期最少,然后逐渐增加,现蕾期达到峰值,进而又缓慢减少;放线菌和真菌数量从团棵期到成熟期呈增长趋势。
     3.比较三种根际微生物,细菌数量的变幅最大。土壤不同,根际微生物数量的变幅也不一样。黄色石灰土中的细菌和真菌变幅最大;黄壤中的放线菌变幅最大;在中性紫色土中,细菌、真菌和放线菌的变幅均最小。
     4.烤烟根际微生物的种群十分丰富,共分离获得了165株细菌、123株放线菌和100株真菌,有331个株菌鉴定到属,涉及细菌14个属,真菌11个属,放线菌是链霉菌属的8个类群,另有57个株菌未能确切鉴定。
    
    西南农业大学硕士学位论文
    摘要
    5.在不同根际土壤中,细菌、放线菌和真菌优势种群的组成具有一致性。在19株优势细
     菌中,有11株为假单胞杆菌:在14株优势真菌中,有”株为青霉属:优势放线菌均
     为链霉菌属。不过,在不同土壤中,烤烟根际中的优势细菌和放线菌组成有一定差异。
     作为优势种群,芽抱杆菌属和气单胞菌属只存在于中性紫色土中,产碱菌属只存在于
     黄壤和黄色石灰土中,白抱类群存在于中性紫色土中,吸水类群存在于黄色石灰土中,
     但黄壤中的放线菌优势种群不明显。
    6.就土壤类型而言,在中性紫色土中,细菌和放线菌的种群多样性大于其余两种土壤;
     真菌种群多样性为黄壤>黄色石灰土>中性紫色土。就烤烟生育期而言,烤烟根际微
     生物种群多样性变化在不同土壤中表现不同。在黄壤和黄色石灰土中,细菌种群多样
     性随生育进程的推进而不断下降:在中性紫色土中,从团棵期到现蕾期上升,然后下
     降。真菌的种群多样性的变化规律是:在中性紫色土和黄壤中,从团棵期到现蓄期增
     加,而后减小:在黄色石灰土中,成熟期最大。但是,根际放线菌种群多样性变化在
     三种土壤上表现各不相同。此外,在中性紫色土中,根际细菌和放线菌种群多样性变
     幅最小:在黄色石灰土中,细菌种群多样性变幅最大:在黄壤中,放线菌种群多样性
     变化最大,真菌种群多样性在三种土壤上的变化相似。
    7.在烤烟现蕾期,从黄壤根际中分离出具有强烈致病性的烟草青枯病病原菌(彻Istonia
     solanacearum)。在烤烟根际中,我们还分离出巧个具有平板拮抗Ralstonia
     s。勿”口‘earum活性的菌株,它们主要存在于现蕾期和成熟期的黄壤和黄色石灰土中。
     其中3株为细菌、3株为放线菌,9株为真菌。在9株真菌中,有5株为木霉属真菌。
Rhizosphere was firstly termed by Lorenz Hilter, a Germany scientist, in 1904, to describe the soil micro-environment around plant roots. Plants, soils and microorganisms interacted intensively in the rhizosphere, resulting in great variation in physical, chemical and biological characteristics compared to non-rhizosphere soil. It is necessary to point out that rhizosphere differs in the amounts, actives and community structures of microorganisms from non-rhizosphere one, which influences plant nutrient absorption, soil nutrient bioavailability and soil-borne diseases occurrence.
    Ralstonia solanacearum, which exists in rhizosphere soils, was the pathogen of tobacco bacterial wilt. The disease severely harmed the tobacco growth in the world, especially in Southwest China. Guizhou was an important tobacco producing province in China, widespread yellow earths, the main zonal soils. The occurrence of tobacco bacterial wilt was, however, high in the yellow earths, which reduced largely tobacco yields. The present experiment was carried out to reveal the occurrence mechanism of tobacco bacterial wilt in order to obtain some information on the theories and practices of ecological pathology and sustainable tobacco production in Guizhou.
