城市下水污泥循环流化床焚烧及排放特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市下水污泥(以下简称污泥)焚烧处理具有减量化、稳定化、无害化和资源化的优点,是污泥处置方法中最彻底的处置方式。但是污泥焚烧处理过程中,会产生NOx、SO2、HCl、CO、重金属及二嗯英等污染物,直接排放会对环境产生严重危害。污泥具有特殊的燃料特性,导致其具有与煤和生物质不同的燃烧特性和污染物排放特性。因此,对城市下水污泥焚烧及污染物排放特性进行研究具有重要的理论价值,对污泥焚烧处理具有很高的应用价值。
     本论文主要针对污泥在循环流化床(CFB)内焚烧及污染物排放特性进行研究。通过在不同试验装置上的试验及理论分析计算,研究污泥的燃烧过程,焚烧过程中主要气体污染物的排放特性以及重金属的迁移和转化特性,探讨湿污泥循环流化床一体化焚烧工艺污泥干化和焚烧过程中污染物排放特性,为污泥流化床焚烧技术的工程应用提供理论和试验依据。具体研究内容如下:
     1.研究污泥燃烧特性及动力学特性。利用热重分析法对污泥燃烧过程进行研究,并对加入不同辅助燃料对污泥燃烧的影响进行探索。研究结果表明污泥与煤或生物质燃烧过程明显不同,挥发分析出和燃烧阶段及挥发分和固定碳燃尽阶段均是主要失重区间,存在两个明显失重峰。污泥着火温度低,但其燃烧速率较低,导致综合燃烧性能和燃尽性能较差。掺混煤或生物质燃烧会在不同程度上改善污泥的燃尽特性和综合燃烧特性。
     2.在15kW循环流化床试验台内研究干污泥焚烧过程中NOx、SO2、HCl等污染物的排放特性。设计并搭建15kW循环流化床试验台,进行不同运行参数条件下污泥焚烧试验,探索主要气体污染物的排放特性。本试验台上的研究结果表明,随着焚烧温度的升高,NO、SO2和HCl排放浓度均会增加,N2O浓度会降低;增大过量空气系数会促进NO和N2O的生成;提高二次风比率可以降低N2O和NO的排放浓度,但对不同含水率的污泥效果不同;污泥含水率增大会促进N2O和HCl排放,而降低NO的浓度;污泥焚烧过程中NO和N2O排放浓度较高,但燃料氮的转化率低于燃煤过程;未加入石灰石时,SO2排放浓度较高,HCl排放浓度超过标准限值,加入石灰石可以有效地进行炉内脱硫脱氯。
     3.在15kW循环流化床试验台内研究污泥中磷对石灰石脱硫的影响。针对不同含P量的污泥焚烧石灰石脱硫过程,进行试验研究与热力学平衡计算,探讨P对石灰石脱硫的影响。计算结果表明污泥焚烧时CaO首先与含P化合物反应,剩余部分CaO才参与脱硫反应。试验结果得到与计算结果相同的趋势,及污泥含P量高会影响石灰石脱硫效果。但试验表明仅有部分CaO会优先与含P化合物反应,而且单位摩尔P消耗的CaO量低于计算结果,即热力学平衡计算高估了P的影响。在计算脱硫石灰石加入量时,需要考虑这种作用。
     4.研究污泥焚烧过程中重金属的形态和分布。通过化学热力学平衡计算计算,研究污泥焚烧过程中Cu、Cd、Cr、Mn、Pb、Zn等重金属元素形态和分布,探讨S和C1对其转化的影响以及吸附剂的化学吸附效果。计算结果表明,污泥焚烧过程中Cd、Cu、Pb的挥发性较强,而Cr、Mn和Zn的挥发性较弱;由于生成了熔沸点较低的金属氯化物,C1会促进Cd、Cu、Pb、Mn和Zn的挥发;S会与Cd和Pb结合生成硫酸盐,对其具有一定的吸附作用;Al203和SiO2都对Cd和Pb有一定吸附作用,S和C1会影响其吸附效果。
     5.研究湿污泥循环流化床一体化焚烧系统中污泥干化和焚烧过程中污染物排放。流化床干化试验台中湿污泥干化试验结果表明,干化乏气中主要气体污染物为NH3、CH4、C3H8、C7H8和C2H60,其中NH3浓度较高,且随着干化温度升高而增大;干化乏气冷凝水呈碱性,COD、NH3-N和NH4+浓度较高。针对100吨/日循环流化床一体化污泥焚烧工艺进行了排放特性试验,结果表明在80%负荷和满负荷条件下系统均可连续、稳定运行,燃烧效率在98.5%以上,干化器污泥干化效果较好;烟气中CO、NOx、SO2、HCl、Hg、Cd、Pb及二嗯英等污染物浓度均满足国家标准,固体灰渣中重金属浸出毒性远低于标准限值。提出了干化乏气直接通入炉膛焚烧的工艺,并进行初步验证实验。
Sewage sludge incineration with the advantages of volume reduction, stabilization, harmlessness and energy recovery, is considered to be the most thorough way among the methods of sludge disposal. During the process of sewage sludge incineration, if the emissions of NOx, SO2, HCl, CO, heavy metals and other secondary pollutants are not effectively controlled, serious environmental pollution will occur. Due to its special fuel properties, incineration and pollutants emission characteristics of sewage sludge are different from those of coal and biomass. Therefore, it is theoretically important to study incineration characteristics and pollutants emission and control of sewage sludge, which is also with application value for the disposal of sewage sludge incineration.
