隧道火灾下衬砌结构安全性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于隧道火灾事故的不可避免性和高危险性,隧道火灾研究已引起各方的高度重视。衬砌结构的安全性能是隧道防火的一个重要领域,因此对衬砌结构火灾下安全性能的评定已成为了重要课题。本文参照国内外的火灾案例及试验结果,采用理论分析和数值模拟相结合的方法,对火灾下衬砌结构的安全性能进行了深入研究,自主建立了一套基于数值分析的评定体系。研究内容主要包括:
     (1)提出根据隧道火灾时的烟气分布规律拟定高温荷载曲线,运用地层结构法建立围岩与衬砌的整体模型,进行有限元求解。在温度场分析结果的基础上,计算温度最高截面的刚度折减,从而判明衬砌烧伤程度。工程实例分析表明拱顶的烧伤最为严重。
     (2)应用了传统的温度—应力耦合理论,探索了火灾下衬砌结构强度评定的新思路:初始应力场分析→高温应力场分析→高温内力场分析→强度安全系数检算。初始应力场的分析是进行后续分析的基础,内力场可通过对高温应力场的积分获得,强度检算可根据受弯或偏心受压截面进行计算。工程实例分析表明,拱顶是受力最为薄弱的区域,可能出现较大的塑性区域。
     (3)根据圆拱结构稳定理论,采用有限元法进行非线性屈曲分析。分析中对拱顶截面可能出现的塑性铰区域采用添加一个单向铰模拟,衬砌断面根据等效抗火截面法进行折减。分析采用荷载逐步累加法,直至结构失稳,得出极限屈曲荷载,然后对比火灾下衬砌结构的内力值,判断其稳定性。
     (4)借鉴一般地面建筑物安全性能的评定方法,提出了火灾下衬砌结构安全性能的评定流程体系,将其应用于苍岭隧道火灾后衬砌结构的安全性能评价中,从衬砌烧伤程度、结构强度、结构稳定性三方面给出了相应的评价结果,为日后该领域的工程咨询评估及科研工作的开展提供了参考。
For the ineluctability and high fatalness of tunnel fire accident, the research in tunnel fire has drawn great attention from academia and engineering department. Because the safety of tunnel liner is an important part of tunnel fire-resistant performance, the assessment of liner safety in tunnel fire has become an important task now.
     According to the fire cases and experiment results, the liner safety in tunnel fire is studied by the method combined with theory analysis and numerical simulation. Based on numerical analysis, the assessment system is established, and carried out using ANSYS according to the engineering case. The main conclusions are as follows:
     1) The high temperature load curve is studied out according to the distribution rule of smoke in tunnel fire, and the finite element method of temperature field is introduced to establish an integrated model combined with liner and wall rock. Then, on the basis of temperature field result, the stiffness of the highest temperature section is deduced, so as to ascertain the burnt degree of liner. The case simulation indicates that the burnt degree of vault is the most serious.
     2) The new method of liner intensity assessment is explored according to thermal-mechanical coupling theory: initial stress field analysis→high temperature stress field analysis→high temperature internal force field→the check-calculation of safety factor. The thermal-mechanical coupling analysis should be done after the initial stress field analysis, and then internal force could be calculated through stress integral. The check-calculation of safety factor could be followed with the criterion of section in bonding or eccentric compression. The case simulation indicates that the vault is the weakness of the liner, and plastic deformation occurs seriously.
     3) Based on the stabilization theory of arch structure, the mathematical model is presented, and the nonlinear finite element buckling analysis method is proposed. A single-orientation hinge is supposed to simulate the plastic hinge of vault section, and the whole liner cross-section could be calculated according to the equivalent fire-resistant section. The load is applied step by step until the structure lost stability to get the buckling load. And then, according the buckling load with the internal force of liner structure in fire, the stability of liner structure is assessment.
     4) According to the assessment method of ground buildings, the assessment system of liner structure safety performance is proposed, which contains section stiffness, structure strength and structure stability. The system could provide reference for the engineering consultation or assessment and scientific research on the field of tunnel fire-resistant.