    Three typical and representative tobacco cultivated soils were selected from Guizhou province for experiment, which were yellow earths derived from sandstone, yellow rendzina from limestone and neutral purplish soils from mudstone, respectively. In the stages of rosette, budding and mature during tobacco period, rhizosphere soils were sampled from fields for studying microorganisms. The objectives were to offer fundamental data and theory for (i) controlling tobacco bacterial wilt, (ii) understanding nutrient convert in rhizosphere and (iii) scientific field managements. Following were results obtained:
    1 . The amount of microorganisms in tobacco rhizosphere varied in the sequence: bacteria (109-1010 CFU.g-1 dry soil) > actinomycetes (107-108 CFU.g-1 dry soil) > fungi (104-106 CFU.g-1 dry soil). In addition, the amount of rhizosphere bacteria and actinomycetes differed among soil types in accordance with yellow earth > yellow rendzina > neutral purplish soil. Moreover, Significant differences of rhizosphere bacteria and actinomycetes were found between yellow earth and neutral purplish soil (p<0.05). Even though no significant variation of fungal amount was observed among three soils, there still existed the tendency: i.e. neutral purplish soils>yellow earths>yellow rendzina.
    2.The amount of rhizosphere microorganisms changed with growth periods of tobacco. The bacteria were the lowest in rosette stage and then increased till budding. Thereafter, they decreased gradually. But actinomycetes and fungi showed the tendency that increased from rosette stage to mature.
    3.Bacteria changed most obviously compared to actinomycetes and fungi in the rhizosphere of tobacco. The number of rhizosphere microorganisms varied among soils. The bacteria
    
    
    and fungi in rhizosphere of tobacco fluctuated greatly in yellow rendzina, while actinomycetes in yellow earths. Bacteria, actinomycetes and fungi changed least in neutral purplish soil compared to other two soils.
    4.The microorganisms in the rhizosphere of tobacco were rich in populations, 165 bacteria, 123 actinomycetes and 100 fungi were isolated, among which genus of 331 strains was identified.. They were 14 genuses of bacteria, 11 genuses of fungi and 8 groups in Streptomyces of actinomycetes. 57 strains couldn't be identified.