     In this paper, incineration characteristics and pollutants emission of sewage sludge in circulating fluidized bed (CFB) are investigated. Along with theoretical analysis, a series of experiments in different devices were conducted in order to explore the sewage sludge combustion behaviors, the gaseous emission of sewage sludge incineration in CFB, and the speciation transformation and distribution of heavy metals. Pollutants emission of sewage sludge during the drying and incineration process in the integrated incineration system for wet sewage sludge in CFB is also studied. The detailed contents are as follows.
     1. The combustion characteristics and kinetics of sewage sludge were studied by thermo-gravimetric analysis. The results show that there are obvious differences between the combustion of sludge and coal or biomass. During sludge combustion, both the stages of volatile volatilization and combustion and the burn-out stage of residue volatile and fixed carbon are the main combustion processes. The ignition temperature of sewage sludge is low, but its combustion rate is also low, leading to poor combustion and burnout performance, which could be remarkably improved by adding coal or biomass.
     2. The emission characteristics of NOx, SO2and HCl during sewage sludge incineration in CFB were explored. Sewage sludge combustion experiments under different operation conditions were carried out in a15kW CFB experimental system. The results reveal that the concentrations of NO, SO2and HCl increases as the combustion temperature increases, while N2O concentration decreases. The concentrations of N2O and NO reduce with the increase in the secondary air ratio, and the effect is different between sewage sludge with different moisture content. Increasing sewage sludge moisture content leads to substantial increase in the emissions of N2O and HCl, and decrease in NO emission. Compared with coal, higher nitrogen oxides emissions but lower fuel-N conversion ratios are obtained during sewage sludge combustion. Emissions of SO2and HCl can be effectively controlled by limestone injection.
     3. The effect of phosphorus in sludge on desulfurization of limestone was investigated through experiments and chemical thermodynamic analyses. Chemical thermodynamic analyses show that CaO would react first with phosphoric oxide during sewage sludge incineration, and then the remaining parts may be involved in desulfurization. The same tendency is found by desulfurization experiments. However, during experiments only parts of CaO will react first with phosphoric oxide, and the amount of CaO occupied by unit mole of phosphorus is much lower than analyses results, which mean chemical thermodynamic analyses overestimate the effect of phosphorus. Such effect should be taken into account when the Ca/S ratio is to be decided for sulfur capture.
     4. The speciation transformation and distribution of heavy metals during sewage sludge incineration were researched by the chemical thermodynamic analyses. The results indicate that Cd, Cu and Pb are transformed to other volatile forms easily during sewage sludge incineration, while Cr, Mn and Zn are not so easy. Cl will promote the volatilizations of Pb, Cd, Cu, Mn and Zn due to the formation of metal chlorides, and S will react with Cd and Pb forming sulfates. Al2O3and SiO2have a good adsorption of Cd and Pb, which will be restrained by Cl and S.
     5. Pollutants emission of sewage sludge in the drying and incineration process in integrated incineration system for wet sewage sludge in CFB was studied. Experimental results of sewage sludge drying in a fluidized bed demonstrate that the main emitted gases emission in drying process are identified to be NH3, CH4, C3H8, C7H8and C2H6O. Among them, NH3concentration is high, which increases with the increase in incineration temperature. The condensate from drying gases is alkaline, and the concentrations of COD, NH3-N and NH4+are relatively high. The results of incineration test on100t/d integrated incineration system for sewage sludge in CFB show that continuous and stable operation at full load has been achieved with the combustion efficiency of over98.5%in the incinerator and the good drying performance in the drier. The concentrations of CO, NOx, SO2, HCl, Hg, Cd, Pb and dioxin-like pollutants in flue gas are lower than the emission standard limit. The leaching toxicity of heavy metals in fly ash and bottom ash are much lower than the identification standards for hazardous wastes.
