无烟煤制作铝电解炭阳极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭阳极是电解铝生产的关键。尽管多年来炭阳极的生产工艺、成分配比等方面都得到了很大发展,但其主要原料没有改变,依然是石油焦和煤沥青。为缓解日益匮乏的石油资源及有效的利用我国的无烟煤资源,本文研制了一种新的用于电解铝生产的炭阳极以替代目前主要采用石油焦为原料的炭阳极。
     本文以低灰无烟煤为研究对象,对无烟煤和石油焦的热解进行了考察。分析了煅烧和酸碱脱灰处理对无烟煤结构和灰分成分的影响。考察了煅烧无烟煤和煅烧石油焦颗粒性质的差异。研究发现:石油焦的热解在200℃到850℃之间较宽的范围内完成,石油焦的结构重排在1050℃左右;无烟煤的热解过程主要集中在550~900℃之间较窄的温度区间,电热煅烧可促使无烟煤趋于石墨化,同时使煅烧无烟煤结构紧凑,其(002)对应的衍射角由25.83o增加至25.89o。脱灰处理使灰分由2.0%降低至0.58%,酸碱脱灰处理对其结构具有解体作用,经过脱灰的煅烧无烟煤的堆砌厚度由原来的10.78782nm降低至8.95094nm,微晶碳的层面由153个碳环降低至123个。
     脱灰煅烧无烟煤灰分的杂质含量均在要求的范围之内,具有催化作用的Ni、V的统计平均值远低于石油焦的标准,煅烧无烟煤中的S含量仅为0.1%,远低于煅烧石油焦的1.22%。煅烧无烟煤颗粒压碎强度系数比煅烧石油焦高出10~30%,而且耐磨性好,颗粒回胀系数比煅烧石油焦低。采用正交试验方法确定了最佳的粒度级配配方:4~2mm:20%,2~1mm:15%,1~0.075mm:20%,-0.075mm:45%。
     在炭阳极的制备过程中考察了煅烧无烟煤粉添加量、煤沥青含量及焙烧工艺对焙烧体性能的影响。结果表明:40%煅烧无烟煤粉添加量和18%煤沥青含量的炭阳极灰分为0.95%,体积密度(1.452 g/cm3)和孔隙率(22.77%)配合较好,抗压强度(37.59MPa)和电阻率(54.72μ?·m)均在我国炭阳极标准的一级要求范围内。升温速率对炭阳极的结构影响较大,而对性能参数影响不明显。炭阳极在室温到950℃之间,电子受温度的激发跃迁占主导地位,表现为负电阻温度系数。电阻率随温度的变化关系可用ρt =ρ20 +α(t ? 20)表示。完全石油焦炭阳极电阻温度系数为-0.00932;添加40%煅烧无烟煤粉炭阳极电阻温度系数为-0.01750。
     对石油焦炭阳极和无烟煤炭阳极的970℃CO2反应性进行了考察,研究了添加剂对970℃CO2反应性的影响。结果表明:无烟煤炭阳极的氧化度和脱落度分别为17.61%和4.42%,比石油焦试样分别低1.29%和0.13%。铝系添加剂在970℃CO2反应性试验中能显著降低炭阳极的氧化度和脱落度以及总的消耗速率。尤其是含量为0.8%的Al粉的氧化度和脱落度达到最小值,分别比不添加时降低32.8%和70%,总消耗速率为39.28 mg·cm-2·h-1。CaF2的加入会增加炭阳极的氧化度3%以上,脱落度增加4倍,总的消耗速率增加一倍以上。NaF的催化作用更加明显,添加1.6%NaF氧化度为29.76%,脱落度增加至33.85%,总的消耗速率为不含添加剂时的3倍。
     对炭阳极的氧化机理进行分析,认为添加煅烧无烟煤的炭阳极能够阻止600℃的空气氧化燃烧。而炭阳极的970℃CO2反应性则要通过改善炭阳极微观结构和降低煤沥青焦的反应性两个方面来综合考虑。
     该论文有图57幅,表39个,参考文献122篇。
Carbon anode is the key to electrolytic aluminium production. Petroleum coke and coal pitch are still the principal raw materials of carbon anode though there is a quite great progress in the production technology, ratio of constituents and other aspects. In order to release the situation that increasingly scarcity petroleum resources and utilize anthracite resources more efficiently of China, a new electrolytic aluminium carbon anode was adopted to replace petroleum coke carbon anode.