    5.Dominant populations of bacteria, actinomycetes and fungi showed similarly in tobacco rhizosphere in three soils. 11 of 19 dominant bacteria strains were Pseudomonans, 11 of 14 dominant fungi strains Penicillium and all dominant actinomycetes strains Streptomyces. Additionally, some differences were detected in dominant strains of bacteria and actinomycetes in tobacco rhizosphere soils. Bacillus and Aemmonas, the dominant populations, were found only in neutral purplish soils. Alcaligenes wer
引文
[1] 陈文新.土壤与环境微生物.北京农业大学出版社.1990:202-209
    [2] Paparizas G C,Davey C D.Extent and nature of the rhizosphere of Lupinus, Plant and Soi1.1961,14:215-236
    [3] 徐凤花.崔占利.刘永春.等.保护性施氮在缓解大豆重(迎)茬根际微生态障碍中的效应,生物技术.1998.8(3):41-44
    [4] 焦如珍,杨承栋.杉木人工林不同发育阶段根际与非根际土壤微生物变化趋势,林业科学.1999,35(1):53-59
    [5] 刘世亮,翟东明.介晓磊.等.不同磷源对小麦根际生物活性及其根际效应的影响,河南农业科学,2002,11:26-30
    [6] 俞慎.何振立,陈国潮,等.不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响。土壤学报.2003.40(3):433-439
    [7] 左华清,王子顺.柑桔根际土壤微生物种群动态及根际效应的研究.生态农业研究.1995.3(1):39-47
    [8] 张亚平,刘日明.根际微生物与地膜甜菜生长发育关系的研究.石河子大学学报(自然科学版),1999,3(3):183-186
    [9] 李廷轩.张锡洲.王昌全,等.根系CEC、ATP酶活性和根际微生物对籽粒苋富钾能力的影响.四川农业大学学报.2002.20(4):354-356
    [10] 罗明,单娜娜.文启凯.等.几种固沙植物根际土壤微生物特性研究.应用与环境生物学报.2002.8(6):618-622
    [11] 章家恩,刘文高.王伟胜.南亚热带不同植被根际微生物数量与根际土壤养分状况.土壤与环境.2002.11(3):279-282
    [12] 蔡燕飞,廖宗文.章家恩,等.生态有机肥对番茄青枯病及土壤微生物多样性的影响.应用生态学报.2003.14(3):349-353
    [13] 李阜棣.土壤微生物学.北京:中国农业出版社.1996,139-191
    [14] 刁治民.西宁地区春小麦土壤微生物根际效应的研究.土壤肥料,1996.(2):27-30
    [15] 李振高,潘映华.李良谟.不同基因型小麦根际细菌及酶活性的动态研究.土壤学报,1993,30(1):1-8
    [16] 高旭辉.茶树根际微生物与根际效应,茶叶通讯,2000,1:35-38
    [17] 邵玉琴.赵吉,廖仰南。内蒙古库布齐沙带东段油篙(Artemisia ordosica)根际土壤微生物类群数量的研究,内蒙古大学学报(自然科学版),1996,27(1):98-102
    [18] 马萍.张玲琪,魏蓉城,等.西双版纳橡胶,胡椒和咖啡根际土壤放线菌区系研究.云南大学学报(自然科学版),1997,19(4):493—496
    [19] 郑志成,周美英,姚炳新.红树林根际放线菌的组成及生物活性.厦门大学学报(自然科学版).1989,28(3):306-310
    [20] 蔡艳.薛泉宏,陈占全,等.青海省保护地辣椒根际土壤和根表放线菌研究,应用与环境生物学报。2003,9(1):92-96
    [21] 马汇泉.靳学慧,孙伟萍,等.大豆根际真菌类群对大豆幼苗生长的影响.中国油料.1996,18(3):54-55
    [22] 陆勇军,陆大京.广州市郊蔬菜根际真菌物种多样性,生态科学,1999.18(1):56-58
    [23] Jeziorska Z. Mycoflora of the rhizosphere of some crops, Pamietnik-Pullawski. 1974, 60:177-186
    
    
    [24] English J T, Mitchell D J. Development of microbial communities associated with tobacco root systems. Soil Biology and Biochemistry. 1988. 20(2): 137~144
    [25] 北京农业大学植保系植物生态病理教研室,植物根际生态学与根病生物防治进展.北京:中国人民大学出版社,1991:95-265
    [26] 李洪连.王守正,张明智.棉花抗、感枯萎病品种根际微生物数量研究,河南农业大学学报.1990.24(1):49-56
    [27] 王守正,王海燕,李洪连.等.植物微生物区系和植物抗病性研究,河南农业科学,2001.5:20-23
    [28] 张庆平,刘中兴.荞麦根系分泌物对小麦全蚀病菌的抑制及根际微生物种群数量观察,内蒙古农业科技.1994,1:8-9
    [29] 姜培坤,蒋秋怡,董林根,等.杉木檫树根际土壤生化特性比较分析,浙江林学院学报,1995,12(1):1-5
    [30] 张凤华,马富裕,郑重.等.不同水肥处理膜下滴灌棉田根际微生物及棉花生长发育的研究,新疆农业大学学报.2000,23(4):56-58