引文
[1].中华人民共和国国家统计局.中华人民共和国2012年国民经济和社会发展统计公报[EB/OL].2013.02.22[2012.03.15].http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20130221_402874525.htm.
    [2].中华人民共和国环境保护部.污水处理厂污泥处理处置最佳可行技术导则(编制研究报告)[EB/OL].2008-11-28[2013-03-15].http://www.zhb.gov.cn/info/bgw/bbgth/200811/t20081128_131764.h tm.
    [3]. Werther, J., Ogada, T. Sewage sludge combustion [J]. Progress in Energy and Combustion Science, 1999,25 (1):55-116.
    [4].何品晶,顾国维,李笃中.污泥处理与利用[M].北京:科学出版社,2003.
    [5].徐强,张春敏,赵丽君.污泥处理处置技术及装置[M].北京:化学工业出版社,2003.
    [6]. Fytili, D., Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods-A review [J]. Renewable & Sustainable Energy Reviews, Jan,2008,12 (1):116-140.
    [7]. Werle, S., Wilk, R. K. A review of methods for the thermal utilization of sewage sludge:The Polish perspective [J]. Renewable Energy,2010,35 (9):1914-1919.
    [8]. Uggetti, E., Ferrer, I., Llorens, E., etc. Sludge treatment wetlands:A review on the state of the art[J]. Bioresource Technology, May,2010,101 (9):2905-2912.
    [9].中华人民共和国住房和城乡建设部,中华人民共和国国家发展和改革委员会.城镇污水处理厂污泥处理处置技术指南(试行)2011-03-14[2013-03-15]. http://www.gov.cn/zwgk/2011-03/30/content_1834616.htm
    [10].张辰,王国华,孙晓.污泥处理处置技术与工程实例[M].北京:化学工业出版社,2006.
    [11].王罗春,李雄,赵由才等.污泥干化与焚烧技术[M].北京:冶金工业出版社,2010.
    [12]. Takahashi, K., Miyamoto, H., Ito, T., etc. Combustion improvement in fluidized-bed sewage sludge incinerator [J]. Clean Air,2002,3 (3):233-250.
    [13]. Murakami, T., Suzuki, Y., Nagasawa, H., etc. Combustion characteristics of sewage sludge in an incineration plant for energy recovery [J]. Fuel Processing Technology,2009,90 (6):778-783.
    [14]. Khiari, B., Marias, F., Vaxelaire, J., etc. Incineration of a small particle of wet sewage sludge:A numerical comparison between two states of the surrounding atmosphere [J]. Journal of Hazardous Materials,2007,147 (3):871-882.
    [15]. Tang, P., Zhao, Y., Xia, F. Thermal behaviors and heavy metal vaporization of phosphatized tannery sludge in incineration process[J]. Journal of Environmental Sciences,2008,20 (9):1146-1152.
    [16]. Lopes, H., Gulyurtlu, I., Abelha, P., etc. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor [J]. Fuel, Dec,2009,88 (12):2373-2384.
    [17]. Zhou, L., Jiang, X., Liu, J. Characteristics of oily sludge combustion in circulating fluidized beds [J]. Journal of Hazardous Materials,2009,170 175-179.
    [18]. Khiari, B., Marias, F., Zagrouba, F., etc. Use of a transient model to simulate fluidized bed incineration of sewage sludge [J]. Journal of Hazardous Materials,2006,135 (1-3):200-209.
    [19]. Houdkova, L., Boran, J., Ucekaj, V, etc. Thermal processing of sewage sludge-π[J]. Applied Thermal Engineering,2008,28 (16):2083-2088.
    [20]. Li, Y. Y., Li, S. Y, Zhu, J. G., etc. Research and Application of Integrative Drying and Incineration Technique for Sewage Sludge in Circulating Fluidized Bed[A]. In Cities of the Future Xi' an:Technologies for Integrated Urban Water Management[C], Xi'an, China, Sept 15-19,2011.
    [21]. Solimene, R., Urciuolo, M., Cammarota, A., etc. Devolatilization and ash comminution of two different sewage sludges under fluidized bed combustion conditions [J]. Experimental Thermal and Fluid Science, Apr,2010,34 (3):387-395.