     In this paper, low ash content anthracite was taken as the investigated subject, thermolysis process of anthracite and petroleum coke were investigated at the same time. The effect of calcined and acid-base deliming to the structure and ash constituent of anthracite was analysised. Particle properties difference between calcined anthracite and calcined petroleum coke were studied in the same time. The results show that thermolysis process of petroleum coke acted in a width temperature range form 200℃to 850℃, and the structure reconstructe at 1050℃, thermolysis process of anthracite mainly concentrated in a narrow temperature range form 550℃to 900℃and electrolytic calcine would made anthracite more graphitization and the structure transformed more compacted at the meantime, diffraction angle of (002) crystal plane form 25.83o inceased to 25.89o. The ash content of calcined anthracite descended form 2.0% to 0.58% after deliming treatment and acid-base deliming has some decomposition effect to the structure of anthracite, stack thickness form 10.78782nm reduced to 8.95094nm and the number of carboncycle in microcrystallite carbon form 153 reduced to 123.
     All impurity elements content of deliminged calcined anthracite are in the range of requirements, assembly average of some elements for example Ni and V that have catalysis effect are far below the standard of petroleum coke. Besides this, sulfur content of calcined anthracite is only 0.1% while the value is 1.22% in calcined petroleum coke. Calcined anthracite has better abradability and lower resillent-elasticity recovery coefficient than petroleum coke, withal particle crushing strength coefficient exceeded the value of petroleum coke 10~30%. The best size fraction batch formula that determined by orthogonal test was listed as follows: 4~2mm:20%, 2~1mm:15%, 1~0.075mm:20%, -0.075mm:45%.
     Effect of calcined anthracite content, coal pitch content and roasting technology to carbon anode properties were researched in carbon anode preparation process. The results show that ash content is 0.95%, volume density(1.452g/cm3) and porosity(22.77%) match well, compression strength(37.59MPa) and electrical resistivity(54.72μ?·m) are all in range of the first class standard of carbon anode of China when carbon anode including calcined anthracite content and coal pitch content is 40% and 18% respectively. Heating-up speed has a relative great effect to the structure of carbon anode and obscure to the properties. Electron transition occupated principal position and the carbon anode shown negative temperature coefficient of resistance when the temperature raised from room-temperature to 950℃. The relationship of electrical resistivity with temperature changed could been described as follows:ρt =ρ20 +α(t ? 20). Temperature coefficient of resistance is -0.00932 when carbon anode was made by total petroleum coke, and the value is -0.01750 when carbon anode had 40% calcined anthracite content.
     CO2 reactivity of petroleum coke and calcined anthracite carbon anode at temperature 970℃were investigated in this paper, the effect of additives to CO2 reactivity at temperature 970℃were explored at the same time. The results show that oxidization degree and slough degree of calcined anthracite carbon anode is 17.61% and 4.42% respectively, 1.29% and 0.13% lower than petroleum coke carbon anode sample in the same condition. Aluminium serial additives could obviously reduced oxidization degree, slough degree and total consumption speed. In all additives, 0.8% Al powder content could decreased oxidization degree and slough degree both to minimum value, 32.8% and 70% lower than no Al powder addition respectively ,and total consumtion speed has the mininum value 39.28 mg·cm-2·h-1. The additive CaF2 would increased oxidization degree more than 3% compared with no additive carbon anode, slough degree would increased four times and total consumtion speed would raised to more than two times. The catalysis effect of NaF additive is more markedly than the others. When the content of NaF is reach to 1.6%, oxidization degree would arrived to 29.76%, slough degree would increased to 33.85% and total consumtion speed would raised to three times compared with no additive carbon anode.