    [31] 刘世亮,介晓磊,李有田,等.不同磷源对作物根际效应影响的研究.土壤,2003,35(4):325-329
    [32] 张晓海,杨春江,王绍坤,等.烤烟施用菜籽饼后根际微生物数量变化研究,云南农业大学学报,2003,18(1):14-19
    [33] 田呈明,刘建军.梁英梅,等.秦岭火地塘林区森林根际微生物及其土壤生化特性研究。水土保持通报,1999.19(2):19-22
    [34] 胡延杰,翟明普,武勤文,等.杨树刺槐混交林及纯林根际微生物数量及其生化强度的季节性动态研究.土壤通报.2002,33(3):199-202
    [35] 王平,李阜棣.胡正嘉.小麦内根围中几类微生物群体数量比较的研究.华中农业大学学报.1994.13(4):318-324
    [36] 胡小加,黄沁洁.张学江,等.油菜内根圈中几类微生物群体量比较的研究.植物营养与肥料学报,1997,3(1):49-54
    [37] 胡小加,张学江,黄沁洁.油菜内根圈中几类微生物群体数量的比较,中国油料,1996,18(2):55-58
    [38] 罗安程,T.B.Subedi.章永松,等.有机肥对水稻根际土壤中微生物和酶活性的影响,植物营养与肥料学报,1999,5(4):321-327
    [39] 王元贞,潘廷国,柯玉琴,等.施用废菌棒对甘蔗菌根、根际微生物和土壤肥力的影响.福建农学院学报,1992.21(4):424-429
    [40] 蔡燕飞,廖宗文.FAMEs法分析施肥对番茄青枯病抑制和土壤健康恢复的效果.中国农业科学,2003,36(8):922-927
    [41] 潘映华,李振高,李良谟.杂交粳稻的氮素利用率及根际微生物.土壤,1995,27(3):144-146.153.
    [42] 张急文.张倩茹,周启星,等.乙草胺及铜离子复合施用对黑土农田生态系统土著微生物的急性毒性效应,农业环境科学学报,2003,22(2):129-133
    [43] 陈立杰.刘惕若,李海燕,等.除草剂对大豆幼苗根腐病及其土壤微生物的影响,大豆科学,1999,18(2):115-119
    [44] 朱南文。胡茂林.乐果对土壤中酶活性和微生物数量的影响,1997,上海环境科学,16(4):43-45
    [45] 汪海珍,徐建民.谢正苗.甲磺隆结合态残留物对土壤微生物的影响。农药学学报,2003,5(2):69-78
    [46] 杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响,微生物学杂志.2000,20(2):23-26
    [47] 姚健,杨永华,沈晓蓉,等.农用化学品污染对土壤微生物群落DNA序列多样性影响研究,生态学报,
    
    2000, 20(6):1021-1027
    [48] Ampova G.Thc effect of MH-30 on the rhizosphcre microflora in the tobacco crop, B"lgarski-Tyutyun. 1971, 16: 5, 39-43
    [49] 张跃华,罗志文,赵水勋.阿维菌素对土壤微生物的活性影响,佳木斯大学学报(自然科学版).2002, 20(1):49-51
    [50] 闵航,赵宇华,陆贻通.等.氟乐灵对土壤微生物和蚯蚓的影响,农村生态环境,1993.3:40-43
    [51] 李元,杨济龙.王勋陵,等.紫外辐射增加对春小麦根际土壤微生物种群数量的影响,中国环境科学.1999.19(2):157-160
    [52] 杨毓峰,袁红旭。紫外线UV-B辐照花生的生物效应.西南农业大学学报,2001.23(4):356-359
    [53] Bagayaj D J,Menge J A.lnteraction between a VA mycorrhiza and Azotobacter and their effect on rhizosph-ere and plant growth.Hew Phytol.,1978,80:567-573
    [54] 潘超美,郭庆荣.VA菌根真菌对玉米生长及根际土壤微生态环境的影响.土壤与环境,2000,9(4): 304-306
    [55] 廖继佩,林先贵,曹志洪等.丛枝菌根真菌与重金属的相互作用对玉米根际微生物数量和磷酸酶活性的影响,应用与环境生物学报.2002.8(4):408-413
    [56] Prakash D,Naqvi QA,Rashed A,et al.lnfluencr of brinjal mild mosaic virus on the rhizosphere and rhizoplane mycoflora of eggplant and tobacco. Acta-Botanica-Indiea. 1978, 6(2): 198-201
    [57] Tsao,P.H. 1970.Selection media for isolation of pathogenic fungi[J].Annu.Rev.Phytopathol.8:157-186
    [58] Harley, J.L.,Waid,J.S.A method of studying active mycelia on living roots and other surfaces I the soil. 1955,Trans, Br. Mycol.Soc.38,104-118
    [59] Timoni,M. 1961.The interaction of plant, pathogea,and Scaptoris talpa Champ.Can.J.Bot. 39:695-703
    [60] 周德庆.微生物学教程.北京:高等教育出版社.2002.