    [22]. Park, J. M., Lee, S. B., Kim, J. P., etc. Behavior of PAHs from sewage sludge incinerators in Korea [J]. Waste Management,2009,29 (2):690-695.
    [23]. Jiang, D. L., Huo, X. H.,Dong, C. Q., etc. Sludge auto-thermal drying and incineration generation simulation with ASPEN PLUS [J].2009 International Conference on Sustainable Power Generation and Supply, Vols 1-4,2009,1851-1855.
    [24]. Hartman, M., Trnka, O. Heavy metals in sewage sludge and their behaviour in incineration [J]. Chemicke Listy,2008,102 (2):131-138.
    [25].秦翠娟,李红军,钟学进.我国污泥焚烧技术的比较与分析[J].能源工程,2011,(01):52-55.
    [26].彭小军,孙向军,傅传运.鼓泡流化床焚烧炉污泥干化焚烧处理特性及能耗研究[J].工业锅炉,2011,(02):13-16.
    [27].陈涛,孙水裕,刘敬勇等.城市污水污泥焚烧二次污染物控制研究进展[J].化工进展,2010,29(01):157-162.
    [28].姬鹏,韩向新,姜秀民.干化污泥燃烧特性的研究[J].热能动力工程,2009,24(04):533-537.
    [29].矫维红,那永洁,郑明辉等.城市下水污泥焚烧过程中二次污染物排放特性的试验研究[J].环境污染治理技术与设备,2006,7(04):74-77.
    [30].王飞,朱小玲,李博等.污泥干化焚烧过程中污染物排放的研究[J].给水排水,2011,37(05):22-26.
    [31].邓文义,严建华,李晓东等.流化床内干化污泥燃烧污染物排放特性研究[J].浙江大学学报(工学版),2008,42(10):1805-1810.
    [32].韩晓强.干化污泥焚烧炉的试验研究与数值模拟[D].南京:东南大学,2006.
    [33].姬鹏.市政污泥流化床焚烧试验研究[D].上海:上海交通大学,2009.
    [34].肖汉敏.污泥热干燥与焚烧特性研究[D].广州:华南理工大学,2010.
    [35].刘建国.油污泥的流化床焚烧处理方法及其燃烧机理[D].上海:上海交通大学,2009.
    [36].李云玉.循环流化床一体化污泥焚烧工艺试验研究[D].北京:中国科学院研究生院,2011.
    [37].侯凤云.城市下水污泥流化床干化特性研究[D].北京:中国科学院研究生院,2007.
    [38].盛成.污泥及其混煤燃烧与NO排放特性研究[]D].济南:山东大学,2010.
    [39]. J.Werther. Potentials of Biomass Co-Combustion in Coal-Fired Boilers [C]. Proccedings of the 20th International Conference on Fluidized Bed Combustion.2010, Part 1,27-42.
    [40].刘秀如.城市污水污泥热解试验研究[D].北京:中国科学院研究生院,2010.
    [41]. Debellefontaine, H., Cammas, F. X., Deiber, G., etc. Wet air oxidation:kinetics of reaction, carbon dioxide equilibrium and reactor design-An overview [J]. Water Science and Technology,1997, 35 (4):111-118.
    [42]. Mishra V S, Mahajani V V, Joshi J B. Wet Air Oxidation [J]. Industrial & Engineering Chemistry Research,1995,34(1):2-48.
    [43].陶明涛,张华,王艳艳等.基于部分湿式氧化法的污泥资源化研究[J].环境工程,2011,29(增刊):402-404.
    [44].刘秀如,吕清刚,赵科.城市污水污泥热解特性及动力学研究[J].热能动力工程,2010,25(06):677-680.
    [45].赵科,吕清刚,谭力等.污泥的热解提油-半焦燃烧工艺的试验研究[J].工程热物理学报,2011,32(04):687-690.
    [46].刘健.污水处理厂污泥堆肥资源化利用技术浅析[J].长江大学学报(自然科学版),2011,8(04):246-248.
    [47].杨金满,贾瑞宝.污泥资源化利用研究进展[J].工业用水与废水,2011,42(05):1-5.
    [48].罗争锋,张景云,沈跃东等.污泥利用的经济模式—新型污泥燃料成套应用技术[J].污染防止技术,2005,21(1):72-77.
    [49]. Brain Hemphill. Fluid Bed Technology for Sludge Destruction [J]. Water Engineering & Management,1988,12:37-40.