     Oxidation mechanics of calcined anthracite carbon anode and petroleum coke carbon anode were both analysed,and it draw a conclusion that adding calcined anthracite into carbon anode could impeded air oxidate burning at 600℃temperature and CO2 reactivity at temperature 970℃improvement must consider form two aspects: microstructure of carbon anode improved and depress reactivity of coal pitch coke.
引文
[1]邱竹贤.铝电解原理与应用[M].北京:中国矿业大学出版社,1998:167-168.
    [2]陈喜平,刘凤琴.铝电解惰性阳极的研究现状[J].有色金属(冶炼部分),2002,(4):23-26.
    [3]Sadoway D R.Inert anodes for the Hall-Heroult cell: the ultimate materials challenge [J]. JOM, 2001, 53(5): 29-33.
    [4]曹中秋,牛焱,吴维雯. Cu-Cr-Ni合金800℃,0.1MPa纯氧气中氧化[J].金属学报. 2000(6):647-650.
    [5]Jin F H. High-temperature oxidation behavior and mechanism of a new type of wrought Ni-Fe-Cr-Al superalloy up to 1300℃[J]. Oxidation of Metals. 2000, (3-4): 273-287.
    [6]Reidar Haugsud. High-temperature oxidation of Ni-20wt%Cu from 700 to 1000℃[J]. Oxidation of Metals. 2001, (5): 571-583.
    [7]Hryn J N, Pellin M J. A dynamic inert anode [A]//Light Metals[C]. Warrendale, PA:The Minerals, Metals and Materials Society,1999:377-381.
    [8]Beck T R. Production of aluminum with low temperature fluoride melts [A]//Light Metals[C]. Warrendale, PA: The Minerals, Metals and Materials Society, 1994:417-423.
    [9]李远士,牛焱,吴维雯.三元Cu-Cr-Ni合金在700-900℃空气中氧化[J].金属学报.2000,(7):749-752.
    [10]Shi Z N, Xu J L, Qiu Z X, et al. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis[J]. JOM, 2003, 55(11):63-65.
    [11]Duruz J J, Nora V de. Multi-layer non-carbon metal based anodes for aluminum production cells [P].WO patent, 00/06,800,1999.
    [12]Nora V. de. Inert anodes are knocking at the door of aluminium producers [A]. CRU annual meeting [C]. London: 2001:26.
    [13]吕子剑.对于铝电解惰性阳极的选材与研究方向的思考[J].轻金属.2003,(10):3-6.
    [14]Keller R, Rolseth S, Thonstad J. Mass transport considerations for the development of oxygen-evolving anodes in aluminium electrolysis [J]. Electrochim Acta, 1996, 42(12): 1809-1917.
    [15]Ray S P,Rapp R A. Composition suitable for inert electrode [P]. U.S.Patent,4455211,1984.
    [16]Deyoung D H. Solubilities of oxides for inert anodes in cryolite-based melts [A]// Light Metals [C]. Warrendale, PA: The Minerals, Metals and Materials Society, 1986:299-307.
    [17]于先进,邱竹贤,于亚鑫.铁锌、铁镍尖晶石材料的高温导电性[J].中国陶瓷.1998, 24(1):14-15.
    [18]Yu X J, Qiu Z X, Jin S Z. Corrosion of zinc ferrite in NaF-AlF3-Al2O3 molten salts [J]. Journal of Chinese Society for Corrosion and Protection, 2000, 20(5): 275-280.
    [19]Oiu Z X, Fan L M. The rate-determining step of metal loss in cryolite aluminium metals [A]// Light Metals[C]. Warreudale, Pa: The Minerals, Metals and Materials Society, 1984:789-804.
    [20]Yang J H, Liu Y X, Wang H Z. The behaviour and improvement of SnO2 based anodes in aluminum electrolysis [A]//Light Metals [C]. Warreudale, Pa: The Minerals, Metals and Materials Society, 1993:493-495.
    [21]Sadus A M, Constable D C, Dorin R, et al. Tin dioxide-based ceramics as inert anodes for aluminum smelting: a laboratory study [A]// Light Metals[C]. Warreudale, Pa: The Minerals, Metals and Materials Society, 1996:259-265.