    [61] 沈萍.微生物学.北京:高等教育出版社.2000.
    [62] Martinez-murcia J,Acinass G,Rpdriguezvaleraf.Evaluation of prokaryotic diversity by restriction digestion of 16S rDNA directly amplified from hypersaline environments.FEMS Microbiol Ecol,1995,17:247-256
    [63] Schwieger F, Tebber C.A new approach to utilize PCR-Single—Strand conformation polymorphism for 16SrRNA-based microbial community analysis. Appl Environ Microbiol, 1998,64:4870-4876
    [64] Muyzer G,Dewaale C,Uitterlinden A G. Profiling of Complex Microbial Population by Denaturing Gradient Gel Eiectrophoresis Analysis of Polymerase Chain Reaction-amplified Genes Encoding for 16SrRNA. Appi Environ Microbiol,1993,59:695-700
    [65] N Bel U,Engelenb,Felskea, et aI.Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus Polymyxa Detected by Temperature Gradient Gel Electrophoresis.J Bacteriol,1996,178:5636-5643
    [66] 罗海峰,齐鸿雁.薛凯.等.PCR—DGGE技术在农田土壤微生物多样性研究中的应用,生态学报,2003,23(8):1570-1575
    [67] Masso-Deya A A,Odelsond A, Hickeyr F, et al.Bacteriai community fingerprinting of amplified 16S and 16S-23S ribosomal DNA gene sequence and restriction endonuclease analysis(ARDRA).Mol Mierob Ecol Manual, 1995,3.3.2:1-18
    [68] 陈晓蕾,张忠泽.微生物的ARDRA检测.微生物学杂志.1999.19(4):40-43
    [69] Xia X,Bollinger J,Ogram A.Molecular genetic Analysis of the response of three soil microbial communities to the application of 2,4-D.Mol Ecol. 1995.4:17-28
    
    
    [70] Breen A.Ropea F.Taylor D,et al. Application of DNA Amplification Fingerprinting(DAF) to mixed culture bioreaction. J Industrial Microbiol.1995,14:10-16
    [71] 杨永华,姚健.分子生物学方法在微生物多样性研究中的应用,生物多样性,2000.8(3):337-342
    [72] Pace N R.Stahl D A, Lane D J,et al.The analysis of natural microbial populations by ribosomal RNA sequence, Advances in Microbial Ecology, 1986,9:1-55
    [73] Heuer H,Krsek M.Baker P, et al.Analysis of actinomycete communities by specific amplification of gene coding 16S rRNA and gel electrophoresis separation in denaturing gradients.Applied and Environmental Microbiology. 1997.63:3233-3241
    [74] Saylor G S,Layton A C.Environmental application of nucleic acid hybridization.Annual Review of Microbiology, 1990,44:625-648
    [75] Lobet-Brossa E,Rossello-Mora R.Amann R.Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appplied and Environmental Microbiology, 1998,64: 2691-2696
    [76] Ritz K,Griffitths B S.Potential application of a community hybridization technique for assessing changes in the population structure of soil microbial communities.Soil Biology and Biochemistry,1994,26: 963-971
    [77] Murray A E,Preston C M,Massawa R.Taylor LT. Blakis A, Delong E F, Seasonal and spatial variability of bacterial and arcchaeal assemblages in the coast waters near Anvers Island,Antarctica Applied and Environmental Microbiology. 1998,64:2585-2595