引文
[1]铁道部工程设计鉴定中心.高速铁路隧道[M].北京:中国铁道出版社,2006
    [2]柴永模,涂文轩.矿井灭火新技术及长隧道火灾对策[J].秦岭隧道科技信息第十三期.2000,13(5):724-728
    [3]徐志胜,易亮,王薇等.苍岭隧道火灾通风排烟系统防灾性能专题研究[R].中南大学防灾科学与安全技术研究所,2007
    [4]周竹虚.国内外地下空间火灾实例[J].消防技术与产品信息,1999,9(5):36-40
    [5]何世家.隧道火灾和隧道防火涂料[J].消防技术与产品信息,2002,12(5):41-44
    [6]Schrefler B A,Brunello P,Gawin D,Majorana C E,Pesavento F.Concrete at High Temperature with Application to Tunnel Fire[J].Computational Mechanics,2002a,29(1):43-51.
    [7]Schrefler B A,Khoury G A,Gawin D,Majorana C E.Thermo-Hydro-Mechanical Modeling of High Performance Concrete at High Temperatures[J].Engineering Computations,2002b,19(7):787-819
    [8]G Brux.Brand in Eurotunnel Ursache und Sanierung[J].Tunnel,1997,6(1):31-42
    [9]闫治国,朱合华,张建军.火灾对隧道衬砌结构的损害及防范措施研究[J].地下空间与工程学报,2006,2(4):683-687
    [10]覃文清,李风.隧道火灾与防范[J].消防科学与技术,2004,23(1):54-57
    [11]王永宏.隧道与火灾[J].消防技术与产品信息,2004,14(10):10-14
    [12]寇鼎涛.铁路隧道火灾特性及火灾原因分析[J].隧道建设,2005,25(1):72-75
    [13]强健.地铁隧道衬砌结构火灾损伤与灾后评估方法研究[硕士学位论文][D].上海:同济大学,2007
    [14]张平.我国铁路隧道消防现状与对策[J].消防技术与产品信息,1995,5(6):28-30
    [15]H.S.Eisner.Channel Tunnel fuels fire safety debate[J].Tunnel &Tunneling,1986,18(9):49-50
    [16]闫治国,杨其新,朱合华.秦岭特长公路隧道火灾试验研究[J].土木工程学报,2005,38(11):96-101
    [17]Peter Heffels.Improving Fire Protection in Tunnels for Commuter Rail Traffic[J].Tunnel and Underground Space Technology,1987,2(3):311-314
    [18]徐志胜,易亮,陈长坤等.西华岭隧道火灾疏散救援通道专题研究[R].中南大学防灾科学与安全技术研究所,2006
    [19]Abrams M S.Behavior of Inorganic Materials in Fire[J].American Society for Testing and Materials,1979,35(3):37-40
    [20]Schneider,Ulrich.Modeling of Concrete Behavior at High Temperature [J].Design of Structure against Fire,1986,33(9):211-317
    [21]Diederichs U,Schneider U.Bond Strength at High Temperature[J].Magazine of Concrete Research,1981,15(6):75-84
    [22]Moeley P D,Royles.Response of the Bond in Reinforced Concrete to High remperature[J].Magazine of Concrete Research,1983,123(9):127-133
    [23]闫治国.隧道衬砌结构火灾高温力学行为及耐火方法研究[博士学位论文][D].上海:同济大学,2007
    [24]Anon.Passive Protection against Fire[J].Tunnels And Tunneling International,2002,34(11):40-42
    [25]Lonnermark A.On the Characteristics of Fires in Tunnels(Doctoral Thesis)[D].Lund:Lund University 2005
    [26]Mashimo H.State of the Road Tunnel Safety Technology in Japan[J].Tunneling and Underground Space Technology,2002,17(2):145-152
    [27]陈强.钢筋混凝土平面框架局部火灾下的性能研究[硕士学位论文][D].长沙:中南大学,2007
    [28]李昀晖.钢筋混凝土梁高温极限承载力计算及抗火设计方法研究[硕士学位论文][D].长沙:中南大学,2007
    [29]朱合华,彭芳乐,闫治国.国内外交通隧道火灾安全研究现状及启示[J].民防苑,2006,43(S1):135-139
    [30]涂文轩.铁路隧道消防工作的回顾与展望[J].秦岭隧道科技信息第十三期.2000,13(5):741-747
    [31]彭立敏.隧道火灾后衬砌结构力学特性与损伤机理研究[博士学位论文][D].长沙:长沙铁道学院,2000
    [32]#12
    [33]Haack A.Fire Protection in Traffic Tunnels-Initial Findings from Large Scale Tests[J].Tunneling and Underground Space Technology,1992,7(4):363-375.