    [50].黄凌军,杜红,鲁承虎等.欧洲污泥干化焚烧处理技术的应用与发展趋势[J].给水排水,2003,29(11):19-22.
    [51].吕清刚,那永洁,高鸣等.一种带复合干燥器的循环流化床湿污泥干化焚烧处理方法[P].CN200510077292.X,2006-12-27.
    [52].李大庆.城市下水污泥的干化焚烧一体化技术试验研究[D].北京:中国科学院研究生院2009.
    [53].贠小银,吕清刚,那永洁等.循环流化床污泥焚烧一体化工艺的研究与应用[J].环境工程,2007,25(04):56-58.
    [54].李云玉,吕清刚,朱建国等.循环流化床一体化污泥干化焚烧工艺的冷态试验研究[J].中国电机工程学报,2010,30(35):1-6.
    [55].周玉文,胡伟,John,K等EcoDry污泥干燥技术在欧洲的应用[J].给水排水,2009,35(08):36-39.
    [56].杨新海,张辰.上海市石洞口城市污水处理厂污泥干化焚烧工程[J].给水排水,2003,29(09):19-22.
    [57].韩晓强,陈晓平.上海石洞口干化污泥焚烧炉的调试[J].锅炉技术,2006,37(01):77-80.
    [58].岑可法等.循环流化床锅炉理论设计及运行[M].北京:中国电力出版社,1998.
    [59].新井纪男.燃烧生成物的发生与抑制技术[M].赵黛青,等译.北京:科学出版社,2001.
    [60]. Kilpinen P, Hupa M. Homogeneous N2O Chemistry at Fluidized Bed Combustion Conditions: A Kinetic Modeling Study [J]. Combust. Flame,1991,85(1/2):94-104.
    [61]. Hulgaard T, Dam-Johansen K. Homogeneous Nitrous Oxide Formation and Destruction under Combustion Conditions [J]. AIChEJ,1993,39:1342-1354.
    [62]. Ogada T, Werther J. Combustion characteristics of wet sludge in a fluidized bed:Release and combustion of the volatiles [J]. Fuel,1996,75(5):617-626.
    [63]. Werther J, Ogada T, Philippek C. N2O emissions from the fluidised-bed combustion of sewage sludges [J]. Journal of the Institute of Energy,1995,68(475):93-101.
    [64]. Sanger M, Werther J, Ogada T. NOx and N2O emission characteristics from fluidised bed combustion of semi-dried municipal sewage sludge[J]. Fuel,2001,80(2):167-177.
    [65]. Amand, L. E., Miettinen-Westberg, H., Karlsson, M., Leckner, B., Luecke, K., Budinger, S., Hartge, E. U., and Werther, J., Co-combustion of dried sewage sludge and coal/wood in CFB-a search for factors influencingemissions.16th International Conference on Fluidized Bed Combustion, Reno, USA, May 13-16,2001.
    [66]. Amand, L. E., Miettinen-Westberg, H., Karlsson, M.,Leckner, B., Luecke, K., Budinger, S., Hartge, E. U.,and Werther, J., Co-combustion of dried sewage sludge and coal/wood in circulating fluidised bed boiler-a study of NO amd N2O emissions. Proceedings of the 3rd Internarional Symposium on Incineration and Flue Gas Treatment Technologies, Brussels, Belgium, July 2-4, 2001.
    [67]. Lecker B, Amand L E, Lucke K, Werther J. Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed [J]. Fuel,2004,83(4):477-486.
    [68]. Hartman M, Svoboda K, Pohorely M, etc. Combustion of Dried Sewage Sludge in a Fluidized-Bed Reactor [J]. Ind. Eng. Chem. Res.,2005,44 (10):3432-3441.
    [69]. Pohorely M, Svoboda K, Trnka O, etc. Gaseous Emissions from the Fluidized-Bed Incineration of Sewage Sludge [J]. Chemical Papers,2005,59 (6b):458-463.
    [70]. Korving L D, Schilt C, Jong W D. Reduction of nitrous oxide emission by a smaller air to fuel ratio in large-scale sewage sludge fluidized bed combustor [M]. Waste Management and the Environment V,43.
    [71]. Murakami T, Kitajima A, Suzuki Y. Study on Freeboard Properties to Maintain Low N2O Emissions from Sewage Sludge [J]. Energy Fuels,2010,24 (9):4879-4882.
    [72]. Gustavsson, L., Glarborg, P., and Leckner, B. Modeling of chemical reactions in afterburning for the reduction of N2O [J]. Combust. Flame,1996,106(3):345-358.