    [78] Torsvik V L, Goksoyr J,Daae F L,High diversity in DNA of soil bacteria, Applied and Environmental Microbiology, 1990,56:782-787
    [79] White D C,Davis W M.Nickels J S. et al.Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 1979,40:51-62
    [80] 齐鸿雁.薛凯,张洪勋.磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用.生态学报,2003, 23(8):1576-1582
    [81] 向万胜,吴金水,肖和艾.等.土壤微生物的分离、提取与纯化研究进展,应用生态学报,2003,14(3):453-456
    [82] Smith S N. Snyder W C.Germination of Fusarium oxysporum chlamydospores in soils favorable and unfavorable to wilt establishment. 1972,Phytopathology,62:273-277
    [83] Deacon J W. Control of the take-all fungus by grass leys in intensive cereal cropping.1973.Plant Pathol.22:88-94
    [84] Alexander M. 1961.Introduction to Soil Microbiology .John Wiley, New York.472
    [85] Mitchell,R. Addition of fungal cell-wall components to soil for biological disease control.1963. Phytopathology.53:1068-1071
    [86] Weinhold A R., Oswald J W ,et al. Influence of green manures and crop rotation on common scab of potato 1964..Amer.Potato J.41:265-273
    [87] Chang,I.T.Kommedahl. Biological control of seedling blight of corn by coating kernels with antagonistic microorganism. 1968.Phytopathology.58:1395- 1401
    [88] Larson R I, Atkinson T G. A cytogenetic analysis of reaction to common root rot in some hard red spring wheats. 1970.Can.J.Bot.48:2059-2067
    [89] Neal J L, Larson R I. Atkinson T G. Changes in rhizosphere population of selected physiological groups
    
    of bacteria related to substitution of specific pairs of chromosomes in spring wheat.1973.Plant Soil.39:209-212
    [90] Atkinson,T G, Neal J L. Larson R I. Root rot reaction in wheat: resistance not mediated by rhizosphere or laimosphere antagonists. Pytopathology. 1974.64:97-101
    [91] Harper J L. Studies in the resistance of certain varieties of banana to Panama disease.Ⅱ. The rhizosphcre. 1950.Plant Soil.2:383-394
    [92] 李洪连,王守正,张明智,等,不同抗性棉花品种根际真菌区系分析与及其对棉花黄萎病菌的抑制作用.棉花学报。1992,4(2):73-76
    [93] 李洪连.王守正.抗感枯萎病棉花品种根际真菌区系分析.河南农业大学学报,1991,25(4):422-432
    [94] 李洪连.袁红霞,王烨,等,根际微生物多样性与棉花品种对黄萎病抗性的关系研究 Ⅱ.不同抗性品种真菌区系分析与及其对棉花黄萎病菌的抑制作用.植物病理学报,1999,29(3):242-246
    [95] 李洪连,袁红霞,王烨,等,根际微生物多样性与棉花品种对黄萎病抗性的关系研究 Ⅰ:根际微生物的数量与棉花品种对黄萎病的抗性关系.植物病理学报,1998,28(4):341-345
    [96] Eaton F M, Rigler N E Influence of carbohydrate levels and root.surface microfloras on Phymatotrichum root rot in cotton and maize plants. 1946.J.Agr.Res.72:137-161
    [97] Zogg H. Crop rotation and biological soil disinfection. 1969.Qual.Plant Mater.Veg. 18:256-273