    [34]Haack A.Welcome and Introduction[A].Proceeding of Second International Symposium on Safe & Reliable Tunnels.Innovative European Achievements[C].Lausanne,2006.1-5
    [35]FIT coordinator,on behalf of the FIT,DARTS and UPTUN consortia.Joint comments of the European projects DARTS,FIT and UPTUN on the proposal for a Directive of the European Parliament and of the Council on minimum safety requirements for tunnels in the Trans-European Road Network[R].Europe:www.etnfit,net,2003.
    [36]UPTUN.UPTUN description.Europe:www.uptun.net,2008.
    [37]闫治国,朱合华,何利英.欧洲隧道防火计划(UPTUN)介绍及启示[J].地下空间,2004,24(2):212-219
    [38]Lemmerer J,Kusterle W,Lindlbauer W.Fire loading of highly fire-resistant concrete tunnel linings[A],in IABSE Symposium eds.Structures and Extreme Events[C].Zurich:ETH Honggerberg,2006.276-277
    [39]E1-Arabi,Ibrahim A.Structural analysis for tunnels exposed to fire temperatures[J].Tunneling and Underground Space Technology,1992,7(1):19-24
    [40]B.A.Schrefler,P.Brunello,D.Gawin,C.E.Majorana,F.Pesavento.Concrete at high temperature with application to tunnel fire[J].Computational Mechanics 2002,29,43-51
    [41]Witek A,Gawin D,Pesavento F,Schrefler B.A.Finite element analysis of various methods for protection of concrete structures against spalling during fire[J].Computational Mechanics,2007,39(3):271-292
    [42]梅志荣,韩跃.秦岭隧道科技信息第十三期[J].2000,13(5):862-867
    [43]杨向东,柴永模.铁路隧道消防技术研究十年回顾[J].现代隧道技术,1999,2(2):32-36
    [44]铁道部科学研究院西南分院.铁路隧道的运营维修与防灾文献汇集[C]. 2000
    [45]柴永模.铁路隧道消防技术研究十年回顾[J].消防技术与产品信息,2002,12(4):10-14
    [46]Yan Z G,Yang Q X,Zhu H H.A Study of Ventilation Measures in Tunnel Fire[A]Proceedings of GEOSHANGHA12006:ASCE Geotechnical Special Publication(GSP):Underground Construction and Ground Movement[C].Shanghai,2006a:256-263.
    [47]Yan Z G,Yang Q X,Zhu H H.Large-scaled Fire Testing for Long-sized Road Tunnel[J],Tunnelling and Underground Space Technology,2006b,21:282
    [48]闫治国,朱合华.火灾对隧道衬砌结构的损害及防范措施研究[J].地下空间与工程学报,2006,2(4):683-687
    [49]朱合华,闫治国,丁文其.隧道衬砌混凝土高温后物理力学性能试验研究[A].见:公路隧道运营管理与安全国际学术会议论文集[C],重庆:重庆大学出版社,2006:178-183
    [50]贺丽娟.混杂纤维混凝土的耐火性能研究及其在隧道工程中的应用[硕士学位论文][D].成都:西南交通大学,2004
    [51]贺小强,张孟喜,冯建龙.火荷载下沉管隧道的温度场分析[J].土木工程学报,2006,36(增刊):732-734
    [52]张孟喜,黄瑾,贺小强.火荷载下沉管隧道结构的热-力耦合分析[J].土木工程学报,2007,40(3):84-87
    [53]赵志斌.火灾作用下长江隧道衬砌结构温度场和温度应力分析[硕士学位论文][D].武汉:武汉理工大学,2006
    [54]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999
    [55]BSI.KIT 182(BS EN 1992-1-2)-2006.Design of concrete structures general rules structural fire design[S].London:Commission of European Communities,2006
    [56]李卫.高温下混凝土强度和变形的试验研究[硕士学位论文][D].北京:清华大学,1991
    [57]T T Lie,R J Irwin.Fire Resistance of Rectangular Steel Columns Filled with Bar-Reinforced Concrete[J].Structural Engineering,1995,121(5):797-805
    [58]陆洲导.钢筋混凝土梁对火灾反应的研究[博士学位论文][D].上海:同济 大学,1989
    [59]刘照球.混凝土结构表面对流换热研究[硕士学位论文][D].上海:同济大学,2006