    [22]Haarderg G M. The interaction between tin oxide and cryolite-alumina metls [A], 9th Int. Symp. On Molten salts[C]. San Francisco, USA: Molten salts, Electrochemical Society, 1994:568-577.
    [23]Galasiu R. Influence of Ag2O on the electrical and electrochemical properties of SnO2-based inert anodes for aluminium electrolysis [A]//X Al Sympozium[C]. Tromso, Norway:1995,51-54.
    [24]Gregg J S,Frederick M S, Vaccaro A J. Pilot cell demonstration of cerium oxides coated anodes [A]//Light Metals[C]. Warreudale, Pa: The Minerals, Metals and Materials Society, 1993: 465-473.
    [25]Dewing E. W. The chemistry of solution of CeO2 in cryolite melts [J]. Metallurgical and Materials Transactions B, 1995, 26B(1): 81-86.
    [26]Pietrzyk S, Oblakowsky R. Concentration of impurities from the inert anodes in the bath and metal during aluminium electrolysis[J]// X. Al Symposium[C]. Tromso, Norway: 1999, 9(21-23):31-34.
    [27]Yu P, Zaikov. Ceramic properties of electrodes based on NiO-LiO2 and their solubility in cryolite alumina melts[J]//VIII Al Sympozium[C]. Norway:1995, 9(25-27):239-241.
    [28]吴贤熙,毛小浩,安利娜等.铝电解镍基惰性阳极的研究(II) [J].贵州工业大学学报.2000, 29(2):36-39.
    [29]Galasiu I, Galasiu R. ZnO-based inert anodes for aluminium electrolysis[J]//VIII Al Sympozium[C].Stara Lesnaziar nad Hronom: 1995, 9(25-27):51-54.
    [30]罗涛,王兆文,于旭光等.铝电解陶瓷类惰性阳极材料的发展[J].有色矿冶.2004,20(3): 46-49.
    [31]Ray S P. Inert electrode compositions [P]. U.S.Patent, 4374050, 1983.
    [32]Ray S P, Rapp R A. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties [P]. U.S.Patent, 4454015, 1984.
    [33]Ray S P, Rapp R A. Composition suitable for use as inert electrode [P]. U.S.Patent, 4455211, 1984.
    [34]Secrist D R, Clark J M, Grindstaff H E. Anode assembly for molten salt electrolysis [P]. U.S.Patent, 4443314, 1984.
    [35]Byrne S C. Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly [P]. U.S.Patent, 4457811, 1984.
    [36]Byrne S C, Veludevan A K. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon [P]. U.S.Patent, 4468298, 1984.
    [37]Mcleod A D, Haggerty J S, Sadoway D R. Inert anode materials for hall cells [J]. Metallurgical Soc of AIME, 1986(2): 269-273.
    [38]DeYoung D H. Solubilities of oxides for inert anodes in cryolite-based melts [J]. Metallurgical Soc of AIME, 1986(2): 299-307.
    [39]Ray S P. Inert anodes for hall cells[J]// Light Metals[C]. Warrendale, PA:The Minerals, Metals and Materials Society,1986: 287-298.
    [40]Gregg J S, Frederick M S, Vaccaro A J, et al. Pilot cell demonstration of cerium oxide coated anodes [A]// Light Metals[C]. Warrendale, PA:The Minerals, Metals and Materials Society, 1993: 465-473.
    [41]Alcorn T R, Tabereaux A T, Tichards N E, et al. Operational results of pilot cell test with cermet inert anodes [A]// Light Metals[C]. Warrendale, PA: The Minerals, Metals and Materials Society,1993: 433-443.
    [42]Windisch C F, Strachan D M, Henager C H, et al. Materials characterization of cermet anodes tested in a pilot cell [A]// Light Metals[C]. Warrendale, PA:The Minerals, Metals and Materials Society,1993: 445-454.
    [43]田忠良,赖延清,张刚等.铝电解用NiFe2O4-Cu金属陶瓷惰性阳极的制备[J].中国有色金属学报. 2003,13(6):1541-1544.