    [98] Snyder W C. Survival of Fusarium in soil. 1969.Ann.Phytopathol.1:209-212
    [99] 朱贤朝,王彦亭,王智发.中国烟草病害,北京:中国农业出版社,2002,151-162
    [100] Yabuuchi E Y, Kosako I, et al. Transfer of two Burkholderia and an Aiculigenes spicies to Ralstonia pickettii (Ralston,Palleroni and Doudoroff 1973) comb.Nov.,Raistonia Solanac-earum (Smith 1986) comb.Nov.And Raistonia cutropha (Davis 1969) comb.Nov.Mocmbio I.Immunol, 1995,39:897-904
    [101] Palleroni N J,Doudoroff M.Phenotypic characterization and deoxyriontypic acid homologies of Pseudomonas solanacearum. 1971,J.Bacterial,107:690-696
    [102] He L Y, Sequeira L, Kelman A.Characteristics of strains of Pseudomonas solanacearum from China. Plant Disease. 1983,67:1357-1361
    [103] Seal S E, Taghavi M. Fegan N, et al. Determination of Raistonia (Pseudomonas) solanacearum rDNA subgroups by PRC tests, Plant pathology, 1999,48:115-120
    [104] 卢同.我国作物细菌性青枯菌的研究进展,福建农业学报,1998,13(2):33-40
    [105] 何礼远,康耀卫.植物青枯病的致病机制.自然科学进展.1995,5(1):7-16
    [106] 刘焕利,何礼远,毛国璋,等.植物青枯病原细菌胞外蛋白相关基因的克隆.植物病理学报,1999,29(2):110-119
    [107] 谈文,蒋士君,刘骏,等.烟草个体发育中营养抗性的研究综述.烟草科技,1999,(1):46-48
    [108] 郑继法,张建华,李连臣,等.烟草不同品种对烟草青枯病的抗性分析.山东农业大学学报,1995.26(1):23-29
    [109] 黄福新,陈永惠,周兴华,等.烟草青枯病综合防治研究.广西农业科学,1997,(1):32-35
    [110] 卢洪兴,曾军,邱志丹,等.烟草青枯病发生与药剂防治研究.福建省农科院学报,1996.11(3):41-45
    [111] 陈永惠,黄福新.烟草青枯病药剂防治试验.广西植保,1996,(4):23-25
    [112] 陆思瑚.烟草青枯病防治试验简报.广西农业科学,1991,(2):87-88
    [113] 王金生.烟草青枯病药剂防治试验.中国烟草,1989,(4):12-13
    [114] 王金生.细菌素在植物细菌病害生防中的应用,生物防治通报,1985,1(2):36-40
    [115] 郑继法,张建华,刘焕利,等.烟草细菌性青枯病防治方法研究进展.烟草科技,1994,(1):43-45
    
    
    [116]罗宽,王庄.利用拮抗的Pseudomonas spp.和无致病力的P.solanacearum防治青枯病的研究.植物病理学报,1983,13(1):51-55
    [117]董春,董成刚,赵青峰,等.利用拮抗细菌防治烟草青枯病初步研究.广西农业科学,1996,(5):28-30
    [118]刘琼光,李忠,唐玫,等.拮抗细菌和土壤添加剂防治烟草青枯病.中国生物防治,1999,15(2):94-95
    [119]丁爱云.郑继法,时呈奎,等.烟草几种重要病害拮抗细菌的筛选.中国烟草科学,1999,(1):10-11
    [120]Nishiyama M, Shiomi Y, Suzuki S, et al. Suppression of growth of Ralstonia solanacearum, tomato bacterial wilt agent, on/in tomato seedlings in a suppressive soil in Japan. Soil Sci. Plant Nutr. 1999. 45:79-87
    [121]Schroth M N.Hancock J G. Disease-suppressive soil and root-colonizing bacteria. Science, 1982, 216:1376-1381
    [122]Ho W C. Chern L L, Ko W H. Pseudomonas solanacearum-suppressive soils in Taiwan. Soil Biol. Biochem. 1988.120:489-492
    [123]Miller H L, G Henken, J V van Veen. Variation and composition bacteria populations in the rhizospheres of maize, wheat and grass cultivars. Can. J. Microbiol.1989, 35:656~660
    [124]Yoshitaka S,Masaya N,Tomoko O,et al. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conductive towards bacterial wilt.Applied and Environmental Microbiology, 1999,65:3996-4001