    [73]. Liu H, Gibbs B M. Reduction of N2O emissions from a coal-fired circulating fluidized-bed combustor by secondary fuel injection [J]. Symposium (International) on Combustion,1998, 27(2):3077-3083.
    [74]. Liu H, Gibbs B M. Reduction of N2O emissions from a coal-fired circulating fluidised bed combustor by afterburningv. Fuel,1998,77(14):1579-1587.
    [75]. Tadaaki S, Masanori T, Hajime O. Emissions of NOX and N2O during co-combustion of dried sewage sludge with coal in a bubbling fluidized bed combustor [J]. Fuel,2007,86(7): 957-964.
    [76]. Tadaaki S, Masanori T, Hajime O. Emissions of NOX and N2O during co-combustion of dried sewage sludge with coal in a circulating fluidized bed combustor [J]. Fuel,2007,86(15): 2308-2315.
    [77].吕清刚,范晓旭,那永洁,等.城市下水污泥和煤/LPG在循环流化床上的混烧试验研究[J].工程热物理学报,2006,27(2):339-342.
    [78].吕清刚,李志伟,那永洁,等CFBC混烧污泥与煤:N20和NO的排放[J].工程热物理学报,2004,25(01):163-166.
    [79].侯海盟,李诗媛,吕清刚,等.污泥循环流化床燃烧过程中NO和N20的排放特性[J].工程热物理学报,2012,33(12):2197-2201.
    [80].邓文义,严建华,李晓东,等.流化床内干化污泥燃烧污染物排放特性研究[J].浙江大学学报(工学版),2008,42(10):1805-1811.
    [81].邓文义,严建华,李晓东,等.造纸污泥干化及焚烧系统污染物排放特性[J].燃烧科学与技术,2008,14(6):545-550.
    [82].陈晓平,顾利锋,赵长遂,等.污泥与煤混烧过程中NOx和N2O的排放特性[J].东南大学学报(自然科学版),2005,35(1):122-125.
    [83]. F. Frandsen. Trace Elements from Coal Combustion [D]. Technical University of Denmark. 1995:115-138.
    [84]. M Helena Lopes, P Abelha, N Lapa, etc. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed [J]. Waste Management,2003,23(9): 859-870.
    [85]. D Marani, CM Braguglia, G Mininni, etc. Behaviour of Cd, Cr, Mn, Ni, Pb, and Zn in sewage sludge incineration by fluidised bed furnace [J]. Waste Management,2003,23(2):117-124.
    [86]. R Cenni, F Frandsen, T Gerhardt, etc. Study on trace metal partitioning in pulverized combustion of bituminous coal and dry sewage sludge [J]. Waste Management,1998,18(6-8): 433-444.
    [87]. MB Folgueras, RM Diaz, J Xiberta, etc. Volatilisation of trace elements for coal-sewage sludge blends during their combustion [J]. Fuel,2003,82(15-17):1939-1948.
    [88]. JC Chen, MY Wey, YC Lin.The adsorption of heavy metals by different sorbens under various incineration conditions [J]. Chemosphere,1998,37(13):2617-2625.
    [89]. JC Chen, MY Wey, WY Ou. Capture of heavy metals by sorbents in incineration flue gas [J]. The Science of Total Environment,1999,228(1):67-77.
    [90]. MV Scotto, M Uberoi, TW Peterson, etc. Metal capture by sorbents in combustion processes [J]. Fuel Processing Technology,1994,39(1-3):357-372.
    [91]. Chang Y. Wu and Pratim Biswas. An Equilibrium Analysis to Determine the Speciation of Metals in an Incinerator [J]. Combustion and Flame,1993,93(1-2):31-40.
    [92]. Chen J C, Wey M Y, Yan M H. Theoretical and experimental study of metal capture during incineration process [J]. Journal of Environmental Engineering,1997,123(11):1100-1106.
    [93]. Alvin MA. Trace and minor element reactions in fluidized-bed combustion processes [C]. NTIS, SPRINGFIELD, VA.1982.
    [94]. MOBERG, P.-O., WESTERMARK, M. and NOL-NG, B. Project Coal-Health-Environment, Technical Report No.28,1982.
    [95]. Shpirt M Y, Pertsikov IZ, Samuilova L N, etc. Thermodynamic investigation of the behavior of lead in the high temperature oxidation of coals [J]. Solid Fuel Chemistry,1988,22(1):121-124.
    [96]. Lee C C.A model analysis of metal partitioning [J]. Waste Management,1988, 38(7):941-945.