    [44]赖延清,秦庆伟,段华南等. NiFe2O4基金属陶瓷材料的制备及其耐腐蚀性能[J].中南大学学报(自然科学版),.2004,35(6):885-890.
    [45]韩水生.铝电解用惰性阳极和多孔陶瓷的制备与性能研究[D].北京:清华大学,2003.
    [46]Olsen E, Thonstad J. The behavior of nickel ferrite cermet materials as inert anodes[J]. Light Metals,1996:249-257.
    [47]Olsen E, Thonstad J. nickel ferrite as inert anodes in aluminum electrolysis: Part I Materials fabrication and preliminary testing[J]. Journal of Applied Electrochemistry, 1999,29(3):293-299.
    [48]郭镜鉴.美铝惰性阳极试验受阻[J].轻合金加工技术.2002,30(9):22.
    [49]John Altdorfer. Doe follows roadmap to Al technologies of the future [J]. JOM, 2000, 52(11): 19-20.
    [50]Windisch. Materials characterization of cermet anodes tested in a pilot cell [J]// Light Metals[C]. Warrendale, PA: The Minerals, Metals and Materials Society, 1993:445-454.
    [51]Gregg J, Frederick M, King H. Testing of cerium oxide coated cermet anodes in a laboratory cell [A]// Light Metals [C]. Warreudale, Pa: The Minerals, Metals and Materials Society, 1993. 455-464.
    [52]Gregg J. S. Pilot cell demonstration of cerium oxide coated anodes [A]// Light Metals [C]. Warreudale, Pa: The Minerals, Metals and Materials Society, 1993: 465-473.
    [53]Ray S. P, et al. Electrolysis with an inert electrode containing ferrite, copper and silver. US patent, 5, 865, 980, 1997.
    [54]杨宝刚,于佩志,于先进等.电解铝生产用的惰性电极材料[J].轻金属.2000,(5):32-35.
    [55]张刚,赖延清,田忠良等.铝电解用NiFe2O4基金属陶瓷的制备[J].材料科学与工程学报.2003,21(4):510-513.
    [56]王兆文,罗涛,高炳亮等. NiAl2O4基惰性阳极的制备及电解腐蚀研究[J].矿冶工程. 2004,24(5):61-64.
    [57]Yu X J, Zhang G L, Qiu Z X, et al. Electrical conductivity and corrosion resistance of ZnFe2O4-based materials used as inert anodes for aluminum electrolysis[J]. Journal of Shanghai University, 1999,3(3):251-254.
    [58] Brown C. Next generation vertical electrode cells [J]. JOM. 2001,53(5):39.
    [59] Beck T R, Brooks R J. Non-consumable anode resistant to oxidation for use in a cell for the electrolytic recovery of aluminium by reduction of aluminium oxide. BR Pat, application 94/00,328.1994-01-25.
    [60]Kvande H, Haupin W. Inert anodes for aluminium smelting: energy balances and environmental impact [J]. JOM, 2001, 53(2):13.
    [61] Thonstad J, Olsen E. Cell operation and metal purity challenges for the use of inert anodes [J]. JOM, 2001, 53(5):36.
    [62] Keniry J. The economics of inert anodes and wettable cathodes for alumiunium reduction cells [J]. JOM, 2001,53(5):43.
    [63]爱德华·哈丁.试验室煅烧和工业煅烧石油焦性质的相互关系[J]. LightMetals, 1991.
    [64]D.Belitskus.综合确定煅烧石油焦性质对铝电解槽阳极性质的影响[J]. LightMetals,1989.
    [65]李纯,宋恩余.一种改性沥青及其生产方法:中国,CN03133782.1[P]. 2003-07-24 .
    [66]黄华,苏自伟.沥青复合添加剂的研制.铝电解炭阳极技术[M].北京:冶金工业出版社,2007.
    [67]许斌,郭德英,张雪红等.煤沥青热解缩聚行为的研究[J].武汉科技大学学报.2004(3):24-27.
    [68]许斌,郭德英,张雪红等.升温速率对煤沥青热解缩聚的影响[J].炭素技术.2004(3):1-4.