    [125]蔡燕飞,廖宗文,董春,等.番茄青枯病的土壤微生态防治研究.农业环境保护.2002,21(5):417-420
    [126]Outi P, Susan G.Risto H T. Microbial community structure and characteristics of the organic matter in soil under pinus sylveshs, Picea abies and Betuda pendula at two forest sites. Biology Fertility of Soil,2001.33:17-24
    [127]I Bekwe A M,Kennedy A C,Frohne P S,et al. Microbial diversity along a transect of agronomic zone. FEMS Microbiology Ecology,2002,39:183-191
    [128]中国土壤学会农业化学专业委员会,土壤农业化学常规分析方法,北京:科学出版社,1983,42-54
    [129]鲍士旦,土壤农化分析.北京:中国农业出版社,2000,25-114
    [130]中国科学院南京土壤研究所微生物室.土壤微生物研究法.北京:科学出版社,1985
    [131]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
    [132]中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法.北京:科学出版社,1978
    [133]中国科学院微生物所《伯杰细菌鉴定手册}翻译组译.伯杰细菌鉴定手册(第八版).北京:科学出版社.1984
    [134]阎逊初.放线菌的分类和鉴定.北京:科学出版社,1992
    [135]戴芳澜.真菌的形态和分类.北京:科学出版社,1987
    [136]魏景超.真菌鉴定手册.上海:科学技术出版社,1979
    [137]中国科学院微生物研究所《常见与常用真菌》编写组,常见与常用真菌,北京:科学出版社,1973
    [138]赵志模.郭依泉.群落生态学原理与方法.重庆:科技文献出版社,1990
    [139]俞大绂.植物病理学和真菌学技术汇编,北京:人民教育出版社,1977,8-745
    [140]周清明.黎定军.烟草品种(系)对青枯病菌的抗性鉴定与分析,湖南农业大学学报,1996,22(3):275-277
    [141]方中达.植病研究方法.北京:中国农业出版社.1998
    [142]Harris PJ. Soil Condition & Plant Growth(Wild A ed), Longman, UK:1988, 449-471
    [143]杨承栋,王丽丽,祁月情,等.江西大岗山东侧森林土壤性质与肥力的关系,林业科学研究.1993,6(5):504
    
    -509
    [144]Curl E A, Truelove B. The Rhizosphere. Advanced Series in Agricultural Sciences 15, Berlin, Springer Verlag. 1986
    [145]Gadgil P D. Distribution of fungi on living roots of certain graminae and the effect of root decomposition on soil structure. Plant and Soil, 1965,22:239~259
    [146]Parkinson D. and Clarke J H. Studies on fungi in the root region. Ⅲ. Root surface fungi of three species of Allium. Plant and Soil. 1964,20:166~174
    [147]赵蕾.木霉菌的生物防治作用及其应用.生态农业研究,1999,7(1):66-68
    [148]徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用.植物病理学报.2002,32(2):97-102
    [149]王革,李梅云,段玉琪,等.木霉菌对烟草黑胫病菌的拮抗机制及其生物防治研究,云南大学学报(自然科学版),2001,23(3):222-226
    [150]王革,周晓罡,方敦煌,等.木霉拮抗烟草赤星病菌菌株的筛选及其生防机制,云南农业大学学报,2000,15(3):216-218
    [151]蒋秋怡,叶仲节,钱新标,等.杉木根际土壤特性的研究(Ⅱ)杉木根际的生物化学特性.浙江林学院学报.1991,8(4):450-456
    [152]V.K.Mchan,青枯菌的分离和鉴定,国外农学-油料作物.1996,1:51-52
    [153]陈涛.有害生物的微生物防治原理和技术,湖北科技出版社,1995,336-354
    [154]K F贝克.R J库克(著),兰斌,王朝琪(译),植物病原菌的生物防治.北京:农业出版社,1984,117-143,221-225
    [155]匡传富,何志明,汤若云,等.烟草青枯病土壤微生物数量及生理群的测定,中国烟草科学,2003,(1):43-45
    [156]袁立和,苏请岚,易由华,等.番茄青枯病抑病土壤作用机制研究.植物保护学报,1997,24(2):121-125
    [157]Smtz E, Kahr G,Defago G.Clay involved in suppression of tobacco black root rot by a strain of Pseudomonas fluorescens. Soil Biol Biochem, 1989,21:36-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700