    [97]. Morgantown Energy Technology Center Report, Vaporizationof Trace Element Species from Coal underGasification and Combustion Conditions [C], US Departmentof Energy, Morgantown, West Virginia,1989.
    [98]. Wu C, Biswas P. An equilibrium analysis to determine the speciation of metals in an incinerator [J]. Combustion and Flame,1993,39(2):31-40.
    [99]. Linak W P, Wendt J O L. Toxic metal emissions from incineration:mechanisms and control [J]. Prog.Energy Combust.Sci.,1993,19(2):145-185.
    [100]. Frandsen F., Damjohansen K., and Rasmussen P. Trace Elements from Combustion and Gasification of Coal:An Equilibrium Approach [J]. Prog. Energy Combust. Sci,1994,20(2): 115-138.
    [101]. Owens T M, Wu C Y, Biswas P. An equilibrium analysis for reaction of metal compounds with sorbents in high temperature systems [J]. Chemical Engineering Communications,1995, 133(1):31-52.
    [102]. Durlak S K, Biswas P, Shi J C. Equilibrium analysis of the effect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators [J]. Journal of hazardous materials,1997,56(1-2):1-20.
    [103]. Chang Yu Wu, Timothy Barton. A Thermodynamic Equilibrium Analysis to Determine the Potential Sorbent Materials for the Control of Arsenic Emissions from Combustion Sources [J]. Environmental engineering science,2001,18(3):177-190.
    [104]. Chen J C, Wey M Y, Liu Z S. Adsorption mechanism of heavy metalson sorbents during incineration [J]. Journal of environmental engineering,2001,127(1):63-69.
    [105]. B. B. Miller, R. Kandiyoti, D. R. Dugwell. Trace Element Emissions from Co-combustion of Secondary Fuels with Coal:A Comparison of Bench-Scale Experimental Data with Predictions of a Thermodynamic Equilibrium Model [J]. Energy Fuels,2002,16(4):956-963.
    [106]. D. Thompson, B.B Argent. Thermodynamic equilibrium study of trace element mobilisation under pulverised fuel combustion conditions [J]. Fuel,2002,81(3):345-361.
    [107].孟韵,张军营,种秦,等.燃煤过程中微量元素砷和硒形态转化的热力学平衡模拟[J].环境污染治理技术与设备,2002,3(9):1-5.
    [108].陈雷.典型燃煤电站汞排放现场试验和模拟研究[D].北京:清华大学,2006.
    [109]. M. D Somoano, S. Unterberger, K.R.G. Hein. Prediction of trace element volatility during co-combustion processes [J]. Fuel,2006,85(7-80:1087-1093.
    [110]].张小峰.燃烧中铅、铬的排放特性及其吸附剂控制的试验研究[D].北京:清华大学,2007.
    [110].贾金岩.垃圾焚烧中水分对重金属迁移转化影响研究[D].北京:清华大学,2007.
    [112]. Yanguo Zhang, Yong Chen, Aihong Meng, etc. Experimental and thermodynamic investigation on transfer of cadmium influenced by sulfur and chlorine during municipal solid waste (MSW) incineration [J]. Journal of Hazardous Materials,2008,153(1-2):309-319.
    [113].陈勇,张衍国,李清海,等.垃圾焚烧中吸附剂对镉进行脱除的热力学平衡研究[J].燃烧科学与技术,2008,14(3):239-245.
    [114]. M.L. Contreras, J.M. Arostegui, L. Armesto. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations [J]. Fuel,88(3):539-546.
    [115], Hong Yao, Ichiro Naruse. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion [J]. Particuology,2009,7(6):477-482.
    [116].刘敬勇,孙水裕.污泥焚烧过程中重金属形态与分布的热力学平衡计算[J].中国有色 金属学报,2010,20(8):1645-1654.
    [117]. Michael Becidan, Lars Sorum, Daniel Linderg. Impact of Municipal Solid Waste (MSW) quality on the behavior of alkali metals and trace elements during combustion:a thermodynamic equilibrium analysis [J]. Energy Fuels,2010,24(6):3446-3455.
    [118].韩军.下水道污泥焚烧过程中重金属元素的挥发与回收[D].武汉:华中科技大学,2005.
    [119].陈勇.垃圾焚烧中镉、铅迁移转化特性研究[D].北京:清华大学,2008.