    [60]吕彤光.高温下钢筋的强度和变形试验研究[硕士学位论文][D].北京:清华大学,1996
    [61]CEN(European Committee for Standard Institution)DAFT ENVI993.Eurocode3:Design of Steel Structure[S].London:British Standards Institution,1995,7
    [62]BSI.Structural use of steel work in building,part 8,Code of practice for fire resistant design,1990
    [63]孙金香,高伟译.建筑物综合防火设计[M].天津:天津科技翻译出版公司,1992
    [64]李引擎,马道贞,徐坚.建筑结构防火设计计算和构造处理[M].北京:中国建筑工业出版社,1991
    [65]ECCS.European recommendations for the fire safety of steel structural[s].Amsterdam:Elsevier,1983
    [66]段文玺.建筑结构的火灾分析与处理(二)-火灾温度场计算之一[J].工业建筑,1985(8):51-54
    [67]W.K.Chow,Y.Chan.Computer simulation of the thermal fire resistance of building materials and structural elements[J].Construction and Building Material,1996,10(2):131-140
    [68]Zhouhui Huang,Andrew Platten.Nonlinear Finite Element Analysis of Planar Reinforced Concrete Members Subjected to Fires[J].ACI Structural Journal,1997,5(6):272-282
    [69]刘永军.钢筋混凝土结构火灾反应数值模拟及软件开发[博士学位论文][D].大连:大连理工大学,2002
    [70]唐兴伦,范群波,张朝晖等.ANSYS工程应用教程-热与电磁学篇[M].北京:中国铁道出版社.2003年
    [71]张朝晖.ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005
    [72]赵镇南.传热学[M].北京:高等教育出版社,2002
    [73]Lonnermark A.On the Characteristics of Fires in Tunnels[Doctoral Thesis][D].Lund:Lund University,2005
    [74]Takekuni K,Shimoda A,Yokota M.The Characteristics of Fires in Large-Scale Tunnels on Fire Experiments inside the Shimizu No.3Tunnel on the New Tomei Expressway[A].Proceedings of ITA World Tunnel Congress 2003[C].Amsterdam,2003:179-184
    [75]Alfred Haack.Fire Protection in traffic Tunnels-Initial Findings from Large - scare Tests[J].Tunneling and Underground Space Technology,1992,7(4):363-375
    [76]梁园.组合通风方式越江隧道火灾的数值模拟[硕士学位论文][D].成都:西南交通大学,2004
    [77]姚坚.公路隧道内火灾温度场分布规律数值模拟分析[硕士学位论文][D].上海:同济大学,2007
    [78]彭立敏.隧道结构内力转换的数值计算方法[J].长沙铁道学院学报,1994,12(1):37-44
    [79]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报,1990,18(3):287-297
    [80]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003
    [81]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16
    [82]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系[J].土木工程学报,1993,26(5):58-69
    [83]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990,(1):37-43
    [84]王学谦.火灾高温下钢筋砼梁截面极限弯矩的计算[J].建筑结构,1996,7:38-42
    [85]阎继红.高温作用下混凝土材料性能试验研究及框架结构性能分析[博士学位论文][D].天津:天津大学,2000
    [86]蔡跃.火灾下预应力混凝土结构计算理论及抗火设计方法研究[博士学位论文][D].上海:同济大学,2003
    [87]Standards Australia.AS4100.Steel Structure.Sydney,1990
    [88]中华人民共和国交通部.JTG D70-2004.公路隧道设计规范[S].北京:人民交通出版社,2004
    [89]中华人民共和国铁道部.TB10003-2005.铁路隧道设计规范[S].北京:中 国铁道出版社,2005
    [90]查杰斯.结构稳定性理论原理[M].兰州:甘肃人民出版社,1982
    [91]陈先国.隧道结构失稳及判据研究[博士学位论文][D].成都:西南交通大学,2002
    [92]程鹏.两铰圆弧拱非线性弯曲理论和弹塑性稳定[博士学位论文][D].杭州:浙江大学,2005
    [93]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2006
    [94]蔡佳骏,李之达,易辉等.ANSYS二维弹塑性分析在联拱隧道围岩稳定性评价中的应用[J].水利与建筑工程学报,2005,3(1):10-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700