    [69]Thonstad J. and Hove E., Can.J.Chem.,1964 (42): 1542//王先黔,添加剂对铝电解碳阳极消耗影响的研究[D]长沙:中南工业大学,2000.
    [70]肖海明,刘业翔.全国轻金属学术会议论文集[C].郑州,1986.
    [71]Liu. Y. X. and Thonstad J., electrochem. Acta, 1983 (28): 113.//王先黔,添加剂对铝电解碳阳极消耗影响的研究[D]长沙:中南工业大学,2000.
    [72]V A.Braunwarthet a1 ,Light Metals,1975,p325//王先黔,添加剂对铝电解碳阳极消耗影响的研究[D]长沙:中南工业大学,2000.
    [73]刘凤琴.阳极添加剂的研究[J].轻金属,1989 (12):21.
    [74]肇玉卿.掺入Li2CO3对阳极糊理化性能的影响[J].轻金属.1991(5):46.
    [75]吕增旭等.碳阳极添加氟化铝试验[J].轻金属.1999 (11):34.
    [76]王洪.氟化铝阳极糊的研制与应用[J].轻金属.1993(6):41.
    [77] Z. Kuang, J. Thonstad, M. S?rlie. Effects of additives on the electrolytic consumption of carbon anodes in aluminium electrolysis Carbon, 1995,33(10):1479-1484.
    [78]Mufuoglu, T. andoye, H. A., Reactivity and electrolytic consumption of anode carbon with various additives,[J] Light Metales, l987,p471.
    [79]杨建红等.铝电解碳阳极掺杂阳时立电位的研究(实验室研究报告).挪威,1998.
    [80]薛铁鹏.含铝添加剂对炭素阳极空气/CO2反应活性的影响[J].矿产保护与利用.2004(6):39-42.
    [81]刘瑞,常先恩.预焙阳极添加氟化铝生产实验[J].炭素.1999(3):35-38.
    [82]蒋汉祥,朱子宗,陈鹏辉.电解铝阳极炭块溶液浸渍优化处理[J].重庆大学学报.2001(11):82-84.
    [83] Perez, M. et al. Formulation, structure and properties of carbon anodes from coal-tar pitch/petroleum pitch blends [J]. Light Metals, 2003,495-501.
    [84]王晶,王晓刚.烟煤焦炭制备铝业预焙阳极的先驱实验分析[J].炭素.2007,(1):25-29.
    [85]赵彦生,叶峻岭,鲍卫仁等.煤特性研究[J].煤炭转化:2002,(1):1~5.
    [86]虞继舜.煤化学[M].北京:冶金工业出版社,2000:148.
    [87]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:137.
    [88]袁银梅,郑明东,李朝祥.煤结构研究及其在新材料制备中应用[J].煤化工:2004,(2):47-50.
    [89]李长一,周顺兵.煅烧无烟煤的X射线衍射研究[J].物理测试:2003,(5):17-18.
    [90]田承圣,凡桂.镜煤与丝炭结构的X射线衍射初步分析[J].太原理工大学学报:2001,32(2):102-105.
    [91]陈喜平,周孑民,李旺兴.煅烧石油焦反应性的试验研究[J].轻金属:2007,(5):37-39.
    [92]曾凡.常规酸碱化学脱灰法-超纯煤的选制工艺专题之三[J].煤炭加工与综合利用:1995,(01):32-36.
    [93]王平甫,宫振,贾鲁宁等.铝电解炭阳极应用与生产[M].北京:冶金工业出版社,2005.
    [94]唐修义,黄文辉等.中国煤中微量元素[M].北京:商务印书馆,2004.
    [95]刘兆福,董军,吕月秋等.球磨粉的特点及其对炭素制品性能的影响[G] //王平甫,宫振.铝电解炭阳极技术(一).北京:冶金工业出版社,2002:211-214.
    [96]李圣华.石墨电极生产[M].北京:冶金工业出版社,1997:52.
    [97]徐艳,李刚、王金合等.预焙阳极中的杂质对其性能的影响[J].铝镁通讯:2003,(2):34-38.