    [120]. Li P S, Hu Y, Yu W, Yue Y N, Xu Q, Hu S, Hu N S, Yang J. Investigation of sulfur forms and transformation during the co-combustion of sewage sludge and coal using X-ray photoelectron spectroscopy [J]. Journal of Hazardous Materials,2009,167(1-3):1126-1132.
    [121]. Leckner B, Amand L E, Lucke K, Werther J. Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed [J]. Fuel,2004,83(4):477-486.
    [122]. Amand L E, Leckner B. Reduction of emission of sulphur and chlorine from combustion of high volatile waste fuels (sludge) in fluidised bed [C]. Proceedings of the third international conference on combustion, incineration/pyrolysis and emission control,2004, Hangzhou, China.
    [123]. Elled A L, Amand L E, Leckner B, etc. Influence of phosphorus on sulphur capture during co-firing of sewage sludge with wood or bark in a fluidised bed [J]. Fuel,2006,85(12/13): 1671-1678.
    [124]. Elled A L, Amand L E, Leckner B, etc. Phosphorous in ash from co-combustion of municipal sewage sludge with wood in a CFB boiler, a comparion of experimental data with predictions by a thermodynamic equilibrium model [C]. Processdings of the 18th international conference on FBC,2005, Toronto, Canada.
    [125]. Folgueras M B, Diaz R M, Xiberta J. Sulphur retention during co-combustion of coal and sewage sludge [J]. Fuel,2004,83(10):1315-1322.
    [125].鄢晓忠,陈东林,刘亮,等.煤细度对燃烧特性影响的试验研究[J].动力工程,2007,27(5):682-686.
    [126].聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究[J].燃烧科学与技术,2001,7(1):71-76.
    [127]. Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature,1964, 201(4914):68-69.
    [128].范从振.锅炉原理[M].北京:中国电力出版社,2000.
    [129]. Amand L E, Leckner B, Andersson S. Formation of N2O in circulating fluidized bed boilers [J]. Energy Fuels,1991,5 (6):815-823.
    [130].侯祥松,李金平,张海,等.石灰石脱硫对循环流化床中NOx生成和排放的影响[J].电站系统工程,2005,21(1):5-7.
    [131].侯祥松,李金平,张海,等.石灰石脱硫对循环流化床中N2O排放浓度的影响明.电站系统工程,2005,21(3):1-3.
    [132]. Werther J, Ogada T, Philippek C. Sewage sludge combustion in the fluidized bed-a comparison of stationary and circulating fluidized bed techniques [C].13th International Conference on Fluidized Bed Combustion, Orlando, FL:ASME,1995:951-962.
    [133]. Tourunen A, etc. Experimental trends of NO in circulating fluidized bed combustion [J]. Fuel, 2009,88(7):1333-1341.
    [134]. Hao L, etc. Coal property effects on N2O and NOx formation from circulating fluidized bed combustion of coal [J]. Chemical Engineering Communications,2005,192 (11):1482-1489.
    [135]. Chi Y, Wen J M, Zhang D P, Yan J H, Ni M J, Cen K F. HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds [J]. Journal of Environmental Sciences, 2005,17(4):699-704.
    [136]. Wei X L, Lopez C, Puttkamer T, Schnell U, Unterberger S, Hein K R.G.. Assessment of Chlorine-Alkali-Mineral Interactions during Co-Combustion of Coal and Straw [J]. Energy & Fuels, 2002,16(5):1095-1108.
    [137]. Li S Y, Bie R S. Modeling the reaction of gaseous HC1 with CaO in fluidized bed [J]. Chemical Engineering Science,2006,61(16):5468-5475.
    [138]. Bale C W, Chartrand P, Degterov S A, etc. FactSage thermochemical software and databases [J]. Calphad,2002,26(2):189-228.
    [139]. Bale C W, Belisle E, Chartrand P, etc. FactSage thermochemical software and databases-recent developments [J]. Calphad,2009,33(2):295-311.
    [140]. Vassileva S.V, Braekman-Danheuxb C, Laurant Ph, etc. Behavior, capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste [J]. Fuel, 1999,78(10):1131-1145.
    [141].GB 18918----2002.城镇污水处理厂污染物排放标准[S].北京:中国标准出版社,2002.
    [142].GB 18485-2001.生活垃圾焚烧污染控制标准[S].北京:中国标准出版社,2001.
    [143].GB 5085.3-2007.危险废物鉴别标准浸出毒性鉴别[S].北京:中国标准出版社,2007.
    [144].中国科学院工程热物理研究所.一种带冷凝式干燥的湿污泥焚烧处理方法[P].CN101430094,2009-05-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700