    [98]王洪宇,白秀娟.高硫石油焦在铝用预焙阳极生产中的应用途径[J].轻金属:2008,(4):43-47.
    [99]朱永松.添加剂对铝用炭素阳极的催化活性研究[M].长沙:中南大学硕士论文,2004.
    [100]李德坤.沥青含量对炭阳极理化指标的影响[J].炭素:2003,(3):45-48.
    [101]田本良.炭素工艺科技论文集[M].http://www.sxts.com.cn.
    [102]钱湛芬.炭素工艺学[M].北京:冶金工业出版社,1996:121-130.
    [103]张家埭.碳材料工程基础[M].北京:冶金工业出版社,1192:60-70.
    [104]Masakazu Adachi,Hiroshl Shioyama, Masaki Narisawa,etc. 900~2800K多晶石墨电阻率与温度的关系[J].碳素技术:1991,(4):18-20.
    [105]杜建锋.碳黑煅烧温度与电阻温度特性[J].电子原件与材料:1993,12(4):40-43.
    [106]黄昆原著,韩汝琦改编.固体物理学[M].北京:高等教育出版社,1988.
    [107] Tatar R C, Rabii S. Electronic properties of graphite: A unified the oretical study [J ] . Phys Rev B. 1982, 25 (6): 4126-4141.
    [108]武井武,河岛千寻编,梁济博译.新碳素材料[M] .兰州:兰州碳素厂研究所,1981.
    [109]刘凤琴,王平甫.铝电解炭阳极添加氟化铝的研究与应用[J].有色金属:冶炼部分:1997,(5):17-19.
    [110]姚广春.冶金炭素材料性能及生产工艺[M].北京:冶金工业出版社,1992.
    [111]K Grjotheim and B J Welch. Aluminium Smelter Technology [M[. Dusseldorf: Aluminium-Verlag, 1988.
    [112]Z Dmori. Practical Experience with a Formula for the Prediction of the Anode Net Consumption[C]. Light Metals ,1993 :563~568.
    [113]刘风琴,王平甫.炭素材料空气氧化反应性的测试与研究[G] //王平甫,宫振.铝电解炭阳极技术(一).北京:冶金工业出版社,2002:323-328.
    [114]Z Kuang, J Thonstad, M Sorlie. Effect of Baking Temperature and Carrent Density on Carbon Consumption[C]. Light Metals, 1994:667-672.
    [115]E R Cutshall. Influence of Anode Baking Temperature and Current Density Upon CarbonSloughing[C]. Light Metals, 1986:629-635.
    [116]刘凤琴.添加剂对炭阳极氧化性能影响的研究[M].沈阳:东北大学硕士学位论文,2001.
    [117]Chen S. G., Yang R. T. The Active Surface Species in Alkali-Catalyzed Carbon Gasification: Phenolate (C---O---M) Groups vs Clusters (Particles) [J]. Journal of Catalysis, 1993,141:102-113.
    [118]Anthony H. Clemens, et al. The effect of calcium on the rate and products of steam gasification of char from low rank coal [J]. Fuel, 1998,77:1017-1020.
    [119]K. Asami, P. Sears, E. Furimsky, Y. Ohtsuka. Gasification of brown coal and char with carbon dioxide in the presence of finely dispersed iron catalysts [J]. Fuel Processing Technology, 1996, 47: 139-151.
    [120]邱竹贤,张明杰,姚广春等.铝电解中界面现象及界面反应[M].辽宁:东北工学院出版社,1986:205.
    [121]Grjotheim,K.,Thonstad,J. and Tuset,J. K. Can. Met,Quart,7,173(1986)//K.格里奥特海姆等著,邱竹贤等译.铝电解原理[M].北京:冶金工业出版社,1982:325-333.
    [122]Gerlach J.,et al.,Zeitschrift für Erzbergbau und Metallhüttenwessen,1967,M?rz,11.//邱竹贤,张明杰,姚广春等.铝电解中界面现象及界面反应[M].辽宁:东北工学院出版社,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700